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The mechanics of charged particle motion is presented in a five-dimensional form compatible with 
the five-dimensional Kaluza theory of the electromagnetic field. Gauge dependence is given an 
intrinsic geometrical interpretation and the role of generalized momenta is clarified. The theory is a 
new example of a mechanical system with constraints and otTers an interesting exercise in canonical 
quantization with a nonstandard Poisson bracket. 

1. INTRODUCTION 

The dynamics of a charged particle in standard canon
ical form requires the use of a gauge-dependent mo
mentum. The gauge dependence of the electromagnetic 
potential has been clarified by giving it a geometrical 
interpretation in the five-dimensional Kaluza theory of 
the electromagnetic field,1-3 and the purpose of this 
paper is to show that a similar clarification of the gauge 
dependence of momentum is possible. This clarification 
suggests a modification of canonical dynamics in which 
a different, gauge-independent, momentum is used, at 
the expense of a modification of the Poisson bracket. It 
is shown that in all respects, including canonical quan
tization, the modified POisson bracket can replace the 
standard version. 

The geometry of the five-dimensional theory of 
Kaluza is reviewed in Sec. 2. In comparison with the 
formulations found in standard texts, more emphasis 
is given to the intrinsic features of the five-dimensional 
geometry and to the reduction of five-dimensional quan
tities to four dimensions. The reduction of some quan
tities results in classes of objects related by gauge 
transformations, and the geometric origin of gauge trans
formations is made clear. 

Section 3 contains the formulation of the dynamics 
of charged particles in five dimensions and its reduc
tion to four dimensions. The reduction leads in a 
natural way to a gauge-independent canonical theory 
with a nonstandard Poisson bracket. The geometriC 
meaning of the usual gauge-dependent momenta is dis
cussed. The five-dimensional dynamics presented is an 
example of a dynamics with primary constraints and no 
secondary constraints. 4 - 6 

In the last section the canonical quantization of the 
five- and four-dimensional dynamical systems is given. 
In the case of the five-dimenSional theory we have an 
example of the quantization of a mechanical system with 
constraints. The absence of secondary constraints in 
a claSSical theory does not imply that there are none in 
the corresponding quantum theory, and in fact they do 
arise in this case. Since we feel that the problem of 
secondary constraints of a quantum-mechanical system 
is far from solved we prefer to avoid them here. For
tunately the assumption that the Einstein and Maxwell 
field equations hold in vacuum eliminates any secondary 
constraints. The manner of appearance of secondary 
constraints in this example, and their relation to the 
field equations, is in our opinion of sufficient interest 
to justify a separate investigation. In the canonical 
quantization of the four-dimensional theory the usual 
procedure must be modified because of the nonstandard 
Poisson bracket. 
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2. KALUZA THEORY 

A. The mathematical structure 

We assume a Riemannian manifold Z of five dimen
sions and Signature (+, +,-,-,-),a Riemannian mani
fold X of four dimensions and signature (+, -, -, -), and 
the one-dimensional Riemannian manifold of real num
bers Y. Coordinates of Z and X are represented by z a 

and x a , respectively, while y denotes an element of y.7 
We assume a mapping II from Z onto X which, in terms 
of coordinates, we represent by the functions 8 

(2.1) 

We assume a class 4> of mappings, cp, cpt, .•• ,from 
Z onto Y which, in terms of coordinates, we represent 
by the class of functions 8 

y = cp(z a), 

y = cp'(z a), 

(2.2) 

It is clear that II and anyone cp together provide a 
mapping from Z to X x Y by assigning to each z a the 
element (IIa(zu),cp(zu» of X x Y. We assume that for 
each cp in 4> the mapping from Z to X x Y so construct
ed is one-to-one and onto. The Significance of this 
assumption for the mappings II and cp is pictured in 
Fig. 1 (where Z and X each have three dimensions sup
pressed). Sets of elements of Z mapped into a Single 

z~---+-----+----~---

/ 
/ 

y 

FIG.!. The manifolds Z,X, and Y, the mapping II, and two sectionings 
cp and cp', of «;. 
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element of X by n are referred to as fibers of Z, and 
are indicated by the vertical line segments in Fig. 1. 
Since there is only one mapping n, the manifold Z has 
only one set of fibers. Sets of elements of Z mapped to 
a single element of Y by a mapping cp of cJ> are referred 
to as sections of Z, with the set of sections correspond
ing to a particular cp of cJ> called a sectioning of Z. 
Sections of Z are indicated by the curves transverse 
to fibers in Fig. 1. Since cJ> has many members, Z has 
many sectionings, and in Fig. 1 two possible sectionings 
are indicated. The nature of the mappings given by 
Eqs. (2.1) and (2.2) insure that fibers do not intersect 
themselves or one another, and that sections do not 
intersect themselves or one another; that the mapping 
Z to X x Y described above is one-to-one and onto im
plies that each fiber intersects each section at exactly 
one point. Finally, we assume a one parameter group 
of transformations which act on Z and which preserve 
the fibers and sectionings, that is if we represent these 
transformations by 

zet' = yet(z8,y), 

where y is a real parameter chosen so that 

yet(yll(zet,y),y/) = yet(z"l,y + y/), 

then we assume that 

and 

(2.3) 

(2.4) 

If the one-to-one and onto property of the mapping 
from Z to X x Y is taken into account these equations 
imply that any fiber can be generated by the one para
meter group acting on any element of that fiber,9 and 
all sections of a particular sectioning of Z can be gener
ated by the one parameter group acting on anyone sec
tion in that sectioning. In fact, it is further implied that 
having one sectioning, cp, of Z one can obtain the entire 
class, cJ>, by adding to cp arbitrary functions on Z con
stant along fibers, since Eq. (2.4) implies that the dif
ference between any two sectioilings is constant along 
fibers. The action of the one parameter group is pic
tured in Fig. 2. Equations (2.3) and (2.4) have differen
tial forms. If we define 

--...... ~ Y+"f 

-----'l.~ Y 

z y 

FIG. 2. The action of the element y of the one parameter group on 
fibers and sections of Z. 
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the differentiation of Eqs. (2. 3) and (2.4) with respect 
to y yields 

and 

A'" ana =0 
az'" 

Aet~ = 1 az et , 

(2.5) 

(2.6) 

respectively. Clearly A et is the field of vectors tangent 
to the fibers of Z. 

There remain conditions on the metric structures of 
Z, X, and Y to be stated. We assume that the metric 
tensor of Z, g etll' satisfies10 

£getll = 0, 
A 

(2.7) 

which means that the one parameter group acts on Z as 
a one parameter group of motions, the fibers of Z being 
the streamlines of the one parameter group. The last 
assumption in specifying our mathematical structure is 

(ln a an b 

getll(zr) =AetA8 + gab(nC(zr»--, 
az'" az 8 

(2.8) 

where g ab(xc) is the metric tensor of X. This assump
tion decomposes, in a sense to be made precise, the 
metric of Z into the metric of Y and the metric of X. 

A particular orthogonal decomposition of tensors on 
Z plays an important role in what follows. The decom
position consists of projections, at each pOint, onto and 
orthogonal to the fiber direction at that point. If the set 
of fibers is hypersurface orthogonal, Le., if A et.8 -
A 8, '" = 0, then the projections orthogonal to the -fiber 
direction can be defined as onto four-dimensional hyper
surfaces everywhere orthogonal to the fibers. However, 
if we have A et.B - A B. et ;o! 0 then no such hypersurfaces 
exist. 

The mathematics of projection operators is generally 
known, but a few results are given here. If we define 

(2.9) 

then Vlf == A "'A 8 VB and V~ == E gVB are the projections 
of a vector, Vet, onto and orthogonal to the fiber direc
tion. There is an alternate way of defining essentially 
the same thing. If we define A~ uniquely by 

(2.10) 

then v = A etV and v = A etV [va = (ana/az et)A et] can - a a a ex 
also be called the projections onto and orthogonal to the 
fiber direction of Vet' (The generalization of these de
finitions to tensors is obvious.) If we define 

A~ = (Ag,Aet), 
(
ana ~ A~= --,A", , 
az ex 

(2.11) 

the quantities (va, v) just defined can be interpreted as 
the components of Vet with respect to an anholonomic 
reference framel! related to the (holonomic) reference 
frame z et by A ~ and A~. The connections between Vff 
and V'f. and v and va, are Vjf = vA et and V~ = 
v"Ag [va = (ana/azet)V~]. The essential difference is 
that Vet is a vector on Z while va is not, although it is 
defined on Z. If it can be shown that ~ v" = 0 it follows 
from the theorem in the appendix that the v" are con
stant along fibers and thus that 
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If we do a coordinate transformation x a' = xa'(xb) on 
X then xa'(xb) = xa'(xb (z a) == na'(z a) represents the 
mapping n, so vb' = (anb'/az a)va, which means that 
vb' = (aXb'/axa)(ana/az a) va = (axb'/axa)v a• Thus the 
va are defined on X as well as Z, and transform as the 
components of a vector with respect to coordinate trans
formations on X. 

The assumption about g as embodied in Eq. (2. 8) has 
the significance there stated in the sense that gas de
composes orthogonally into g asA aA S = 1, g asA aA ~ = 0, 
andgasA~~ = gab' 

B. The physical interpretation 

The five-dimensional Riemannian manifold has de
fined on it the vector field A a and from A a we form 

(2. 12) 

From this tensor defined on Z we can obtain a tensor 
Jab defined on X; the general method was outlined in the 
preceding section. We first define 

We have ~FaB = (~Aa),s - (~A6),a since Lie and partial 
differentiation commute, and since £A = ° for any A , A a a 

we have ~FaS = O. Since12 p ~ = ° also it follows that 
~Jab = O. By the theorem in the appendix this means that 
Jab,yAY = 0, that isJap is constant along fibers, and we 
can conclude that Jab lz a) = Jab (nc (Z a)) = Jab (Xc) and 
that Jab is in fact a tensor defined on X. 

The physical interpretation of the mathematical struc
ture follows from identifying X and gab with physical 
space-time and its metric structure, and Jab with the 
eletromagnetic field tensor. 

C. Gauge transformations 
The vector field A a plays a double role in the above 

structure. On one hand it is the field of vectors tan
gent to the streamlines of the one parameter group, and 
as such is unique. On the other hand, the covariant 
form A a serves as a vector potential for the electro
magnetic field [Eq. (2. 12)], and in this role it is not 
unique; if we define Aa = A a - XI a' where X is an arbi
t;.rary sc~lar field on Z, then F as = A a, S - A S, a = 
A a, S - A S, a' In a sense there exists a class of five
dimensional gauge transformations, however there is a 
"preferred gauge" defined by Aa = Aa' It is natural 
to expect that as A a serves as a vector potential for 
J as' and Jab is the reduction of J as to X, it should be 
possible to reduce Aa to a vector field, aa' on X which 
will serve as the familiar four vector potential for Jab' 
However, if we start by defining a a == A ~ a it follows 
from Eq. (2. 10) that aa = 0, and the construction breaks 
down. A successful construction can be based on the 
following argument. If a five-dimensional quantity is 
to be essentially four-dimensional its projection onto 
the fiber direction with respect to any index should 
vanish .. Thus, if we checkJas we have FaSAS = 
Aa;sAS - AS;aAS = 0, since AaA a = 1 implies that 

(2.13) 

and gas = Aa;B + AS'a = 0 combined with Eq. (2.13) 
implies that ' 

(2.14) 
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By the same criterion A aA a = 1 suggests that Act 
itself is not a good candidate for "reduction" to X. If 
however, we consider A a = Act - XI ct' and choose X to be 
any <p(zct) of the class~, then A~, a = 1 and AaAa = O. 
Thus the set of five-dimensional vector potentials 
~ ct == A a - <p, a are candidates for reduction. Defining 

CPa =A~a' 

we have 

since 

(2.15) 

as <p'sAS = 1. Thus by the theorem in the appendix 

is a vector field ~n X. It is easy to verify that CPa does 
serve as a potential for Jab; we have Jab = A~AgFctB' 
w~ere FaB = ~ a.S - ~ B. a and ~ a = (ana/az a)CPa' and 
thIS leads directly to Jab = CPa,b - CPb,a' If instead of 
<p we use any other sectioning <p' = <p + 1/1, where 1/1 (z a) 
is constant along fibers, then <p', aA a = 1 is preserved, 
and the same construction yields Jab = cp' b - CPb' , 

I a, .a 
where CPa = CPa + I/I'a' Consequently, the freedom of using 
any sectioning, <p, of the class ~ is precisely the usual 
four-dimenSional gauge freedom. 

3. CLASSICAL DYNAMICS OF CHARGED PARTICLES 

A. Five-dimensional formulation 

We formulate a five-dimensional canonical mechanics 
of charged particles of charge e and mass m which 
contains the correct four-dimensional mechanics, We 
start with the action 

If the trajectory is parametrized in terms of an ar
bitrary parameter this can be rewritten as 

with the corresponding Lagrangian 

If we define 

it is obvious that 

(3.1) 

and easy to show, using Eq. (3. 1), that 

~2 == [(gaB -AaAB)PaPBJ1/2- m 

= [gaS - (Pa - eAa)(PS - eAB)]1/2 - m = O. (3.2) 
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Thus the theory. has constraints. It follows·from 
~ 1 ::;= 0 that the component of P ~ in the direction of the 
fiber is the charge. Using Eq. ~2. 8) we can rewrite 
~2 = 0 as (gabA::p aAgP8)1/2 = m, and this implies 
that the projection of Pa orthogonal to the fiber direc
tion-is the energy-momentum 4-vector. Equations (3.3) 
and (3.4) are primary4-6 constraints of the Hamiltonian 
formalism we are constructing. If follows that the 
Hamiltonian is not unique, and is given by H = 
Pa(dza/d(J) - L + cl~l + C2~2' where Cl and C2 are ar
bitrary functions of z a and PIX' Substituting for P a from 
its definition we have P a(dz a/ d(J) - L = 0, consequently 
H = C 1 ~ 1 + C 2~ 2 is the full Hamiltonian. It vanishes 
modulo the constraints as it should. Checking for secon
dary constraints we see that [~l,H] = r~2,H] = 0 if 
r ~l' ~2] = 0, where the bracket is the Poisson bracket. 
We have 

[~l' ~2] = rAapa , (g8r -A8Ar )P8Pr ] 

= 2A a P (g8r - A8Ar)p 'r a 8 

-Ar(ga8 -Aa A8_AaA8 )PP 'r 'r 'r a 8' 

where ~2 = 0 has been used. Since 

£ga8 = 0 =ga8 Ar -gr8Ar _garA8 
A 'r 'r 'r' 

it follows that 

The square bracket is antisymmetric in a and {3, 
therefore we have [~1' ~2] = 0 and there are no secon
dary constraints. As a consequence we can write the 
Hamiltonian as 

H = vl~l + v2~2' (3.3) 

where v 1 and v 2 are arbitrary functions of (J, and the 
canonical equations of motion are 

Equations (3. 4) can be put into a more convenient 
form. They are clearly satisfied by z a(T, ~) and 
Pa(T, ~), where T = f v2«(J)d(J and ~ = fVl «(J)da, if 

aPa [ ] 
aT= Pa'~2' 

az ct 
aT = rz ct

, ~2]' 

(3.4) 

(3.5) 

The consistency of Eqs. (3. 5) follows from the equality 
of the mixed second partial derivatives of z a and P , 
which is easily established. We can then take Eqs. (3. 5), 
which contain no arbitrary functions, as our equations 
pf motion in place of Eqs. (3.4). It follows that a "tra
jectory" in Z is a two-dimensional surface in Z para
metrized by T and ~. 

B. Reduction to four dimensions 

We wish now to consider the four-dimensional impli
cations of the five-dimensional formalism just present
ed. The importance of the Poisson bracket, 
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[A,B] == ~ l!!.. _ aB ~, 
GZ a aPa az ct apct 

(3.6) 

where A and Bare arbitrary (differentiable) functions 
of z a and P a' suggests that we start by conSidering its 
reduction. The functions A and B should be thought of as 
being defined on a ten-dimensional phase space coor
dinatized by z a and P a' The four-dimensional momentum 
is of course 

(3.7) 

and we now consider an eight-dimensional phase space 
coordinatized by x a and Pa • We specialize the form of 
the Poisson bracket defined by Eq. (3.6) to the case when 
A and B depend on za and Pa only through x a == na(za) 
and Pa = A:: P a' that is when A and B are defined on the 
eight-dimensional phase space mentioned above. Since 
we are assuming that A =A(xa,Pa) =A(na(za),A::Pa ), 
we have 

(3.8) 

and similarly for B. Rewriting the Poisson bracket as 

and substituting 

and Eqs. (3.8), we obtain 

Expanding the products and using the defining equa
tions of the A:: yields 

[A B] = ~ l!!.. + aA .A8 P Aa l!!.. 
, axa apa apa a,a 8 b aP

b 

_l!!.. aA _l!!..A8 P Aa~ 
axa aPa ap a a, /3 b apb' 

It follows from P a =A::Pa that Pa = (arra/aza)P a + 
eAa; substituting this into the last result we easily ob
tain 

[A B] - ~ l!!.. - l!!.. ~ + el!!.. f ~ 
, - axa ap a axa aPa ap a ab apb' 

(3.9) 

where Eqs. (2. 10) have been used again. 

Let us now consider a charged particle with a trajec
tory in Z given by Za(T, ~), and a 5-momentum given by 
P a(T,~), where za and P a satisfy Eqs. (3.5). The space
time trajectory (the trajectory reduced to X) is xa(T,~) 
= na(z ct(T, ~», while P a = A::Pa is the natural 4-momen
tum. We have 
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and 

ap a Nf [ ---ax- = AatPa, 41 1 ] + A~, 4I 1 ]P a 

= AB'aPBA~ + PaA~.BA8 
= P £Aa = O. 

aA a 

Thus we have Xa(T,~) = xa(T),Pa(T,~) = Pa(T). From 
Eqs. (3. 5) it follows that aXa/aT = [Xa, 41 2 ] and ap iaT = 
[P a,4I 2 ]· 

It follows from Eq. (2.8) that 412 = [PaPb gab p/2 - m, 
thus the above brackets are really between functions de
fined on the eight-dimensional phase space. Conse
quently, we can apply Eq. (3. 9) and immediately obtain 

axa 041 2 
aT= apa' 

(3.10a) 

ap a 041 2 041 2 
aT = - axa + efb a aPb • 

(3.10b) 

Substituting [gabp aPbP/2 - m for 412 in these equa
tions we obtain 

ax a gabPb 
aT = -----:rn-' (3. 11 a) 

ap a 1 e 
aT = - 2m gbC, aPbPc + mfbagbCpc' (3. 11 b) 

Eliminating the Pa from Eq. (3.11b) by means of 
Eqs. (3.11a) gives 

d 2x b =_{ b}dXC dx d +!.... bc dxc 
dT2 cd dT dT m g fac dT' 

(3.12) 

where {cbd} is the Christoffel symbol of the four
dimensional Riemannian manifold X. Since Eq. (3. 12) is 
precisely the equation of motion of a charged particle 
in a combined gravitational and electromagnetic field, 
we have verified that the five-dimensional dynamics 
postulated does contain the correct four-dimensional 
dynamics. 

Going back to Eq. (3. lla) we see that P a' the natural 
4-momentum introduced by Eq. (3.7), is the ordinary 
momentum of the charged particle rather than the 
generalized momentum; thus Eqs. (3. 11) are the equa
tions of motion of the charged particle in terms of its 
ordinary momentum. 

It is not difficult to show directly that if we eliminate 
Pa from Eqs. (3.10) in favor of 

ma=Pa+eCPa' 

where CPa = - A::<p, a is the four-dimensional vector 
potential defined by Eq. (2.15), we obtain 

axa 041 2 
iiT - ama' 

ama 041 2 
(3. 13) 

aT - aXa ' 

Here 412 should be expressed in terms of ma' i.e., 

412 = [gab (m a - eCPa)(m b - eCPb)]1/2 - m. 

This was of course to be expected. The m a is the 
usual generalized momentum of a charged particle and 
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Eqs. (3. 13) are the usual canonical equations of motion 
which can be written using the usual Poisson bracket. 
The transformation to P a is not a canonical transforma
tion, and this accounts for the nonstandard form of the 
Poisson bracket given by Eq. (3. 9), and in the modifica
tion of the usual canonical equations of motion given by 
Eqs. (3.10). 

The geometrical Significance of ma is easily describ
ed. Let us define quantities qJ; by (arra/aza)qJg' = og, 
qJ'aqJ'i= O,and note that (arralaza)qJ~ = o~-ABqJ'a' 
Then it is not difficult to derive 

Thus at any point of Z, ma is the (nonunique) projec
tion of P a onto the hypersurface through that point of 
a (nonunique) sectioning of Z, in contrast to P a which is 
the (unique) proiection of Pa orthogonal to the fiber of 
Z through the point in question. We see that the gauge 
invariant 4-momentum Pais more natural, geometrically, 
than the gauge-dependent 4-momentum ma' This pro
vides a strong argument in favor of the nonstandard 
Poisson bracket [Eq. (3.9)] and the corresponding 
modified canonical equations of motion [Eqs. (3. 10)]. 

C. The Hamilton-Jacobi equation 

For completeness the five-dimensional Hamilton
Jacobi theory is given here, and its four-dimensional 
implications are derived. The procedure is to introduce 
Hamilton's principal function, S(u, z a), satisfying the 
partial differential equation (as/au) + H = 0 and the 
constraints, with Pa replaced by as/aza. The constraints 
become 

(3.14) 

and 

(3.15) 

and modulo these equations (as/au) + H = 0 becomes 
as/aCl = O. Thus the Hamilton-Jacobi theory is repre
sented in this case by Eqs. (3.14) and (3.15), where S 
is independent of u. The second constraint, Eq. (3.15), 
is satisfied by 

S(za) = So(za) + eqJ(za), (3. 16) 

if 

AaqJ, a = 1 (3.17) 

and 

AaS ooa = O. (3.18) 

The first equation shows that the function qJ(z a) 
represents a particular sectioning of Z, and therefore 
it is appropriate to denote it qJ(za). The second equation 
implies that 

So(za) = so(rra(za» = So(x a). 

Substituting for S in Eq. (3. 14) by means of Eq. (3. 16) 
yields 

[gab(S - ecp)(S - e,f, )]1/2 - m = 0 O,a a O,b 'l'b , (3.19) 

where CPa == - A~qJ, a is as usual the (nonunique) four
dimensional vector potential. Equation (3.19) is the 
usual relativisitc Hamilton-Jacobi equation inluding 
electromagnetic effects. 13 
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4. QUANTUM DYNAMICS OF CHARGED PARTICLES 

We wish to quantize the classical dynamical system 
presented in the preceding section. It is instructive to 
proceed in two different ways, which involve two dif
ferent types of nonstandard features, and both of which 
yield the usual quantum mechanics of charged particles. 
On the one hand we can quantize the five-dimensional 
theory presented in Sec. ITI A, and then reduce this 
five-dimensional quantum theory to a four-dimensional 
one; this approach requires us to quantize'a dynamics 
with constraints. On the other hand we can take the 
four-dimensional classical theory obtained in Sec. 3B by 
reducing the five-dimensional classical theory, and quan
tize it to obtain a four-dimensional quantum mechanics 
directly; in this case we must quantize a dynamics with 
a nonstandard bracket, that given by Eq. (3.9). 

There is a technical question which comes up in both 
of the alternatives described above: what is the correct 
quantization procedure in a curved space? The question 
has not been treated in a definitive way in the literature, 
and a discussion is included here to justify the proce
dure we shall follow. In quantizing a dynamical s~stem 
it is a general rule that the momentum operator, P , 
satisfies ex 

[~ A aT 
T, Pa] = --;;::-, 

az ex 
(4.1) 

for l' a tensor function of the position operators (with 
indices suppressed). 

We wish to justify the replacement of Eq. (4. 1) by 

[T,pex ] = V exT. (4.2) 

The argument runs as follows: The mathematical 
analog of the result of a measurement of a physical 
quantity by a particular observer is always a scalar. 
The scalar may arise by contractions of the tensors in 
terms of which the theory is formulated, or by their pro
jection onto vectors characteristic of the observer's 
frame of .reference. Thus in principal one need deal 
only with scalar operators, and, in particular, one need 
calculate only commutators of scalars. Let us evaluate 
such a scalar using Eq. (4. 1), and again using Eq. (4. 2). 
If we take A as our example [A ap a' Bile 6 ] we get, using 
Eq. (4.1) AAa[a(B~fIlVaza]. If we use instead Eq. (4. 2) 
~e oblaiE A av a tB IlC6) which is of course the same as 
Aex[a(BsC6)/aza]. Thus even in a curved space the result 
is the same whether we use Eq. (4.1) or Eq. (4.2). It is 
easy to see that the above argument is independent of 
the particular example chosen. Thus we are free to use 
Eq. (4.2) in the evaluation of quantum brackets, and, 
since it results in manifest covariance at every stage 
of a calculation, we shall do so. Similar remarks apply 
to the representation of l' a in the Schrodinger repre
sentation, and we shall use - inVa there as well. 

A. Quantizing the five-dimensional theory 

To quantize a Hamiltonian dynamical system with 
constraints we follow Dirac. 6 The first step is to re
place the clasllical position and momentum, z a and P a' 
by operators z a and Pa , and postulate the usual fun
damental quantum conditions 

[za,z6] = 0, [pa,pll ] = 0, [zex,P6] == og. 

The classi£al functl.ons g all and A a are replaced by the 
operators g all and A a satisfying 

(4.3) 

J. Math. Phys .• Vol. 14. No. 12, December 1973 

and 

.o4o:[.o4 a,P6] = 0, 

.o41.o4a,pa] = 0, 

(4.4) 

(4.5) 

(4.6) 

Due to Eqs. (2. 7), (2.13), and (2.14), and Eq. (4.2), and 
using these equations it is easy to show that 

(4.7) 

If the classical constraints are replaced by 

A A,~ 

cfl 1 = A a.r a - e (4.8) 

and14 

(4.9) 

one can easily show that these operators are hermitian, 
using Eqs. (4.3)-(4.7), and so we take as our quantum
mechanical Hamiltonian 

(4. 10) 

The constraints are certainly consistent with one 
another if they commute, and we have [il1 i,?] = 
[.o4apo:, (gay -.o46.o4y)pApJ = (gel' -.o4Il.o4r)[Aa,pIlP ]pa = 
Aa [A ~ ~ A A A'A ~ A A ~ r 
g y A a, .r6.ry]Pa = gIlYA~P y.ra + P6A ~y.ra)' where 
Eqs. (4.3)-(4.7) have been used. Continuing with the 
aid of these equations we have [il1 $2] = g6y(.o4 a; 6P. Pa 

" ~¢; " ...... -" -",.. 'Y + A a; y.r6.ra - A a; o:/lPa ) = - gllYAa; yllPa =-
tpaa; IlPa' It can be shown that the five-dimensional 
field equations, which are equivalent to the usual Ein
stein and Maxwell field equations, imply that pall; Il = 0 
in vacuum,15 Thus by assuming a source-free region 
of space, we avoid the complications of secondary con
straints. In the Schrodinger representation the equa
tions of motion for a system with the Hamiltonian given 
by Eq. (4. 10) and the constraints given by Eqs. (4. 8) and 
(4.9) are16 

(- inA aVa - e) = 0 (4. 11) 

and 

The first two equations are solved by 'lI(za) = 
'lI(za)e ie/ lI cp(za), where AaVal/l = 0 and Aav cp = 1. 
The first condition implies that I/I(zex) = I/I(rra(za» = 
lj.I(xa), while the second is the only restriction on 
qJ(z ex), so this function represents an arbitrary section
ing of Z as indicated by the notation. Substituting 
lj.I(zex) into Eq. (4.12) and writing A~Abgab for ga6 -
A aA 6, we obtain 

where CPa = - A~qJ, a has been inserted. Thus we have 
obtained the Klein-Gordon equation modified for a 
charged particle. 

B. Quantizing the four-dimensional theory 

In Sec. 3B the four-dimensional reduction of the fi;ve
dimensional classical theory was found to be given by 
the equations 
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where the bracket is the nonstandard bracket 

It is obvious that this bracket is antisymmetric and 
linear in each argument; one can show in addition that it 
satisfies [AB,C] =A[B,C] + [A,C]B, [A,BC] = [A,B]C 
+ mA, C], and [A, [B, cll + [B, [C,A]] + [C, [A, Bll = 0. 
Since these are all the formal properties which the 
quantum-mechanical bracket should have, 17 we expect 
that a successful quantization procedure can be based 
upon this bracket. Thus we replace the classical vari
ables xa,P a, by the quantum mechanical operators 
xa,Pa, satisfying 

(4.14) 

(4.15) 

The existence of a Hilbert space representation of a 
canonical quantization scheme is usually demonstrated 
by the construction of the Schrodinger representation. 
Due to the nonstandard form of the fundamental quantum 
conditions it is not obvious that such a representation 
exists; however, a modification of the usual construction 
does in fact yield one and the modified procedure is con
Sidered in detail here. 

We assume that the xa for a complete set of observ
abIes for the system, and represent a state by the wave 
function 1/I(xa). The operators x a and a/axa obviously 
satisfy (a/axa)xb - xb(a/ax a)1/I = o~1/I if 1/1 satisfies the 
usual boundary conditions; therefore, the operator 
P a + iii (a/aza) satisfies the second of Eqs. (4. 14), and, 
since the x a form a complete set, we can write P a + 
ili(a/axa) =f (xb),where the fa are as yet unknown 
functions of x'J.. Substituting P a = - iii (a/axa) + fa into 
Eq. (4.15) yields (a/aza)fb - (a/azb)fa = - efab , so we 
see that fa = - ecf>a + f, a' where f is an arbitrary func
tion. It can be shown 1 7 that by proper choice of phase 
for I/I(xa) one can set f = 0, so we end with P a = -
iii (a/ax a) - ecf>a' As before in a curved space we prefer 
to write 

(4.16) 

as the SchrOdinger representation of Pa • With Eq. (4. 16) 
for Pa, and H = ~2 = gabpaPb - m2 = 0, Schrodinger's 
equation is 

(4. 17) 

which is identical to Eq. (4. 13). 

APPENDIX 

This paper is intended to be accessible to a theoreti
cal physicist who knows general relativity and the re
quisite tensor analysis, but is not a specialist in these 
subjects. There are two concepts from tensor analysis, 
that of anholonomic reference frames and that of the 
Lie derivative, which appear in the paper, and with which 
such a reader may be unfamiliar. A brief introduction 
to these concepts is given below (Secs. A and B). In addi
tion, a certain result involving both of the above con
cepts is fundamental to the paper, but is too specialized 
to appear in standard references. This result is stated 
and proved as a theorem (Sec. C). Finally, a remark is 
included (Sec. D) with regard to various differential 
operators acting on tensors expressed in one reference 
frame with respect to some indices, and in another with 
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respect to others. The results needed are elementary, 
but it is difficult to find an explicit discussion of them in 
standard sources. 

A. Anholonomic Reference Frames 18 

If P is a variable ranging over the points of an m 
dimensional manifold, P, the functions xa(p), a = 
1, ... ,m from P to the real numbers may serve as 
coordinates for the manifold. If they do, then we can de
fine m coordinate curves intersecting at a point, Po> of 
the manifold by varying each of the m coordinate values 
while holding the others fixed, and the unit tangent vec
tors of these curves will form a basis (m-independent 
m-vectors) at the point Po' The "components" of a 
given tensor with respect ~o the coordinate system are 
its projections onto this basis, and we say the tensor 
is given with respect to a holonomic reference frame. 

One can, however, use any basis at a point to express 
the tensors there, and if b a(z B) is a choice of basis at 
each point, and b a.B - b B. a '" 0, then there does not 
exist a coordinate system whose coordinate curves 
lead to the basis b a(z B) throughout the manifold. In this 
case we say the tensor components are expressed in a 
nonholonomic reference frame, while if we are unsure 
we refer to an anholonomic reference frame. More 
specifically, if the transformation coefficients from 
some holonomic reference frame to some anholonomic 

a h 
reference frame are Ah,A a , where a and h refer to 
the holonomic and anholonomic reference frames, re
spectively, then the latter is holonomic if and only if 

h All Iv h h ) n ji = j A i\A>".I1 -All.>.. = 0, 

where nJi is called the object of anholonomity. In this 
paper the anholonomic reference frame introduced was 
related to the z a reference frame by the transformation 
coefficients Ah' = (Ag,A a) andA~ = «(an/aza),A a)' 
where AaA a = O,A~(ana/aza) = o~, and it is easy to 
calculate 

(AI) 

Since f hi is, in the physical interpretation, the electro
magnetic field, the anholonomic reference frame used 
in this paper is in fact nonholonomic. 

B. The Lie derivative 

Given a differentiable manifold and a vector field, 
ya, the Lie derivative of a tensor field Ta if ... with re
spect to that vector field is defined to belS 

£TaB··· = Ta... YY - TY··· ya + Ta ... yy + v··· B ...• y B ... 'y'" y ... 'B ... , 

in a holonomic reference frame. 

If the manifold possesses Riemannian structure this 
can be written 

£Ta ... = T a .... TY - Ta ... ya·. 
vB... B .... y B...' Y 

- ... + TaY·:.VY;B + .... 

The Lie derivative is defined in such a way as to 
measure the rate of change of the tensor, Tail': .. , in the 
direction of the vector field, ya, with the effects of the 
variations in the coordinatization of the manifold eli
minated; thus, for example, the equation £g B expresses v a 
the "constancy" of the Riemannian structure of a mani-
fold in the direction of ya. In the structure introduced 
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in Sec. 1 of this paper we have symmetry of the Rie
mannian structure along the fibers, and this is expressed 
by£g 0.8 = 0 [Eq. (2. 7)]. In an anholonomic reference 

A 
frame the definition of the Lie derivative generalizes to 

£Thj'" =Th: ... Vi_(Vh .-2VkO")Ti: oo - •.• v . .. , ... ,I '1 lk' ... 

+ (Vi .-2VkOi)Th,oo + (A2) 'z ,k J... • •• , 

where by definition the anholonomic differ~ntiation index, 
i is Af(a/aza). 

C. A theorem 

The following theorem is used in constructing tensor 
fields defined on X from tensor fields defined on Z: If 
we have 

defined on Z, and A a is the unit vector field tangent to 
the fibers of Z, then 

(A3) 

Restricting the free indic:es in Eq. (A2) to the range 
0,1,2,3 we have 

£Tbl·oobr = Tbl oo.b r Ak 
A al,,·a s al,,·as,k 

where the dummy indices i and k necessarily retain the 
range - 1,0,1,2,3. By definition we have Ak = A~A 0.= 
«ana/az a)A a,AaAcx) = (1,0,0,0,0), so Ak, a = 0 and 
A bl , k = 0, while A in:~ = 0 since ott = 0 [Eq.I(A1)]. Thus 
we are left with 

Since Ak = (1,0,0,0,0) we see that A iO~1 j = (0 ~I" 0) 
[Eq. (A1) again], and O~. = A~IA8(VoA8 - VSAa) = 0 in 
view of Eqs. (2. 7) and (2.13), giving the desired result. 

D. "Mixed" tensors 

If one wishes to calculate the covariant derivative of 
a tensor expressed simultaneously in two different 
reference frames, for example T~a') = (ax a '/axr)T~, 
this reduces to the same operator on the "mixed" iden
tity, axa'/axr. Thus we have 

VT<a')=(v axa')Tr + ax
a
' v. T Y, 

r 8 Y aXY s axr Y 8 
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a a' 
and :Xy is the "mixed" identity. However, 

which vanishes by virtue of the transformation law of 
Christoffel symbols. Similarly it can be shown that 

(
Ox 0.\ 

~ TxE)= o. 

If follows directly that the Lie and covariant derivatives 
of the "mixed" metric tensor vanish. 
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Power statistics for wave propagation in one dimension 
and comparison with radiative transport theory* 
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We consider a one-dimensional medium with random index of refraction or a transmission line with 
random capacitance per unit length, allowing for impedance mismatch at the load and generator. We 
compute the expected value of the incident and reflected powers at any point between the generator 
and load in the limit of weak fluctuations and a long line. The results are compared with those of 
radiative transport theory and discrepancies show the limitations of that theory. Finally, we consider 
the spreading of pulses due to random fluctuations. 

1. INTRODUCTION 

Consider a transmission line with constant inductance 
per unit length and capacitance per unit length which is 
a random function of position, fluctuating slightly from a 
constant expected value. The current and voltage, or the 
forward and backward travelling waves, are random 
functions of position. We wish to determine their stati
stical characteristics at any point between the load and 
generator when the line is long and the fluctuations are 
weak. This transmission line formulation is applicable 
to one-dimensional wave propagation in a random med
ium and the propagation of the fundamental mode in a 
waveguide with random inhomogeneities. These prob
lems all lead to the same mathematical questions. 

Using a general limit theorem1,2 we compute the 
mean of the forward and backward propagating powers 
in the interior of the line for a very broad class of 
fluctuation processes. We also allow for passive im
pedance mismatch at the generator and the load. For 
the one-dimensional random medium the index of re
fraction in the absence of fluctuations is allowed to take 
different values in the interior and two exterior regions. 
When the uniform (no fluctuations) line is matched to 
the generator and load the above results have been ob
tained previously for two particular choices of fluctua
tion processes, one by Gazaryan3 and one by Lang.4 

We proceed next to compare these results to those 
obtained by using radiative transport theory.5,6 Trans
port theory has been used to study wave propagation in 
waveguides and random media by Marcuse 7 and 
others. S - 14 The comparison shows that transport 
theory does not account properly for the behavior of 
the fields in the interior. The absolute error is not 
large but the relative error is often quite large (cf. 
Figs. 2-4, 6). Transport theory, as well as the analysis 
based on the limit theorem, is supposed to hold under 
the following general conditions: weak fluctuations, long 
line, and short correlation length for the fluctuations. 
We are led therefore to the conclusion that transport 
theory is not valid without additional restrictions. When 
the line is matched to the generator and load the two 
theories are in good agreement if we restrict a dimen
sionless line length parameter to be small. In the 
mismatched case the discrepancies are more pro
nounced as one would expect from physical considera
tions. 

In Sec. 2 we formulate the problem under considera
tion both for transmission lines and one-dimensional 
random media and reduce it to the analysis of a stoch
astic two point boundary value problem. In Sec. 3 we 
express the solution of the boundary value problem in 
terms of fundamental matrices or propagators. In Sec. 4 
we state the limit theorem mentioned above in the form 
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of Ref. 2 and use it for the propagator matrices. In 
Sec. 5 we introduce a convenient parametrization for 
the matrices. Section 6 contains our main result stated 
as a theorem, which generalizes an observation of 
Gazaryan. 3 We obtain a Simple heat equation for the 
expectation of the total power in the interior where the 
length of the line plays the role of time and distance 
from the middle of the line the space variable. In Sec. 7 
we recover results of J. A. Morrison15 concerning the 
mean of the modulus square of the transmission co
efficient. Since the latter depends only on the length of 
the line, it may be called an exterior field quantity. 

Section 8 contains a summary of transport theory for 
the present problem. Here we display graphs that show 
the discrepancies mentioned above. 

Finally, in Sec. 9 we treat the problem of pulse spread
ing as a result of the fluctuations. This is conveniently 
done here since we can use the machinery that has been 
set up in previous sections. 

A general survey of work on wave propagation in ran
dom media is given by Frisch.16 More recent work is 
presented by Morrison and McKenna. 1 7 

2. FORMULATION OF THE PROBLEM 

We begin with a transmission line formulation and then 
consider wave propagation in a one-dimensional random 
medium. Both problems lead to the stochastic two point 
boundary value problem (2.6), (2. 7). 

Let V(x) and I(x) denote the complex-valued voltage 
and current at x on a transmission line which occupies 
the interval 0 ~ x ~ l. The time factor e- iwt will be 
omitted throughout. V and I satisfy the boundary value 
problem 

dV(x) 
--= iwL(x)I(x), 

dx 

dI(x) 
-- = iwC(x)V(x), 

dx 

e g - V(O) = I(O)Z g' 

o ~ x ~ l, (2.1) 

V(l) = I(I)Z z. (2.2) 

Here L(x) and C(x) are the inductance and capacitance 
per unit length, Z g = Z g(w) and Z z (w) are the generator 
and load impedances and e g = e g(w) is the generator 
voltage (cf. Fig. 1). 

We wish to study (2.1) and (2.2) when L(x) = Lo is 
constant and C(x) is a random function of x which fluctu
ates slightly from its constant expected value Co. Thus 
we let 

(2.3) 
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X=Q 

I(x) 

+ 
V(x) 

We use the notation E{'} for the operation of taking 
expected values and denote by € a small real parameter 
characterising the size of the fluctuations. Other pro
perties of C1 (x) will be specified later. 

Let us introduce the characteristic impedance Z 0' 

admittance Yo, the speed of propagation c, and the wave 
number k of the uniform (€ = 0) line. 

Zo = Y'(l = (Lo/C oP/2, c = (LoCo)-1/2, k = w/c. 
(2.4) 

Let us also define forward and backward traveling 
wave amplitudes A(x) and B(x), which we expect to be 
"slowly varying ," by 

A(x) = te-ih[Yl/2V(x) + ZbI2I(x»), 

B(x) = te ih[Ye,/2V(x) - Ze,/2I(x)]. 
(2.5) 

On using (2.1), (2. 2), and (2.3) it follows that A(x) and 
B(x) satisfy the stochastic two point boundary value 
problem 

dA (x ) ikp,(x) 
~ = € -2-[A(x) + B(x)e-2ih], 

(2.6) 
dB(x) ikp,(x) 
~ = - E -2-[A(x)e2ikx + B(x)], Os x s l, 

A(O) =Eg + rgB(O), B(l) = rzA(l). (2.7) 

Here we have introduced the notation 

p,(x) = CI(x)/C o' Eg = egZe,/2/(Zo + Zg) (2.8) 

r 9 = (Z 9 - Zo)/(Zg + Zo)' 

r 1 = e2ikZ [(Z/-Zo)/(Zz + Zo)l· 
(2.9) 

The quantities r 9 and r z are generator and load re
flection coeffiCients for the uniform (E = 0) line and E 9 

is a normalized generator output. When Z 9 = Z 0 then 
r 8 = 0 and the uniform line is matched to the generator 
while when Z z = Z 0 then r 1 = 0 and it is matched to the 
load. Note that A and B are complex functions of x, 
Os x s l, the length of the line 1 and the wave number k. 
~he dependence on k will not be displayed until Sec. 9. 

Consider next a one-dimensional random medium 
occupying the interval 0 :s x s I. Let u(x) and n(x) be the 
wave field (e- iwt omitted) and the index of refraction at 
location x, respectively. We assume that u(x), - 00< x < 
00, satisfies the reduced wave equation 

d2 u(x) 
--+ k2n2(x)u(x) = 0, - 00 < x < 00, 

dx 2 

{ 
n~, x < 0, 

n 2 (x) = 1 + Ep,(X), 0 :s x s l, 
n~, x> l, 
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u(x) and -- continuous. 

dx 
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(2. 12) 

As before, p,(x) denotes a zero mean random process. 
The problem (2.10)-(2.12) is completed by specifying 
that a plane wave of unit amplitude is incident from the 
left. If we denote by Rand T the complex-valued reflec
tion and transmission coeffiCients, then we have 

u(x) = eikn1 " + Re-ikn1x, x < 0, 

u(x) = Te ikn2", x> I. 
(2.13) 

From (2.13) and (2.10)-(2.12) we obtain the following 
stochastic two point boundary value problem for u(x): 

d2 u(x) 
-- + k2 [1 + Ep,(X)]u(x) = 0, 0 s X :S l, 

dx2 

2' u(O)+---- =1, 1 [ 1 dU(O)] 
iknl dx 

du(l) -- = ikn2u(l). (2.14) 
dx 

Finally, we let 

u(x) = eikxA(x) + e-ikxB(x) 

du(x) --a;- = ik[eihA(x) - e-ikxB(x)], 0 :S X :S l, (2.15) 

and deduce from (2.14) that A(x) and B(x) satisfy the two 
point boundary value problem (2.6), (2. 7). Instead of 
(2.8), (2. 9) we have now 

E 9 = 2nd(1 + nl)' (2.16) 

rg = (l-nI )/(l + nIl, r 1 = e2ik1[(I-n2)j(1 + n2)]' 

(2.17) 

The goal in investigating (2.6), (2. 7) is to compute the 
expected value of I A 12 and I B 12 , the incident and re
flected power, respectively, as functions of x, 0 s x s l, 
with l variable, l 2: O. We shall do this asymptotically 
when E is small and l is large in a manner which we 
specify in Sec. 4. 

Since the line is lossless, the power flux 

(2.18) 

is independent of x, O:s X :S l. In (2.18) the bar denotes 
complex conjugate. In view of the conservation law 
(2.18), instead of computing the expectations of IA 12 and 
I B 12 directly, we will compute the expectations of JA J2 
+ IBJ2 and JAJ2 - JBJ2. This is done in Sees. 6 and 7, 
respectively. 

3. PROPAGATOR MATRICES 

In this section we express the solution of the stochast
ic boundary value problem (2.6), (2. 7) in terms of 
propagator or fundamental solution matrices. This is 
convenient because the statistical properties of the 
latter can be obtained using limit theorems as will be 
shown in the next section. 

Let m(x) be the 2 x 2 matrix valued stochastic pro
cess defined by 

( 
i/2 (i/2)e-2ih ) 

m(x) ::::; kp,(x) _ (i/2)e2ik" _ i/2 • (3.1) 

Note that m(x) = m(x; k) but, until Sec. 9, we shall not 
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show the dependence on k explicitly. Let Y(x) be any 
matrix valued solution of 

dY(x) 
-- = Em(x)Y(x). 

ax 
Since Trm(x) = 0, it follows that detY(x) = const and 

we take this constant to equal 1. Furthermore, because 
of the form of m(x) in (3.1) Y = Y(x) has the form 

lal 2 - Ibl 2 = 1. 

The collection of all such matrices forms a group 
which is denoted by SU(1 , 1).18 

(3.2) 

Because the generator and load impedances are 
passive the reflection coefficients r g and r I are com
plex numbers of modulus less than or equal to one. 
Hence we may write 

r g = bg/O,g , 

rl=-bJO, p 

lagl2 - \bgl2 = 1, 

la l 1
2 - Ib l 1

2 = 1. 

(3.3) 

(3.4) 

It is clear that a g' b and a l> b I are not determined 
unique ly by (3. 3) and ~. 4). This, however, does not 
affect the results below. In view of (3.3) and (3.4) it is 
convenient to introduce generator and load matrices 
Yg and Y l 

(3.5) 

These are constant matrices belonging to SU(I, 1). 

Consider now the solution matrices Y 1 (x, 0) and 
Y 2 (l,x) of the following initial and final value problems: 

(3.6) 

(3.7) 

From the remarks above it follows that Y1 and Y 2 are 
stochastic processes with values in SU(I, 1). Moreover, 
it can be verified by direct computation that 
Y 2(l,x)Y1(x,0) E SU(I,I) is independent of x. For Y 1 
and Y 2 we use the notation 

Y (a. b.) 
j = jj' -' , 

j a j 

where quantities with subscript 1 are functions of 
x ~ 0 and those with subscript 2 are functions of land 
x,0:5x:51. 

We now define A(l,x) and B(l,x) as follows: 

(3.9) 

B(l,x)/o.j£ g = - b2/(b 2b1 + 0.20,1)' 0:5 x :5 l. 
(3.10) 

Since the denominator on the right side of (3.9) and 
(3.10) is the 2,2 element of Y 2(l, x)Y 1 (x, 0) it is inde
pendent of x as observed above. From this fact and 
(3.6), (3. 7) it follows by direct computation that A(l,x) 
and B(l,x) of (3.9) and (3.10) satisfy the boundary value 
problem (2.6), (2.7). We have thus the desired expres
sions for A(l,x) and B(l,x) in terms of the propagator 
matrices Y1 (x,0) and Y2 (l,x). Note that the right Sides 

J. Math. Phys., Vol. 14, No. 12, December 1973 

1735 

of (3.9) and (3.10) are fixed functions of the elements of 
Y 1 and Y 2 and are not expliCitly dependent upon the 
generator and load matrices Y g and Y I • 

4 LIMIT THEOREM FOR THE PROPAGATOR 
MATRICES 

So far we have not considered the statistical nature of 
the problem. In this section we study the matrix valued 
processes Y 1 (x,0), Y2 (l,x) of (3.6) and (3.7) through 
which A(l,x) and B(l,x) are given by (3.9) and (3.10). 
Until the end of this section we consider Y 1 (x, 0) only 
and so we shall drop the subscript. 

We observed in Sec. 3 that Y(x, 0) is a process with 
values in SU(I, 1) which is a Lie group,18 We shall 
denote the Lie algebra of SU(I, 1) by su(l, 1) and select 
the following basis in su(1 , 1): 

1 [i 0 J 111 ="2 0 - i ' 1 [0 IJ 112 ="2 1 0 ' 1 [0 iJ 113 = "2 - i 0 . 
(4.1) 

The matrices 111,112,113 satisfy the commutation rela
tions 

In terms of this basis the su(l, 1) valued stochastic 
process m(x), defined by (3.1),has the form 

(4.2) 

m(x) = kJ.l(x)111 + [kJ.l(x) sin2kx]112 + [kJ.l(x) cos2kx]113 
3 

= L] mj (x)11j' (4.3) 
j:l 

Let C denote the class of bounded continuous functions 
on SU( 1, 1) which have a finite limit at infinity. For 
sufficiently smooth functions in C we define the differen
tial operators D ~., 1 :5 j:5 3, by 

J 

(D ~ .f)(Y) = lim [J(e hijj Y) - f(Y)]!h. (4.4) 
1 h+O 

Here e llijj denotes the exponential of the matrix h11j , 

1 :5 j :5 3, and the limit is taken with respect to the 
maximum norm in C. In the next section we shall ex
press D~. concretely in terms of coordinates para
metrizini SU(I, 1). 

We now introduce hypotheses about the random func
tion J.I(x) in (3.1), where E{J.I(x)} = 0 in view of (2.3) and 
(2.8). We assume that J.I(x), - 00 < x < 00, is a stationary 
random function on a probability space «(}, 5', <P) and it is 
almost surely bounded, say 1 J.I(x) 1 :5 1. Let 5':2 C 5' 
denote the a-algebra generated by J.I(x), Xl :5 X

1
:5 x 2 • We 

require that J.I(x) be mixing as follows: if A is any set in 
5'6 and B any set in 5'~s' then 

sup Ip(B IA) - P(B) 1 = p(s) to, s ~ 00, 
x2:0 

and, in addition, 

r: p1/2(S)ds < 00. 
o 

(4.5) 

(4.6) 

The physical meaning of (4.5) and (4.6) is that the 
fluctuation process J.I(x) is such that J.I(x1 ) and J.I(x2) tend 
to become independent random variables sufficiently 
rapidly as IX1 - x21 ~ 00. 

Theorem 3 of Ref. 2 can now be stated as follows. Let 
a = E2 X and set 

(4.7) 
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(4.8) 

Then u(€)(O', Yg) converges to u(O)(a, Y ) as E ~ 0 and 
0' remains fixed, where u(O)(a) = u(O)(O', fg) satisfies the 
Cauchy problem 

The coefficients aij are given by the formula 

(4.10) 

which is independent of to as required in Theorem 3.2 

In view of (4.3) the aij of (4.10) can be computed 
explicitly. On using the fact that D 112 D1I3 - D1I3 D1I2 = 
- D

1I1
,which follows from (4.2) and (4.4), we obtain the 

following expression for the operator V in (4.9): 

V = a(Dn Dn + D, Dn ) + yDn Dn - f3Dn , 
. , 2 ., 2 13" 3 ., 1 ., 1 ., 1 

(4.11) 

k2 fOO a = - R(s) cos2ksds, 
2 0 

k 2 fOO f3 = - R (s) sin2ksds, 
2 0 

y = k2 fooR(s)ds, 
o 

R(s) = E{j.L(x + s)j.L(x)}. 

(4.12) 

(4.13) 

Theorem 3 asserts,2 in addition to the above, that if 
fEe is sufficiently smooth and the limit in (4.10) is 
approached sufficiently rapidly then the error in approxi
mating u (€)(O', Y g) by u(O) (a, Y g) is O(E). 

Let Y(O)(a), a 2:: 0, Y(O)(O) = Yg be the diffusion 
Markov process with infinitesimal generator V given by 
(4.11). Since the operator V is the right invariant and 
independent of a it follows that Y (0) (0') is also a process 
with stationary independent increments. First, let us 
show that V is right invariant. Let R y, YES U(l , 1), be 
an operator on C defined by 

(R y f)(Y) = f(YY). (4.14) 

From the definitions (4.4) and (4.14), we have 

R yD1I . = D1I .R y , 
J J 

(4.15) 1:::; j :::; 3, 

which means that the differential operators DTj. commute 
J 

with right translations or are right invariant. Since V in 
(4.11) is expressed in terms of the D1I . with constant 

J 
coefficients our assertion that V is right invariant 
follows. Now, y(O) (0') being a process with stationary 
independent increments means that if 0:::; a1 :::; 0'2 
:::; ..• :::; an < co then the random matrices 

(4.16) 
Y (0) (0'2)[Y(O) (0'1)]-1 , ... , Y(O)(O'n)[Y(O)(a .. _1)]-1, 

are independent and their distribution depends only on the 
increments of the parameter: 0'1,0'2 - 0'1"" ,0'" - O'n-1' 

Theorem 30f Ref. 2 shows that for a fixed a, Y(€)(O') 
converges weakly to y(O)(a) as E ~ O. The argument 
used there, however, can be .used to show that all finite 
dimensional distributions of Y(€) (a) converge to those 
of Y(O) (a), 0' < co. Weak convergence of the processes 
requires additional argument but we do not need it here. 
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Let 7 = E2 l. In view of the definition (4.4) of Y(€)(O') 
and (3.6), (3. 7) we have, as E ~ co, 

(4.17) 

Y 2(7/E2 , a/E 2 ) = Y z Y(€) (7)[Y (€) (a)]-l 

~ Y 1 Y(O)(7)[Y(0) (a)]-l, 0:::; 0':::; 7. (4.18) 

Here the arrow denotes weak convergence and, because 
of the independent increments property of Y(O) , the limit 
matrices corresponding to Y 1 and Y 2 are independent. 

The distribution of Y z Y (0) (7)[Y (0) (0')]-1 can be ob
tained in the following way, similar to the one for y(O)(O'). 

Let fEe and u (0) (7 - a, Y I) = E{f(Y z y(O) (7)[Y(0) (0')]-1 )}. 
Then u (0) (a, Y z) satisfies the Cauchy problem 

(4.19) 

where iT is identical with Vof (4.11) except the differen
tial operators D1I . are replaced by D1I . and 

J J 

(D .t)(Y) = lim f(Ye
h1lj

) - f(Y) 1 :::; j :::; 3 . 
TjJ Uo h 

(4.20) 

The result (4.19) is convenient because it takes care of 
the final value condition for Y 2 in (3.7) in the same way 
that the initial condition for Y 1 is taken care of in the 
limit by conditioning y(O)(a) so that Y(O)(O) = Y g • 

5. POLAR COORDINATES 

In order to implement the asymptotic results of the 
previous section we must introduce a convenient para
metrization of SU(l, 1). This is done by the Euler angle 
or polar coordinate parametrization19 

(
a b) (e i (!/J'¥i)/2 cosh(0/2) e i ("';p)/2 Sinh(O/2») 

Y = jj a = e-i(!/J;p)/2 sinh( 8/2) e-i (!/J+¢)/2 cosh(0/2) , 

(5.1 ) 

O:::;O<CXJ, 0:::;CP<21T, 0:::; t/J<41T. (5.2) 

The coordinates (0, cfl, t/I) are global coordinates on 
SU(l,l). Functions on SU(l, 1) are simply functions of 
(0, cp, t/I). In (5.2) we could have allowed cp E [0,41T) and 
t/I E [0, 21T) and, in considerations below when one of 
these angles plays no role we always assume it is the 
one in [0, 41T). 

Let us represent the reflection coefficients (3.3), (3. 4) 
as 

rg = ej'Pg tanh(Og/2), (5.3) 

From (3.5) and (5.3) the generator and load matrices 
become 

(
e i !/Jg/2 cosh(Og/2) 

Yg = e- i !/Jg /2 sinh(8
g
/2) 

Y - I 
(

e i¢I/2 cosh(8 /2) 
Z - ei~I/2 sinh(Ozl2) 

e i 'Pg/2 sinh(8 g /2) ) 
e- i !/Jg/2 cosh(O g/2) , 

e- i¢I/2 Sinh(Ozl2») 
e- i ¢z/2 cosh(Ozl2) . 

(5.4) 

(5.5) 

Here we have resolved the multivaluedness mentioned 
after (3.4) by taking t/J g = 0 and cp z = O. We shall also 
consider t/J I as a fixed parameter of the problem and 
not affected by the asymptotic limit of the previous 
section even though,in view of (2.9),t/ll depends expli
citly on l. 
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The processes Y1(X,0) and Y 2(l,x) of (3.6),(3.7) are 
parametrized by (5.1) with subscripts 1 and 2 on (e, cP,I/I). 
As in the previous section we introduce the notation 

e!£)(a) = 61 (a/E 2 ), cp!£)(a) = CP1(a/E2), 

1/1££) (a) = 1/I1(a/E2), a = E2X, 
(5.6) 

e~£)(T,a) = e2(T/E2,a/E2), CP~£)(T,a) = CP2(T/E2,a/E2), 

1/I~£)(T,a) = 1/12(T/E2,a/E2), T = 10 21. (5.7) 

The limit process y(0) (a) is parametrized by (e to) (a), 
cP (0) (a), 1/1 to) (a». 

From their definition in (4.4) and (5.1) it follows by 
direct computation that the differential operators D~. , 
1 :s i :s 3, are given by , 

a 
D =-, 

~ 1 acp 
(5.8) 

D = - sincp cothe ~ + sincp csche ~ + coscp ~, 
~2 acp a 1/1 ae (5.9) 

D = coscp cothe ~ - coscp csche ~ + sincp l... (5.10) 
~ acp a 1/1 ae 

On using (5.8)-(5.10) in (4.11), V becomes 

(cothe ~ - csche ~) 2J 
acp a 1/1 [ 

a2 a 
V = 0 - + cothe --: + 

ae2 ae 

a2 a +y--{3-. (5.11) 
acp2 a cp 

Similarly,for Vof (4.19) we obtain the same expres
sion (5.11) but with cp and 1/1 interchanged. 

We must also express the quantities of interest 
/A(l,x)/2 and /B(l,x)/2,where A and B are given by 
(3.9), (3.10),in terms of the parametrization (5.1). A 
straightforward computation yields 

IA(l,x)12 

P max 

1 + coshe2 
= 1 + coshe1 coshe2 + sinhe 1 sinhe2 COS(CP1 + 1/12)' 

(5.12) 

IB(l,x)12 

P max 

- 1 + coshe 2 
= 1 + coshe1 coshe2 + sinhe1 sinhe2 cos(CP1 + 1/12)' 

(5.13) 
e Ie 12 

P = IE 12 cosh2 ~ = g 
max g 2 4 Re(Z g) 

(5.14) 

Here we have omitted arguments on the random func
tions (e i , cp i ,1/1 i ), i = 1, 2, to simplify the notation. The 
last equality in (5.14) follows from (2.8), (2.9), and 
(5.3). P max is the maximum power available from the 
generator. The quantities on the left sides of (5.12) and 
(5.13) are therefore normalized incident and reflected 
powers, respectively, at position x, 0 :s x :s l, for a line 
of length l. Note that in both (5.12) and (5.13) 1/1 1 and 
CP2 are absent. This leads to substantial simplification 
in the analysis that follows. 

Let f(e, CP) be a bounded continuous function on SU(I, 1) 
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independent of 1/1. Such a function may be regarded as a 
function on the hyperboliC disc which is identified with 
the space of right cosets18 of SU(I, 1) modulo the sub
group generated by eY,~l. The limit theorem of Sec. 4 in 
conjunction with (5.11) and the 1/1 independence of f imply 
that 

(5.15) 

where u1 satisfies the Cauchy problem 

aU1 
-=Muv a>O, u1(O,e,cp)=f(e,cp), (5.16) 
aa 

M = ll. + L, ll. = 0 (i:. + cothe ~ + csch2e ~) , 
ae2 ae acp2 

a2 a 
L = (y + 0) - - fJ - 0 < e < 00, O:s cp < 211". 

acp2 acp' (5.17) 

Note that ll. is the Laplace-Beltrami operator on the 
hyperboliC disc.1 8 L is a Simple differential operator 
with constant coefficients which commutes with ll.. 

As indicated at the end of Sec. 4 the limit of the pro
cess (e~£), cp~E), I/I~€» can be characterized in the same 
manner as (5.15). We have to replace M by the operator 
that corresponds to V of (4.19). Thus, we have the follow
ing result. Let f(e, 1/1) be a bounded continuous function 
on SU(I, 1) independent of cp. Then 

limE{f(e~E)(T,a),I/I~£)(T,a»} = u2(T - a,e,l/I) 18 =& , 
£ .... 0 I 

~ =y, I 

(5.18) 

where u2(a, e,l/I) satisfies the Cauchy problem (5.16), 
(5. 17) with cp everywhere replaced by 1/1. 

Both U1 and u2 can be expressed conveniently in terms 
of the transition probability density P(aj e, cpj eo, CPo) of 
the process (e (O)(a), cp (O){a» which at a = 0 takes the 
value (eo, CPo)' P is a density relative to the volume 
element sinhe de dcp and satisfies the forward equation 

ap = (ll. + L*)P, a> 0, 
aa 

P(Oj 6, cpj eo, CPo) = 0 (coshe - coshe o) "O(CP - CPo)' (5.19) 

Here L* is given by 

a2 a L* = (y + 0) - + (3 -
acp2 acp' 

(5.20) 

and 0 denotes the ordinary delta function. The solution 
of (5.20) is 

00 ( im{q>-q>o) 
P(O"j 0, cpj 00' CPo) = m~oo e- 1m2 (y+a)+im8]a e 211" 

x JOO
e-[1I2+(1/4»)aa vSinh1rVr(.!_lml + iv) (5.21) 

o . 11" 2 

X r(t - 1m 1- iv)P~T}2+jll (coshe)P~T}2+ill (COShOo)dV). 

Here w(v) = P~1/2+ill(v) is the conical Legendre func
tion and it satisfies the equation20 

- (v2 -1)-d ( dW) 
dv dv 

m2 1 ----W =- (v2 + 4)W, 
v2 -1 

v> 1. 
(5.22) 
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We can now invoke the independence of the limits of 
y 1 and Y 2 in (4.17), (4.18) and apply the above results to 
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IA 12 and I B 12 of (5.12), (5.13). This yields the main 
result of this section 

1 . {IA(T/€2,U/€2)12} _ foof2"foof2.. ± 1 + coshe2 
Pmax~l~~/ IB(T/€2,u/€2)12 - 0 0 0 0 l+coshe1 coshe2 +sinh01 sinhe2 cos(CP1+>.h) 

x P(U; °1 , CP1; ° g' cP g)P(T - U; °2,1/12; ° l' ljIl ) sinh01 sinh02d0 1 dCP1 d02dljl2' (5.23) 

Here the + sign corresponds to IA 12 and the - sign to 
IBI2. 

When x :::: 1 then U:::: T :::: €21 and e i <I> (0) (T) tanhO (0) (T)/2 
is the right reflection coefficient 19 of the line. Thus, 
(5.21) is the joint transition probability density of the 
amplitude and phase of the reflection coefficient in the 
usual asymptotic limit. Note that in the matched case 
00 :::: 0, the phase is uniformly distributed and in any 
case when T is large the phase is approximately uni
formly distributed. To obtain the joint transition pro
babilitr, density of the left reflection coefficient 
- ei;(O (7) tanhe lO)(T)/2, we note from (5.11) that we 
must solve (5.19) with L* omitted and with cpo and CPo 
replaced by ljI and ljI o. The solution is 

P(T; 0, ljI; 00' ljIo) 

~ eim(>/i-"o) f"" II Sinh1Tll 
:::: LJ • e- (v 2 +1/4)a7 ---

m=-oo 21T 0 1T 

x r(~- Iml + ill)r(~- Iml - ill) 

x P~T)2+iV (coshe)P~T)2+iv (COSheO)dll. (5.24) 

Again, if 0 0 :::: 0, the matched case, the phase is uni
formly distributed in our asymptotic limit for all T ~ O. 

However, contrary to what happens with the right re
flection coefficient the phase is not uniform or approxi
mately uniform for T ~ 0 in the mismatched case. Re
sults about the phase of reflection coefficients have 
been reported recently in Refs. 21-23. 

6. HEAT EQUATION FOR THE TOTAL POWER IN 
THE INTERIOR 

According to the remarks at the end of Sec. 2, it is 
convenient to compute the expectations of IA 12 + I B 12 
and IA 12 - I B I 2 in the asymptotic limit of Sec. 4. In 
this section we consider the expectation of the total 
power J( T , ~), T ~ 0, - T / 2 ~ ~ ~ T /2, defined by 

J(T,~) :::: P;;;lx lim E{IA(T/€2, (~ + T/2)/E2)12 
€~o 

+ IB(T/€2, (~ + T/2)/E2)12}. (6.1) 

Clearly J:::: J(T,~; Og' CPg; 01 ,ljI/) but we shall not indi
cate the dependence on the generator and load para
meters explicitly. The variable T == €21 is the scaled 
line length, as in the two previous sections, and ~ is 
scaled distance from the midpoint T/2 of the line. 

The purpose of this section is to prove the following 
theorem which generalizes an observation of Gazaryan. 3 

Theorem: Let J(T,~) be defined by (6.1) and a,{3,y 
by (4.12). Then J(T,~) is defined for T ~ 0 and - r:JJ < ~ 
< r:JJ. Moreover, 

00 

J(T,~):::: 6Jm(T,~), (6.2) 
m=-OO 

where 

J. Math. Phys., Vol. 14, No. 12, December 1973 

T > 0, - r:JJ < ~ < r:JJ, 

and 

(6.3) 

1T im(<I> +,,) -a'f"" sinh1Ttr(~ - I m I + it) 
Jm(O,~)==-e g Ie 

2i _00 cosh21Ttr(~ + I m I + it) 

- r:JJ < ~ < r:JJ, (6.4) 

Km :::: (y + a)m2 + i{3m. (6.5) 

Proof: Let u = cosh01 , v:::: cosh02, cp:::: CPl' ljI:::: ljI2 
and definef(u,v,cp,ljI) by 

f(u,v, cP,ljI):::: 2v/[1 + uv + ../u2 - t..Jv2 -1 cos(cp + ljI)]. 
(6.6) 

Then,from (5.23) and (6.1) it follows that 

1
""f2"1 OO

f
2" J(T,~):::: 1 0 1 0 f(u,v,cp,1/I)P(T/2+~;u,cp;Ug,CPg) 

x P{T/2 - ~; v, ljI; VI' ljIl )dudcpdvd1J;, (6.7) 

where ug :::: coshO g' v I :::: coshO I • 

We observe now that the denominator on the right side 
of (6.6) is related to the law of cosines on the hyper
bolic disc. Then we define ~ ~ 0 by 

cosh~ :::: uv - .ju2 - l.jv2 -1 cos(cp + ljI + 1T), (6.8) 

and rewrite (6.6) in the form 

f(u,v,cp,ljI):::: 2v/(1 -f cosh~). (6.9) 

We proceed next to obtain a Fourier expansion of f. 
For this we need the following facts concerning Legendre 
functions: 20 

2 :::: 1TJoo t sinh1Tt ---P -1/2+it (cosh~)dt, 
1 + cosh~ -00 coSh21Tt 

(6.10) 

00 r(ll- Iml + 1) 
Pv(cosh~):::: ~ p~ml(u)p~ml(v)eim(</J+,,), 

m=-OO r(ll+ Iml + 1) (6.11) 

P~(u) :::: P::'-1 (u), (6.12) 

Uplml(U) =_I_[(Il_ Iml + 1)plml(u) 
v 2 + 1 v+1 

II +(Il+lml)P~~i(u)]. (6.13) 

On using (6.10)-(6.13) in (6.9) we find, after some 
rearrangements, that 

2v 00 

~ Qlml(u,v)eim(</J+,,), 
m=-OO 

(6.14) 
1 + cosh~ 
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where 

1T J<;() sinhlTtr(~ - I m I + it) Iml ) 
U v =- P_ +' (u 

Qlml ( ,) 2i -co COSh2lTtr(~ + 1 ml + it) 1/2.t 

X {[- (I m I - 1/2 ) + it]P~3)2-it(V) 

+ [( 1 m I -~) + it]P~3;2+it(v)}dt. (6.15) 

We return now to (6.7), substitute for f the expression 
(6.14) and perform the cP and VI integrations. This 
yields 

gO 

J(T,~) = L) J",(T, ~), (6.16) 
m='-OO 

where 

J (T,~) = lco lco Q I du, v)P m(T/2 + ~)P m(T/2 - ~)dudv 
In 11

m (6.17) 

and P m(a) = P m«1; U; uo' CPo) is defined by 

(6.18) 

P«1) satisfies (5.19) and it is given eXPlicitly by (5.21). 
From (5.19) and (6.18) it follows that Pm(a;u;uo, CPo) 
satisfies the Cauchy problem 

and Km is given by (6.5). 

Let us rewrite (6.17) using operator notation, (6.19) 
and (6.20). We have 

= e im ("'g+l/!l) .{/Tl2+€Ha£>1.",-I<",)+(rl2 -€)(a£>2.m-K m)QI ml}(U
g

, VI) 

_ im ("'g+~l) -TK m { a (r12 +€)£> 1, m+a (r/2- €)A2 , mQ } (u V) 
- e e Iml g' z. 

(6.21) 
In (6.21) Al m acts only on the first argument of Q 1ml 
(u, v) and A2',rn is the same as Al , ... but acts on the 
second argument of Q 1 mi' Thus AI, m and A2, m commute. 
By direct differentiation of (6.21) it follows that (6.3) 
holds provided that 

(6.22) 

To check that (6.22) is indeed true we need only em
ploy the following relations in the definition (6.15) of 
Qlml ! 

P 1ml ()plml () 
Al , In -1/2+it U -3/2±it v 

= - (t2 + ~)P~;/~+it(U)P~~j2!it(V), (6.23) 

A2 , mP~7;2 fit (u)P:~;2 fit (v) 

= - (t2 ± 2it - ~)P:7;2+it (U)P:3~2 ±it(V). (6.24) 

This completes the proof of (6.3). 

To compute the initial value J m(O,~) we set T = 0 in 
(6.21) and obtain 

Jm(O,~) = elm <"'g+ljiz) {eaH£> 1. m-£>2.,,)Q 1m I} (U
g

, VI)' (6.25) 

Using (6.23) and (6.24) in the definition (6.15) of 
Q I m I , it follows that 
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([Al,Yn - A2 ,m]Qlml )(Ug, vz) 

IT J"" sinhlTtr( i-I m I + it) I ml . 
=- P-l/2+it(Ug) 

2i -gO cosh2lTtr (! + I m I + it) 

X {[- (Iml -!) + it]P~~j2-it(Vl)(-1- 2it) 

+ [(I ml - i) + it]P~;;2+it(vz)(-1 + 2it)}dt. (6.26) 

By formally expanding the exponential in (6.25) and 
using (6.26) and its iterates, and performing a few re
arrangements, the result (6.4) follows. This completes 
the proof of the theorem. 

When the line is matched then ~ = r Z = 0 and hence, 
from (5. 3),8g = 8 z = O. Since PLm'(1) = 0, m '" 0 it 
follows from (6.5) that 

J m(T,~) = 0, m '" O. (6.27) 

Thus J(T,~) = JO(T,~) and 

T> 0, (6.28) 

J(O,~) = lTe-at J"" t sinh7Tt (cos2a~t _ sin2a~t ) dt 
-co COSh2lTt 2t 

= 1 - tanha~ - a~ (6.29) 
cosh2a~ 

This is the result Gazaryan3 obtained for a very 
special kind of fluctuation process ",(x), and so the 
theorem above is indeed a generalization of it. 

Equations (6.3) can be solved explicitly in an ele
mentary manner. Thus, we have 

J(T,~) = ~ e i m (<Pg+lj!/)-K mT J a. J "" e-a(t _ij)2/r J m (0, T/)dT/. 
m=-OO lTT -gO (6.30) 

Here J m(O, ~) is identical with (6.4) with the factor 
e im

(<I>g+IPI) omitted. Using (6.4) in (6. 30),performing the 
1'/ integration and rearranging yields 

J(T,~) = e a (rl2)-at ~ eim("'g+~I)-KmT 
m=-OO 

J"" -ar(t2+1) t sinh7Ttr(i - I m I + it) x 11 e 4 

-gO cosh27Ttr(i + Iml + it) 

X P~;/~+it (coshe g) {coshe I cosat(T - 2~)P~;/~+it (coshe I) 

sinat(T - 2~) 1 • Iml 
- [(;i- Iml + zt)P- 3 / 2 - it (coshe z ) 

at 
+ a - I ml - it)P:~~2+it (cosM l)]}dt. (6.31) 

In Sec. 5, below (5. 5) we observed that VII depends 
explicitly on l. Since l = T / e2 is going to infinity as 
e -7 ° only Jo(T,~) in (6.2) is meaningful physically. The 
rapid phase oscillations due to VII will average to zero, 
within the range of parameters considered here, in any 
measuring process. From (6.31) we obtain the following 
representation for JO(T, ~)! 

Jo(T, ~) 

= e a (T/2)-at lTJoo e-aT(t2+l/4) t sinhlTt P -1/2+;t (cosh8 ) 
-00 cosh21Tt g 

x {COSh8 z cosat(T - 2~)P -1/2+it (cosh8 I) 

sinat(T - 2~) - m + it)P_ 3/2 _it (cosM z) 2t 

+ (~- it)P-3/2+it (CoSMzJ}dt. (6.32) 
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In Figs. 2-4 we plot JO(1',~) as a function of ~, - 1'/2 
::; ~::; T/2 for various values of T ~ 0, Og ~ 0, ()I ~ O. 
The graphs were obtained by evaluating (6. 32) numeri
cally. 

The above theorem is somewhat surprising and one is 

2.0 

(I) 

1.0 

(2) 

(3) 

0.25 0.25 

FIG.2. Here we plot J o (solid lines) and J, (broken lines) versus a~, 
_ aT/2 '" a~ '" aT/2,for aT = 0.5. The curves labeled by (1), (2), (3) 
correspondto8 g =Oand8, =2.4,8g =8, =0,8,=2.4and8, =0, 
respectively. In this figure the solid and broken hnes coalesce when 
8g =8,=0. 

3 
, 
" 

3~'" 

-2.0 

" " " " 

2.0 

" " 

FIG.3. For aT = 4 (see Fig.2). 
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led to inquire if it could have been anticipated without 
actually performing the computations. This is not an 
easy task however, because a great deal of Simplification 
and decoupling occurs in the asymptotic limit. Further
more, within the context of the asymptotic limit, the 
result appears as a somewhat peculiar property of con
ditional expectations of certain functionals of, essen
tially, Brownian motion on the hyperbolic disc. 

7. TRANSMISSION COEFFICIENTS 

We shall compute here the expectation of P;;;ix( IA 12 -
IB 12) in the asymptotiC limit of Sec. 4. It can be verified 
that this quantity is independent of x, 0 ::; x ::; 1. As noted 
in (2.18) it represents the power flux through the line 
and we call it the power transmission coefficient. 
Thus we set 

PT(T) = P;;;ix lim E{IA(1'/E 2, T/E2)12_IB(T/f2, T/E2)12}, 
,"'0 (7.1) 

where we have chosen to let x = I. From (5.23), (5.19), 
and (7. 1), we obtain 

J00 12
" PT(T) = g(u, v I' cP; 1jI1)P(1'; U, cP; Ug' cP g )dudCP, 

1 0 
T ~ O. (7.2) 

Here P is given by (5. 21),u = cosM, ug = cosh()g' 
VI = coshO I and 

g(u, v, cP,1jI) = 2[1 + uv + ../u2 -1../v2 -1 cos(CP + 1jI)]-1. 
(7.3) 

It is not necessary to perform any computations in 
evaluating (7.2) for PT(T) because we can use J(T,~) of 
the previous section as follows From (2. 7) we notice 
that at x = I; we have 

IAI2 + IBI2 = (1 + IrI12)(IAI2 _ IBI2). 
1- I r /12 

Thus,from (5.3), (6.1), and (7.1) 

PT(1') = secMIJ(T, T/2). 

Setting ~ = a/2 in (6.31) yields the desired result: 

(7.4) 

(7.5) 

PT(1') = f; e im (<I>g+I/JI)-K m T1T J"" e-adt2+1/4) t sinh1Tt 
m=-"" -00 COSh21Tt 

r(~- Iml + it) Iml 
x ·P-1 / 2 +it (cosMg) 

r(~ + Iml + it) 

XP~~~2+it (coshO l )dt. (7.6) 

Here K and a are defined by (6.5) and (4.12), respectiv
ely. Note that (7.14) is symmetric in the load and gener
ator parameters: 

PT(T; ()g' CPg; ()p 1jI1) = PT(T; 81 ,1jI1; ()g' CPg)' (7.7) 

In order to compare (7.6) with the results of J.A. 
Morrison15 we must identify the load and generator 
parameters with those of problem (2.14). This amomts 
to expressing (2.16) and (2.17) in polar coordinates 
(5.3) and USing (5.14). A simple calculation yields 

Pmax=n1 • 

(7.8) 

1jI1 = 2ikl + 1TH(n2 -I) + 1T, 
(7.9) 

(7.10) 
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Here H(x) denotes the Heaviside unit step function. Upon 
using (7.8)-(7.10) in (7.6) we recover Morrison's 
formula15 (4.17) by employing the identity20 

r(~ - I ml - it)r(~ + Iml + it) = (-l)m1T/cosh1Tt, 
(7.11) 

and noting that his 130 corresponds to - k here. 

When the line is matched to the generator and the load 
then 9 g = e I = ° and (7.6) simplifies to 

T ~ 0. (7.12) 

Using (7.5), (6. 28), and (6.29) we find another repre
sentation of the result (7.12): 

PT(T) I = = ./OI./1TT j'>O e- aT (T/2""IJ)2 
8 g 0 -00 

8 1=0 

X (1 - tanhOl.1] - 0I.1]/cosh201.1])d1') 

4e- a r/4 00 1]2e-1/~d1] 
= J . ...r:rr 0 cosh(~) 

(7.13) 

Formulas (7.12) and (7.13) have been obtained pre
viously by a variety of methods.24 ,25,26 

8. COMPARISON WITH RADIATIVE TRANSPORT 
THEORY 

Radiative transport theory is a phenomenological 
theory that considers the transport of radiation from 
one region of an inhomogeneous medium to another as an 
incoherent scattering phenomenon disregarding the wave 
nature of the transfer process. We shall describe briefly 
this theory in connection with problem (2.10)-(2.13) 
first when n 1 = n2 = 1 and then in the general case. 

Let r(t,T,a), t ~ 0, O:s a:s T,represent the intensity 
of radiation at time t and location a propagating in the 
positive a direction through an inhomogeneous medium 
occupying the interval [0, T J. Let [-(I, r, a) represent the 
intensity propagating in the negative a direction. Ele
mentary physical arguments 5 lead to the following con
servation equations for [±: 

!. ar + OJ+ = _ 01.[' + (3[-, 
v at aa 

!.OI-_a[-=_OI.[-+13[+, O:sa:sr, 
vat aa 

f±(O,r,a) = IMa), 

r(t,T,O) = 1, [-(t,r,r) = 0. 

(8.1) 

t ~ 0, 

(8.2) 

(8.3) 

Here v denotes the transport velocity, 01. and f3 are 
transport coefficients characteristic of the scattering, 
absorptive and emittive properties of the medium and 
(8.3) has been chosen so that radiation of unit intensity 
is incident on the medium from the left. In the steady 
state regime and for a conservative medium we set the 
time derivatives equal to zero in (8.1) and 01. = f3. Thus 
f±(r, a) satisfy the equations 

.1:.[+ = - 01.([+ - [-), 
da 

- .1:. [- = 01. (J+ - r), ° :s a :s T, 
da 

[+(T,O) =1, [-(r,r) =0. 
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The quantity r + [- is the total radiation and r - r 
is the flux of radiation. The latter depends on r only. 
Equations (8.4), (8. 5) are elementary and their solution 
is 

l+OI.(r-a) 
J+(T a) =-----

, 1 + OI.T ' 
OI.(r - a) 

[-(T,a) = , 
1 + OI.r 

o :s 0' :s T. (8.6) 

The above theory is entirely phenomenological and it 
was first employed by Schuster; 5 see also Ref. 10, 27. A 
general treatment of radiative transport theory can be 
found in Ref. 6. 

The question that concerns us here is the following. 
What is the relation, if any, between (8.4), (8. 5) and the 
stochastic boundary value problem (2.6), (2. 7)? We 
assume here that E g = 1, r g = r I = ° in (2.7). Several 
investigators7 ,8,9 have given heuristic arguments indi
cating that [+ (r, a) and [-(T, a) should be lim E{IA(T/e 2 , 

,-"0 
a/e 2 ) 12} and limE{IB(T/e2 , 0'/ e2) 12}, respectively, under 

.... 0 
more or less the same conditions as stated in Sec. 4 and 
with 01. in (8.4) given by (4.12). This would be a very 
satisfactory answer to our question, if it were correct, 
because (8.4) and (8.5) are very simple equations. Un
fortunately, it cannot be correct without further restric
tions since it does not agree with the results of Secs. 6 
and 7 which follow from a rigorous mathematical theory. 

In order to compare transport theory to the general 
mismatched case we must change the boundary condition 
in (8.5). If we accept the correspondence between A,B, 
and f± discussed above then, in view of (2.7), (8.5) should 
be 

[+(T,O) = IEgl2 + Irg I2[-(r,O), 

[-(T,r) = IrzI2[+(r,T). 

Solving (8.4) and (8.7), we obtain 

(8.7) 
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- r/2 :$ ~ :$ r/2, 

PT 5(r) = P;;~x[I+(r,r/2 + ~) - r(r,r/2 + ~)] 
1 

i (coshe g + coshe l) + ar 

(8.8) 

(8.9) 

Here we have used the subscript s (Schuster) to denote 
quantities obtained from transport theory, P max is given 
by (5.14) and we have employed polar coordinates as in 
(5.3). When coshe ff = coshe 1 = 1 the results (8.8), (8.9) 
reduce to the matched case (8.6). 

Let us now compare (8.8) and (8.9) with the results 
obtained by the stochastic theory. Specifically, we com-

10 

4 6 8 10 

FIG. 5. Here we plot Jo versus OI~, O:s OI~:s OIT/2 for 8 g = 8, = 0 and 
OIT = .5 (a), CiT = 1 (b), CiT = 2 (e), CiT = 4 (d), CiT = 7 (e), CiT = 10 (f), 
CiT = 15 (g), CiT = 20 (h). 

10 

3 

FIG.6. Here we plot PT 0 (solid lines) and PT, (broken lines) versus 
CiT, O:s CiT :s 5. The curves labeled (1), (2), (3) correspond to 8 g = 8, 
= 0, 8g = 1. 2 and 8, = 0,8 g '" 2.4 and 8, = O,respectively. 
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pare J 5 (r,~) with Jo(r, 0 given by (6.32) and (8.9) with 
PTo(r) which is the m = 0 term in (7.6): 

PTo(r) = 11 J"" e- ttT (t
2+1!4) t sinh11t P-1/2+"t (coshe ) 

-00 cosh211t' g 

P-1/2+it (coshe z )dt. (8.10) 

The comparison of corresponding formulas is best 
done by examining the graphs shown in Figs. 2-6. How
ever,for small ar we can expand both PT 5(T) and PTO(T) 
in powers of aT and compare the first few terms: 

PT 5(T) = 2 
coshe g + coshe I 

4ar 

(cosheg + coshez)2 

8(ar)2 
+ + ... 

(cosh8 g + coshez)3 
(8.11 ) 

2 4(1 + coshe g coshe z)ar 
PT O(T) = - ----~----"-

coshe g + coshe z (coshe g + coshez)3 

+ {4(ar)2 [6 - (3 + coshe z coshe g) (cosh2e g + cosh2e I) 

+ 2 coshe z coshe g (3 + 2 coshe z coshe g)]} 

x (coshe g + coshel)-5 + ,. . . (8.12) 

From (8.11) and (8.12) it follows that in the general 
case PT sand PT 0 disagree even to first order in ar. 
However, in the matched case, coshe g = coshe z = 1, 
PT Q and PT 5 agree to order (ar)2, but disagree in order 
(ar)3. From the figures we see that transport theory 
agrees fairly well with the stochastic theory in the 
matched case when ar is small. When ar is large or 
when there is impedance mismatch then we have fairly 
Significant discrepancies. 

It appears that in the asymptotic limit of Sec. 4 some 
phase information remains in Jo(r,~) and PT o(r) and 
this leads to quantitative disagreement with the purely 
incoherent transport theory. On the other hand transport 
theory is much Simpler. We may conclude however, that 
transport theory cannot be related systematically to 
stochastic wave equations in the Simple manner suggest
ed so far. This conclusion is supported by a recent 
analysis,28 comparing the predictions of the two theories 
for power transmission in the matched case with com
puter-simulated results. 

9. PROPAGATION OF PULSES 
Up to now we have concerned ourselves exclusively 

with time harmonic dependence of the fields. The meth
ods employed in a previous section can be used, however, 
to analyze problems with more general time dependence. 
In this section we examine the pulse problem in general 
and compute in particular the spreading of a Gaussian 
modulated pulse due to the fluctuations. 

Let 0 t (t) represent the generator voltage as a func
tion of tIme and denote by Ci(l,x; t) and <B(l,x, t) the time 
dependent incident and reflected waves at location x, 
0:$ x :$ l,for a line of length 1 ~ 0 and at time t ~ O. We 
introduce Fourier transforms as follows 

eg(w) = ~J"" e iwt 0 g(t)dt, 
"V 211 -"" 

eiwx!cA(1 X' w) = _l-J"" e iwt Ci(l X' t)dt " ffi -00 ' , 

e-iwX!CB(l,x;w) = ~2 J"" eiwt<B(l,x;t)dt. 
"V &.11 -co 

(9.1) 

(9.2) 

(9.3) 
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We shall assume thatA(l,x;w) andB(l,x;w) satisfy 
the boundary value problem (2.6), (2. 7) where k == wlc 
as in (2.4) and e g(w) in (2.8) is given by (9.1). Note 
also that,in general,Z == Zg(w) and Zz == Zz(w) so that 
r g and r z in (2.9) are functions of w. Similarly, the 
statistical characteristics of Il(x) in (2.8) may depend on 
w so we will write Il(x; w) or Il(x; k). 

The time dependent amplitudes a(l,x; t) and <P..(l,x; t) 
are obtained by using the inverse Fourier transform 

a(l X' t) == _l_Joo e-iwV-x!c)A(l x'w)dw 
" ffi -00 '" 

(9.4) 

<p"(l X' t) - _l_Joo e-iw(t+x!c)B(l X' w)dw " - ffi -00 ". 
(9.5) 

The quantities of interest to us are the expected values 
of the time dependent incident and reflected powers. 
Before introducing these quantities, however, it is con
venient to change our notation and express all quantities 
and integration variables in terms of k == wi c rather 
than w [cf. (2.14)]. Thus, we have the representations 

E{I a(l,x; t)12} 

== c
2 J'''' Joo e-i(k-k'Hct-X)E{A(l,x;k)A(l,x;k')}dkdk' 

21T -00 -00 (9.6) 

E{I <P..(l,x; t)12} 

= c2 
Joo foo e-i(k-k'Hct+x)E{B(l,x; k)B(l,x;k')}dkdk' 

21T -00 -00 (9. 7) 

From (9.6) and (9.7) it is apparent that the analysis 
of the pulse problem rests on knowledge of the joint 
statistics of the solutionA(l,x;k) and B(l,x;k) of (2.6), 
(2.7) at two wave numbers k and k'. 

In order to employ the limit theorem of section 4 for 
the joint statistics at two wave numbers we shall assume 
that the following conditions hold: 

P (k) __ I e-,,-g_(k_) 1_2_ 
max - 4 Re(Z (k» , 

g (9.8) 

(ii) P max(k) == 0, Ikl > n. (9.9) 

The first assumption asserts that the total power of 
the pulse is finite and the second asserts that the pulse 
is bandlimited. Let ~ > 0 be fixed and define ~t and ~t 
by 

~,={(k,k')llk-k'l s ~}U {(k,k')llk + k'i s~}, 

~\ = complement of ~, . (9.10) 

From the definition (5.14) of P max(k) it follows that 

IA(l,x; k)1 s P~~2x(k), 
(9.11) 

since IA 12 and IB 12 are the incident and reflected 
powers, respectively. From (9.8), (9. 9), and (9.11) we 
conclude that we may replace the domain of integration 
in (9.6) and (9.7) by~, with an error which does not 
exceed (4c2PI1T)~. Thus,for the purposes of the limit 
theorem, we shall assume that k and k' are distinct 
independently of E ~ 0 and,from (9.9), k and k' are 
bounded in absolute value. 
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We turn next to the computation of E{A(l,x; k)A(l,x, k')} 
and E{B(l,x; k)B(l,x; k')} in the asymptotic limit of Sec. 4. 
From (3.9) and (3.10) it follows that we must find the 
joint statistics of Y 1(x,0;k), Y 1 (x,0;k') satisfying (3.6) 
with m(x; k) and m(x; k'), respectively, and Y 2(l,x; k), 
Y2(l,x; k') satisfying (3.7) with m(x;k) and m(x; k'), 
respectively. Let Y 11 be defined by 

(9.12) 

Here ffi denotes direct sum. From (3.6) it follows 
that 

~Yll(x,O;k,k') = Em(x;k,k')Yll (x,O;k,k'), x ~ 0, 
dx 

Y ll (O,O;k,k')==Yg (k)ffiY g (k')= YgffiY~, (9.13) 

m(x; k, k') = m(x; k) ffi m(x; k'). 

Similarly, we define Y22 (l,x; k, k') as the direct sum of 
Y2(l,x; k) and Y2(l,x; k') and obtain the equation it satis
fies from (3.7). Now we apply the analysis of Sec. 4 to 
the direct sum processes Y ll (x,O;k,k') and Y22 (l,x;k,k'). 
First, however, we must introduce some notation. 

Let 0 denote the 2 x 2 zero matrix and define 

11?-) == l1i ffi 0, 11}2) = 0 ffi l1j' i = 1,2,3, (9.14) 

where l1j are given by (4.1). Then,m(x;k,k') maybe 
expressed as 

3 3 

m(x;k,k') = ~mj(x;k)l1f) + ~mj(x,k')l1?). (9.15) 
j=l j=l 

Here we have employed the notation introduced in 
(4.3) and we have shown the dependence on k and k' 
explicitly. Let Y~v(a;k,k') be defined by 

YN(<1;k, k') = Yll (aIE2, 0; k, k'), <1 == E2X. (9.16) 

We are ready now to apply the limit theorem of Sec. 4 
to the direct sum process YN(u;k,k'). 

The application of the limit theorem is straightforward 
because we have arranged that k and k' be distinct. Thus, 
we find that if f is a bounded smooth function of Y tl) then 
u(£) (0-, Y g ffi Y~) == E{j(YiY(p-»} converges, as E -; 0 and 
0- remains fixed, to U(O)(a, Y g ffi Y~) where 

:0- u(O) == (V + V' + W)U(O) , 0- > 0, 

(9.17) 

Here V, V', and Ware given by 

V == a(k)(Dij~)Dij~) + Dij~l)Dij~» + y(k)Dij~)Dij~) - (3(k)Dij~)' 

(9.18) 
V' == a (k')(DQ~2)DQ!f + Dij~Dij~2» + y(k')DijI{>Dijf(> - (3(k')Dijf(> 

(9.19) 
W == 2o(k,k')Dijl{>DijCf> , (9.20) 

a(k) == k
2 

JooR(s;k,k) cos2ksds, 
2 0 

k 2 JOO (3(k) == - R(s;k,k) sin2ksds, 
2 0 

y(k) == k 2 JooR(s;k,k)ds, 
o 

o(k, k') = kk' Joo [R(s; k, k') + R(s; k', k)]ds, 
2 0 

R(s;k,k') ==E{Il(x;k)ll(x + s;k')}. (9.21) 
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Note that W is the interaction operator which couples 
the statistics of the two components of the direct sum 
process. 

As in Sec. 5 we introduce polar coordinates in order to 
facilitate application of the limit theorem. Instead of 
(5.1), however, it is more convenient to use 

(9.22) 

o :5' ~ < 27T, 0 :5' TJ < 27T, u ~ 1. 

With this parametrization Vof (9.18) and (5.11) takes 
the form 

V = at (k) [i.. (U2 -1) i..) + .!.(u - 1) ~ +.!. (u + 1) 
OU OU 4 u + 1 0~2 4 u - 1 

xi:... + !.~J + y(k) (~+~) 2 _ (3(k) (~+~). 
0112 2 o~oTJ .4 o~ oTJ 2 o~ 01/ 

(9.23) 
Similarly, V' of (9.19) coincides with (9.23) except 

at,{3,and yare evaluated at k' and (u,~,TJ) is replaced 
by (u', ~', 11') which parametrize the second component of 
the direct sum process. The interaction operator W is 
given by 

(9.24) 

The parametrization (9.22) is more convenient here 
because, as we will see below, the quantities of interest 
depend upon all three parameters of Y and they do not 
simplify as in (5.12), (5.13). Nevertheless other Simpli
fications occur and they are best exploited by using 
(9.22). 

From (3.9) and (3.10) we obtain the expression 

b2 b2 
B(l,x;k)B(l,x;k/) =EgE~aga~ _. 

(~b1 + i'i2111)(b2bi + a2ai) 

(9.26) 
Here the primes on the variables indicate that they 

correspond to k' and the subscripts one and two refer 
to the direct sum processes Y 11 (x,O;k,k /) and 
Y22(l,x; k; k /), respectively. The denominators in (9.25) 
and (9.26) can be expanded into absolutely convergent 
geometric series. On USing, in addition, the parametriza
tion (9.22) we find that 

00 

A(l x.' k)A(l X' k/) = E E' i'i a /2· '" (- 1)m+nC(1) C (2) 
" " g g g g L.J mn rnn' 

n, m;O (9.27) 

C (1)( t,., I tl ."') = ei[m~1+(m+1)~1-n~{-(n+l)t{J 
mn u1,'>1"'l>u1 '''1,'/1 

X 1 1 (9.29) 
[ 

(u - l)m/2(u ' - 1)nl2 ] 

(u1 + 1)(m+l)/2(ui + 1)(n+1)/2 ' 
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Since C ~~ and C ~~ are bounded continuous functions 
of Y 11 and Y 22' respectively, the independent increments 
property applied to the direct sum processes yields 

limE{A(r/ E2, a/E 2; k)A(r/E 2,a/E2; k/)} .-0 
00 

=E E'ii a / 2· L; (-l)m+nG~1J(a)G~~(r-a), 
g g g g n,m=O (9.31) 

limE{B(r/E 2, a/E 2; k)B(r/E 2, a/E 2; k/)} 
€- a 00 

= EgE~aga~2. L; (- l)m+nG2-~(a)G P.J+1)(n+1)(r - a) 
n,m=O (9.32) 

Here G<;'~(a) and G~~(a) are functions of the generator 
and load parameters, respectively, and they satisfy the 
initial value problems 

i..cA

(1) = (V + V' + W)C
A 

(,1) > 0 " mn mn' a , 8 (1) (0) = c (,1) mn mn ua . 
(9.33) 

:a 8~~ = (V + V' + W)8~~, a> 0, 8(2)(0) = G~~. 
(9.34) 

The solution of (9.33) and (9.34) is obtained easily 
after observing that the functions 

QMN(u,~, 11) = (u - 1)MI2(u + 1)-NI2ei[KIM~+K2Nt], 

M,N~O, K1 ,K2 =±1. (9.35) 

and formal eigenfunctions of V in (9.23). The corres
ponding eigenvalues are 

at y 
AMN =-(M-N-MN(l + K1K2 ))--(M + K1K2N)2 

2 4 
i{3 

+ - (K 1 M + K 2N). (9.36) 
2 

From (9.29), (9. 30), and (9.35) it follows that both 
C (,1) and C (2) are formal eigenfunctions of V + V' + Win 
(9~i7) withm~igenValues lI.~lj and lI.~~ given by 

A~~ = - at(k)(m 2 + m + 1/2) - y(k)(m + 1/2)2 

- at(k /)(n 2 + n + %) - y(k/)(n +%)2 

+ 2<'i(m + %)(n + %) + i[- (3(k)(m + %) 
+ (3(k')(n + 1/2)],. (9.37) 

11.(2) = O. mn (9.38) 

Thus 
A A (1) 0 
G (1) = e mn C t1) 

mn mn' 
G (2) = G(2). mn mn (9.39) 

The fact that C ~~ is independent of a, a consequence of 
(9.38), is remarkable. It implies that the limits (9.31) 
and (9.32) are independent of r and, after some re
arrangement, are given by 

lim E{A(r/ E2, a/E2; k)A(r/E 2, a/E 2; k/)} 
.- 0 

= EgE;. ~ eA~?nO[r g(k)r I (k)]mrf g(k/)r 1 (k')]n. 
n,m=O (9.40) 

lim E{B(r/E 2, a/E 2; k)B(r/E 2, a/E 2; k/)} .-0 co u) 
= rl(k)rl(k')EgE~. L; eAmnO[rg(k)rl(k)]m 

_ n,m=O 

X (r g (k/)r z (k')t. (9.41) 

Here r g (k) and rz(k) are as defined in (5.3). 

The results (9.40) and (9.41) indicate that the inter
esting phenomena of power transfer due to fluctuation, 
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described in Secs. 6 and 7, do not occur for pulses of 
finite total power (cf. (9. 8)). The total power must be at 
least of order 1/e: 2 before cumulative phenomena due to 
fluctuation become significant. For example, when the 
load is matched so that r l = 0, (9. 41) and (9.7) show 
that within our approximation, there is no power reflect
ed. This should be contrasted with the results of Secs. 
6 and 7. The analysis of the pulse problem when (9.8) is 
not valid is considerably more complicated and will not 
be considered here. 

In the remainder of this section we apply the above 
analysis to the following problem: 

8 (t) = e-t2/2s2 cosw t 
gO' 

rg=rl =0, 

(9.42) 

(9.43) 

k 2 
a(k) =-, 

2 
k 2 

(3(k) = -, 
2 

o(k, k') == kk'. 
(9.44) 

The generator voltage is a Gaussian modulated pulse 
(9.42), the line is matched to both the generator and the 
load and the spectrum of the random process Il(x) is 
assumed flat (9.44). Both (9.42) and (9.44) violate our 
previous hypotheses which are convenient idealizations. 

From (9.1) and (9.42) we obtain e g (w): 

From (9.43), (9. 44) and (9.40), (9. 37) we have 

lim E{A(T /e: 2 , a/ e: 2 ; k)A(T /e: 2 , a/ e: 2 ; k')} 

(9.45) 

€-+ 0 
== [eg(w)eg(w')/4Zo)e-ll/2)(k2'k,2_kkl)o. (9.46) 

Note again that (9.46) is independent of T. On insert
ing (9.46) in (9.6) and performing the double integral we 
find that when e: « 1 and x » 1 so that e: 2x = a then, 

E{I Cl(l,x; t)12} ~ - S2 + -- S2 +-S2 [( 3e:
2
X) ( e:

2x)] 
8Z 0 2c2 2c2 

x exp( - (t - x /C)2 ) [exp( __ -_W.....:::..~S_2_e:_2_X __ \ 
2S2 + 3e: 2x/c2 2c2(s2 + e: 2x/2c2)) 

+ exp ( - 3W~S2e:2x ) cos( 2wos(t - x/c) )] 
2c2(s2 + 3e: 2x/2c2) S2 + 3e: 2x/2c2 • 

(9.47) 
By comparing 8;(t) in (9.42) and (9.47) we obtain the 

pulse spreading factor: 1 + 3e: 2x/2c2S2• 
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Time evolution of a two-dimensional model system. I. 
Invariant states and time correlation functions 
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This paper is the first one of a series devoted to the study of a particularly simple two-dimension
al system of classical particles. The model is presented and some general feautres of it are establish
ed. We prove that, among states without correlations between particles with different velocities, 
there is a unique time invariant state with given density and hydrodynamic velocity. This "equilib
rium state" is studied in detail. In particular its ergodic and mixing properties are investigated. We 
propose an approximation in order to estimate the asymptotic part of the time correlation func
tions and show that the long time tail is ruled by the "hydrodynamic" behavior of the model, name
ly by the evolution of the long wavelength perturbations. 

1. INTRODUCTION 

The aim of this paper is to propose a somewhat simple 
system of classical particles with interactions and to 
investigate some of its properties. As an introduction 
we would like to give some explanation of the motivation 
which leads us to undertake such a work. 

The process of approach to equilibrium of macroscopic 
systems is, since Boltzmann's work, an old problem. It 
is known that this question is closely related to the er
godic hypothesis. In fact it can be proved that if the 
ergodic hypothesis holds, then every local perturbation 
of the equilibrium relaxes in a well-defined sense. 
However, the ergodic hypothesis is not sufficient to lead 
to a full understanding of transport phenomena in fluids 
and gases. In fact the ergodic hypotheSiS predicts the 
relaxation of time correlation function, but it does not 
give any information about the exact asymptotic behavior 
of the correlation functions. Still the knowledge of the 
long time tail of suitable correlation functions is of great 
importance in order to ensure the existence of transport 
coefficients as given by Kubo's formulas. 

As far as infinite systems are concerned there is no 
realistic model for which the ergodic hypotheSiS and 
existence of transport coefficients have both been inves
tigated. In one dimenSion, the model of hard rods has 
been shown to have very good properties of mixing.!,2 
Furthermore, it is possible to calculate exactly the self
diffusion coefficient for this model. 3 Unfortunately, the 
behavior of the hard rods model is far from being that 
of realistic systems; in particular the process of therma
lization is absent because any velocity distribution func
tion is an equilibrium one. In a general way, one-dimen
sional systems have undoubtedly very particular proper
ties which cannot be expected to occur in two- or 
three-dimensional systems. 

When conSidering infinite systems, in two or three 
dimensions, one is immediately faced with the complicat
ed problem of time evolution of configurations with 
infinitely many particles. In fact it is easy to construct 
configurations of hard discs or hard spheres, for in
stance, leading in a finite time to a catastrophic situation. 
The problem is to prove that the probability of occurrence 
of these "bad" configurations is zero at equilibrium.4 

Although this problem has been solved for hard squares 
and hard cubes with discrete velocities,5 this last model 
is still too complicated for investigating in a rigorous 
way the ergodic hypotheSiS and the existence of trans-

1746 J. Math. Phys., Vol. 14, No. 12, December 1973 

port coefficients. The same remark holds for the so
called Maxwell model, for which a hydrodynamic theory 
has recently been developed,6 and the divergence of 
the viscosity coefficient has been discussed in detail. 7 

Here we propose a two-dimensional model of particles 
with discrete velocities and discrete positions; namely, 
the particles are on the sites of a two-dimensional lattice 
and jump each unit of time in one of the four directions 
of the lattice suffering collisions with each other in 
such a way that the particle number and the total momen
tum are conserved during a collision. There is no diffi
culty in the definition of time evolution of infinite con
figurations and, as it will be seen, some interesting 
results can be obtained with this model. The authors 
do not pretend to have imagined a model which will play 
the same important role as the ISing model does in the 
theory of phase transitions, but the results related in 
this paper seemed to them sufficiently stimulating and 
they hope to arrive in the future at a more profound 
understanding of the relaxation processes with this 
model. 

In Sec. 2 we describe the model in detail and define 
the time evolution mapping T, on the space of infinite 
configurations. Some elementary and Simple properties 
of T are quoted in Sec. 3, The nonreversible character 
of T is emphasized and a slight modification is proposed 
in order to preserve the microreversibility. Section 4 
is devoted to the search for invariant states. In par
ticular a uniqueness theorem is proved on a restricted 
class of homogeneous states. In Sec. 5 we recall the 
definition of "mixing" systems and show that for the 
invariant states studied here the mixing property is 
equivalent to the asymptotic relaxation of a reduced 
class of time correlation functions. In Sec. 6 we propose 
an approximation of the evolution equations which per
mits us to compute the most Simple correlation functions 
and to give their asymptotic behavior as the time tends 
to infinity. Finally we discuss the results obtained in 
Sec. 6 and the meaning of the approximation we have 
used; in particular we show that this approximation can 
be used to prove in a rigorous way the existence of 
sound waves propagation in this system. 

2. DESCRIPTION OF THE MODEL 

We consider an infinite square lattice. On each lattice 
site there are at most four particles. The velocity of 
a particle is one of the four unit vectors (1,0), (0, 1), 

Copyright © 1973 by the American Institute of Physics 1746 
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(- 1,0), or (0, - 1), which we label respectively with the 
four numbers (1,2,3,4). The configurations where 
there are at least two particles with the same velocity 
on the same lattice site are excluded. We denote by X 
an allowed configuration and by K the set of all X. It 
will be convenient to introduce the following functions 
defined in K: 

if the site (p, q) is occupied by a 
particle of X of velocity i, 
otherwise. 

Giving an X is the same as giving the values of all the 
functions 

aj.p,q;i),where (p,q)E Z2 and iE P={1,2,3,4}. 

We may write then K = {O, 1}4Z 2 and from Tychonov's 
theorem K is a compact set. We shall need in the sub
sequent sections the following natural decomposition 
of K; namely, if we denote by Xi where i E P the sub
configuration of X formed with the particles of velo
city i, it results from the exclusion principle that Xi is 
an element of K i = (0, 1) Z2. Therefore, K has the 
structure of a product: K = nr=IK i • A "state" on K will 
be a probability measure on K, that is, a positive mea
sure p such that p(K) = 1. 

Let us now introduce the time evolution of a configura
tion. The movement of the particles is specified as 
follows. During one unit of time each particle jumps one 
step in the direction of its velocity; then on each lattice 
site where one of the two situations indicated in Fig. 1 
occurs, there is a collision exchanging the situations 
(a) and (b) with each other. On the other lattice sites 
the situation is left unchanged. In Fig. 2 we give an 
example of a collision at time t, and the corresponding 
configurations at times t - 1, t + 1. Note that it is not 
merely a zerO-impact parameter model since a colli
sion in the middle of the line connecting adjacent sites 
is not allowed. If X is the initial configuration, we call 
T(X) the new configuration after one unit of time has 
elapsed. It is clear that T (X) is still an allowed con
figuration and that T maps K onto itself homeomor
phically. This last property which does not hold for 

3 

It 

(a) (b) 

FIG. 1. The two situations giving a collision. 

t- f t 

FIG.2. An example of a collision at time I, and the corresponding 
configurations at time s I - I, t + 1. 
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realistic systems4 ,5 eliminates some inessential and 
purely technical difficulties. 

The time evolution mapping T can be written with 
the functions a x (p, q; i) in the following way: 

aT(x)(p,q; 1) =ax(p -1, q; 1)-1/Ix(p,q), 

(J T(X) (p, q; 2) = (J x (p, q - 1; 2) + !/Ix (p, q), 

(J T(X) (p, q; 3) = (J x( P + 1, q; 3) - 1/Ix(p, q), 

(J T(X) (p, q; 4) = (J x(p, q + 1; 4) + 1/Ix(p, q), 

where 

1/Ix(p, q) = (J x( P - 1, q; 1)(Jx( p + 1, q; 3)u x(p, q - 1; 2) 

(2.1) 

x ox(p, q + 1; 4) - 0x(p - 1, q; 2)(jx(p + 1, q; 3) 

x ax (p, q - 1; 2)a x(p, q + 1; 4) 

and 

ox(p,q;i) = 1-(Jx(p,q;i). 

Before giving some elementary properties of T, we 
make two remarks: First the particle number and the 
total momentum are conserved during a collision, and 
second the impact parameter is always zero in a colli
sion so that on each horizontal (resp. vertical) line of 
lattice sites the horizontal (resp. vertical) momentum 
is conserved. This peculiarity will lead to speCific 
results when we consider relaxation of time correlation 
functions. 

3. ELEMENTARY PROPERTIES OF T 

First note that T splits into two mappings: T = C . To, 
where To and C are respectively the free evolution 
mapping and the collision operator. The operator C can 
be written in the following way: 

The mapping C is strictly local and is a symmetry 
mapping: C2 = 1. Obviously C and To do not commute. 
The above decomposition is a peculiarity of the model, 
in realistic systems the unitary evolution operator 
reads as U(t) = exp(- itH 0 - itH 1) and cannot split into 
exp(-itHo) x exp(-itHI) because [Ho,HI] "" O. It is 
only the infinitesimal generator which splits into a free 
part on a collision part. 

We would like to emphasize the fact that although T 
is one to one, it does not satisfy the microreversibility 
principle. More precisely let us introduce the mapping 
(R: K ~ K which consists in reversing the velocities of 
the particles: 

An elementary calculation shows that (R. T-I "" T • (R 

and the reversibility principle is violated. Still there 
is a slight modification of the evolution mapping T 
which does lead to the reversibility principle. s The 
trick is to take as the evolution mapping T = To' C . To 
which amounts to look at the system at even times only 
and to have collisions at odd times only. It is easy to 
show that (R. f-1 = T . (R. In addition one can convince 
oneself that all the results of this paper are valid for 
f after some trivial modifications. Therefore we 
prefer to investigate the first mapping T because the 
algebra in this case is a little bit simpler. 

Another symmetry which will play an interesting 
role is the symmetry between occupied and empty sites. 
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Na:\llely let us introduce the mapping .i?: K -) K such that 
a J!, (x) (p, q; i) = a x (p, q; n. It is easy to verify that T 
commutes with £. In other words any dynamical proper
ty valid in the range of low density has a corresponding 
property in the range of high density. 

We conclude this section with some considerations 
about the action of translations. It is clear that Z2 acts 
in a natural way on K, if g belongs to Z2 let us denote 
by T g its action on K, one has immediately:' 

(3.2) 

A state p which is invariant under translations will 
be called homogeneous. If p is homogeneous we can 
define its entropy. 9 

H(p) = lim ~( ) (.E - PA(X) 10gPA(X)\' (3.3) 
11.-+00 4N A xc A ~ 

where A is a finite subset of Z2 with N(A) sites and 
P A (X) means the probability of having the configuration 
X in A. The extra factor 4 is due to the possibility of 
having four particles, on the same lattice site. It is 
useful to note that H(p) is the entropy of the dynamical 
system {K, Z2, p} as defined in Ref. 10. It results from 
this remark and from (3.2) that H(p' T) = H(p) which 
means that the entropy is conserved during time evolu
tion. For completeness we give a direct proof of this 
last property using the definition (3.3). 

Proposition 3.1: If p is a homogeneous measure on 
K then H(p' T) = H(p). 

Proof: For convenience we choose in the definition 
(3.2) the particular sequence of subsets A", where A" 
is the square centered at the origin with its diagonals 
of length 2n lying on the Ox and Oy axis. In this case 

therefore, 

- (P'T)A (X) 10g(p'T)A (X) 
" " 

and 

y CAn + 1 

T(y)nAn=X 

H(p'T) "" lim - __ 1_ .E .E PAn+I(Y) 10gPA (y) 
n-+oo 4N(An) XCAn y CAn + 1 n+1 

T(y) n An=X 

""um __ (l) .E PA (y)IOgPA l(y)=H(p). 
n .... oo 4N An y CAn+! n +1 n+ 

In the same wayH(p'T-l) ""H(p);therefore,H(p'T) = 
H(p). 

Note that although T is not strictly reverSible, it 
satisfies a principle of conservation of entropy so that 
with regard to statistical mechanics there is no special 
difference between the past and the future. 

4. INVARIANT STATES 

This section is devoted to the study of a particular 
class of states invariant under T. In the remainder of 
this paper we shall consider homogeneous states only. 
If p is a homogeneous state, we can define the four 
quantities n;(p) = fax(p, q; i )dp, that are independent 

J. Math. Phys., Vol. 14. No. 12, December 1973 

1748 

on (p, q). From these four quantities we can construct 
the densityn(p) =.E1=ln i(p) and the hydrodynamic 
momentum n(p)v,,(p) = n 1 (p) - n3 (p), n(p)vy(p) = 
n2 (p) - n4 (p). It is natural to ask the question: Given 
(n, v"' v:.t)' does there exist a homogeneous state p such 
that n(PJ = n, v,,(p) = v"' and vy(p) = v y ? 

Proposition 4.1: Given (n,v",vy) E 1R3, there 
exists at least one homogeneous state p such that 
n(p) = n, v,,(p) = v"' vy(p) = Vy iff 

0"" n "" 4, 

Inv" 1 "" 1, Inv y 1 "" 1, 

Inv" 1 + Inv y 1 "" min(n; 4 - n). 

(4.1) 

Proof: First let us show that condition (4. 1) is a 
necessary one. In fact let p be a solution of the pro
blem; thus 0 "" ni(p) "" 1 Vi E P. We have then the 
system of inequalities: 

o "" n l = n/4 + nv,,/2 + X"" 1, 

o "" n 2 = n/4 + nV/2 - X"" 1, 

o "" n3 = n/4 - nv,,/2 + X "" 1, 

o "" n4 = n/4 - nv/2 - X "" 1, 

(4.2) 

where 4X = .Ei= 1 (_)i+ In;. Now it is clear that the exis
tence of a X satisfying (4.2) is equivalent to 

max(-n/4+ Inv"V2,n/4+ Invy l/2-1) 

"" min(n/4 - Invy V2,- n/4 - fnv" 1/2 + 1). 

The above inequality is equivalent to (4.1). Conversely, 
if (4.1) holds, there exists at least one X satisfying (4.2) 
and there exist nt, i E P such that 0 "" ni "" 1 and 
.E1=ln; = n, nv" = n l - n3, nvy = n 2 - n~. It suffices 
then to take the state defined byfn t p,qax\p,q;i)dp = 
n;,p,qn; for any finite product of different functions 
a x(p, q; i), to have a solution of the problem. 

Let us denote by A. the open convex bounded set of IR 3 

where the inequalities (4. 1) are strictly satisfied. We 
have drawn in Fig. 3 some representative sections of A. 
by planes n = cte. It will be useful to note that boundary 
of A. corresponds to the case where one of the four 

", 

l 

~., 

111. ... 

FIG. 3. Typical sections of the domain 6. by planes n = cte. 
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numbers n i is equal to ° or 1. (The converse is not 
true.) 

In view of the time evolution of the model the intro
duction of the hydrodynamic quantities, (n, v"' v y) is 
quite natural. In fact we have: 

Proposition 4.2: The hydrodynamic quantities n(p), 
v,,(p), vy(p) are invariant under T. 

Proof: This is an immediate consequence of the 
fact that the collisions preserve the particle number 
and the total momentum. Let us prove for example that 
n(p'T) =n(p). We have 

4 4 
n(p'T) = J Lu.00,O;i)dp·T = J ~UT(x)(O,O;i)dp 

i= 1 i= 1 

= j[u x (- 1,0; 1) + ux(O,- 1; 2) 

+ u x(1, 0; 3) + u x(O, 1; 4)]dp from (2.1) 

= n(p) from the homogeneity condition. 

As the hydrodynamic parameters (n, v"' v ) are T
invariant quantities, it is natural to ask whether there is 
a unique T-invariant state such that n(p) = n, v,,(p) = 
v"' vy(p) = v y' It is expected tliat, to have a uniqueness 
property, one must add some conditions on the range of 
the correlation functions of the states considered. Let 
us make precise the condition that we have to impose 

We denote by {K, ct, p} the measure space K, where ct 
is the algebra of measurable subsets of K with respect 
to p. We have seen that 1,2 acts on K. If g E 1,2, let Tg 
be the translation corresponding to g. The weakest 
condition that we can impose on the range of the corre-
1ation functions of the state p is 

lim _1_ L p(A n TgB) = p(A)p(B), 
A-+oo N(A) g EA 

(4.3) 

where A is for instance a square centered at the origin 
and A, B E ct. A state satisfying (4.3) for any pair 
A, B E ct is said to be Z2-ergodic. We shall show in this 
section that condition (4.3) is not sufficient to ensure 
the uniqueness of a T-invariant state with given hydro
dynamic parameters. We shall need a stronger condition 
which is the following: 

lim p(A n T gB) = p(A)p(B) 'V A, BE ct. (4.4) 
Igl"'oo 

It seems to be reasonable to conjecture that condition 
(4.4) ensures the uniqueness of a T-invariant state with 
given hydrodynamic parameters. Actually we are not 
able to prove this strong conjecture. We shall restrict 
our considerations about states satisfying an additional 
condition on their correlation functions: 

Definition: Let (n, v x' v y) E ~,we denote by 
5'(n,v X 'v y) the set of homogeneous states p satisfying 
(4.4) with hydrodynamic parameters (n, v"' v y) and 
which are compatible with the decomposition K = I1[= IK i' 
that is p = I1[= 1 181 Pi> where Pi is a probability measure 
onK i • 

We emphasize the fact that the factorization condition 
is introduced for simplification only and is based by no 
means on physical arguments. We can then prove: 

Theorem 4.1: There exists in 5'(n,v x 'v) a unique 
T-invariant state. This state is fully described by the 
following properties: Each factor Pi is a measure without 
any correlations between lattice sites and the four num
bers n i = Jux(P,q;i)dp satisfy the equation 
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(4.5) 

Proof: Let us give a list of the different steps of the 
proof. 

(a) If p = I11=1 181 Pi is homogeneous, then T-invariance 
is equivalent to C-invariance. 

(b) If p = I11= I 181 Pi is C-invariant, then (4.5) holds. 

(c) There exists a unique system of numbers n i , i E P, 
such that 

n I n3(1 - n2)(1 - n4 ) = n 2n4 (1 - n l )(1 - n3), 

4 

n = ~ n i , 
i= I 

(d) If p E 5' (n, v,,, v) is C - invariant, then each Pi is 
without any correlation between lattice sites. 

(e) The properties (c) and (d) characterize a unique 
state p(n, v"' v y) which is shown to be T-invariant. 

(4.6) 

To prove (a), note that if p = I11=1 181 Pi is homogeneous, 
then each Pi is homogeneous also, so that p' To = p. 
Therefore p . T = P is equivalent to p . C = p. This last 
equation is simpler because C operates on each lattice 
site (this is the chief reason why we. introduced the 
factorisation condition on p). 

To prove (b),we use the function <J>x(p,q) = 
iJtT-l(X)(P,q) introduced in Sec. 2. It is clear that 
<J>c~x) (p, q) =- <J> x(P, q) so that C-invariance of p 

implies 

J <J> x(p, q)dp = 0. 

But this equation is exactly (4.5) if P = I11= I 181 Pi' In 
order to prove (c), we introduce the parameter X as in 
the proof of Proposition 4. 1. In terms of the quantities 
(n, v"' vy' X) Eq. (4.5) reads as follows: 

(n/4 + nv,,/2 + x)(n/4 - nvx /2 + X)(1 - n/4 - nv/2 + X) 

x (1 -n/4 + nv/2 + x) 

= (n/4 + nv/2 - X)(n/4 - nv/2 - X) 

x (1 - n/4 - nV x /2 - X)(1 - n/4 + nv/2 - 0. 
(4.7) 

Now proving (c) consists in proving that if 
(n, v x ' v y) E ~,there exists a unique X satisfying (4.7) 
such that inequalities (4.2) hold. But in the domain of 
validity of (4.2) the left-hand Side of (4.7) is an increas
ing function of X whereas the right-hand side. is a de
creasing one. Therefore, the solution, if it. exists, is 
unique. The existence of a solution is based on a Similar 
argument. In fact, if (n, v ,Vy) E ~,the greatest root of 
the left-hand side of (4.7) is lower than the lowest root 
of the right-hand side of (4.7) so that a solution exists 
and is unique. 

The proof of (d) is more intricate and will be decom
posed into three lemmas. In the following a i = (Pi' q i) 
will represent a lattice site. Let us introduce the 
correlation functions 

p~r)(al' a 2 , ••• , ar) = J u x(a l ; i) •.• u x(a r ; i)dp, 

where {ai}, i E {1, 2, ... ,r}, is a family of distinct lat
tice sites. We have to show that p}r) = (ni)r 'Vi E P, 
'Vr EN. The proof goes by induction. First of all we 
prove the property for r = 2, then for r = 2l + 1 with 
I ;, 1, and finally for r = 2l with 1 ;, 2. 
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Lemma 4.1: H P = 01=1 ® Pi is Q-invariant and 
satisfies (4.4), then pp)(a 1 , a2) = (n t )2. 

Proof: We start with Eq. (3.1). The C-invariance 
of p implies that 

f a(a: l)if>(b)dp = - f a(a: 2)if>(b) = f a(a: 3)if>(b)dp 

= - f a(a; 4)if>(b)dp. (4.8) 

In these equations we have omitted the subscript X 
for simplicity. Now if p = 01= 1 ® Pi and if (4.6) holds, 
(4.8) reads as 

A1 gl2} (a, b) = A2g2(2) (a, b) = A3 g 3(2)(a, b) = A4 gi2) (a, b), 
(4.9) 

whereAt =n i +1n t+3(1- nt+2)/n; andg[2)(a,b) = 
pP) (a, b) - n~. It is shown in Appendix A that if 
(n, v"' vy) E A, we have 0 < Ai < 1 ViE P. 

From (3.1) we can also construct the equation 

so that the C-invariance of p implies also that 

j a(a; l)il>(b)dp = j a (a; 1)a(a; 3)il>(b)dp. (4.10) 

From (4.9) and (4.10) we deduce the following equa
tion for g1(2) (a, b): 

(1 - n2 - n4)[gl(2) (a, b)]2 = A 3 (1 - n 1 - n 3)gl2) (a, b). 
(4.11) 

Here two cases are possible: 

«(11) n~ + n4 '" 1 and nl + n3 '" 1. The two solutions 
of (4. 11) are gl(2) (a, b) = 0, that is Pl(2) (a, b) =n~, which 
proves the lemma, or gl(2)(a,b) = n i (1 - n l ), that is, 
p I( 2) (a, b) n l' This last solution cannot give a state 
satisfying condition (4.4). In fact pP) (a, b) = n 1 means 
that with a probability one the situation is the same on 
the lattice sites" a" and" b" when conSidering par
ticles of velocity 1. From homogeneous property it 
results that with probability one the situation is the 
same on the family of sites a + T r(b-a -p, where r E Z; 
therefore, 

jaX(a;1)o-T(L ) (a:1)dp=n 1 VrE Z, 
r v-a a 

which contradicts (4.4). 

(f3) n2 + n4 = 1 and n 1 + n3 = 1. In this case 
Eq. (4. 11) is useless and we must construct another 
equation. It is easy to get from (3.1) 

a c (x) (a; l)cr c(x) (a; 2) = cr x (a; 1)a x (a; 2). 

Thus C-invariance of p implies 

j a(a; 2)a(a; l)if>(b)dp = O. (4.12) 

Written in terms of correlation functions, (4.12) reads 
as 

(n2 - n1)[g 1(2) (a, b)]2 - n i (1 - n 1 )(n2 - n 1 )gl2) (a, b) = O. 
(4.13) 

Now two cases are still possible. 

(W) nl'" n2; We retrieve then the two solutions of 
case «(11). 
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Here we must use another equation. From (3.1) we get 

cr c(x) (a; 1)0- c(x) (a; 2)a c(x) (a; 3) = a x (a; l)a x (a; 2)a x (a; 3), 

which leads to the following equation for the correlation 
functions: 

[i + gl(2) (a, b)](gl(2) (a, b) - i)gP) (a, b) = O. 

The new solution is g I( 2) (a, b) = - i which means that 
PI(2) (a, b) = O. In other words with probability one the 
situation is different on the sites" a" and" b" when 
considering particles of velocity 1. From homogeneity 
assumption we conclude that with probability one the 
situation is the same on the family of sites a + T 2r( b-a) a' 

Vr E Z, which contradicts (4.4). The proof of the lemma 
is thus achieved. 

Now we can start with the induction argument. 

Lemma 4.2: If p E 5'(n,v",v y ) is C-invariant and 
has no correlations up to order 2q with q :;" 1, then p 
has no correlations up to order 2q + 1. 

Proof: Consider 2q + 1 distinct lattice sites 
{av ... , a2q + I }. We deduce from (3.1) that 

2q+l 
cr c(x) (a 1 ; 1)cr c(x) (a 2 ; 1) j!:l3 if> c<x) (a j ) 

2q+l 
= - a x(a l ; 1)<7 x(a2; 1) i!:l3 if> x(a t) 

2q+l 

+ crX(a l ; 1)if>x(a2) t!:l3 if>x(a j ) 

2q+l 2q+I 
+ aX (a2; l)il>X(al) i!:l3 if> x (a i ) - j[Il if>x(a j ). (4.14) 

Taking the average of (4.14) and using the assump
tions, one gets 

Atq- l gl(2q+l) (aI' ••• ,a2q+l) =Arqgl2q+l)(all' •• ,a2q+I) 
(4.15) 

where gl2q+I) = pl2q+l) - nrq+I • USing the fact that 
o < Al < 1 (see Appendix A), we have proved the 
lemma. 

Lemma 4.3: If p E 5'(n, v x' v y) is C-invariant and 
has no correlations up to order 2q + 1 with q :;" 1, then p 
has no correlations up to order 2q + 2. . 

Proof: Here we use the following equations: 

2q+2 
fa c (x) {ali 1)0- c (X) (a2; 1)0-c(x) (a 3; 1) j!:l4 if>c(x) (ai)dp 

2q+2 
= f crX(a I ; l)ax{a 2; 1)ax(a3; 1) t!:l4 if>x(aj)dp, 

2q+2 2q+2 
j a C (X)(al; 1) j!:l4 if>c(x) {at)dp = j aX(al: 1) j!:l2 il>x(at)dp. 

Using the assumptions, we get finally 

Atq- 1 (A I - 1)(A I - 2)gPq+2) = O. 

As 0 < Al < 1, the lemma is proved. 

It is clear now that properties (c) and (d) characterize 
a unique state which we denote by p(n, v x ' v y)' It is an 
elementary task to verify that this state is invariant 
under T and the proof of the theorem is finished. • 

Before going further, we make two remarks about 
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the assumptions of Theorem 4.1. First we want to show 
that condition (4.3) is not sufficient in order to ensure 
the uniqueness of a T-invariant state with given 
(n, v"' v ). In fact let us consider the state p' charac
terized by the following conditions: p' is homogeneous 
and factorized, p' = n1= 1 @ pi, p' has the same n; as 
p(n, v,,, v ), there is no correlation between sites not 
lying on lhe same vertical, and finally for the site lying 
in the same vertical the correlations are such that with 
probability one the situation is the same on these sites, 
namely fnr=l(JX(p,q;;j)dp' = n. '!I p E Z, '!Ir EN, 
'!I j E P. The state p' is T-invatiant. To prove this, it 
suffices to show that 

r 

f /J1(JC(X)(P,qi;j)dp' = nj '!I P E Z, '!I r E N, '!I j E P. 

But it results from the assumptions that (J x (p, q d) = 
(J x (p, q ilj) a.e. with respect to p'. Then an elementary 
calculation shows that nr=1(JC(X)(p,q;;j) = (JC(X)(P,q1;j) 
a.e., which proves the statement. Now it is clear that 
p' does not satisfy (4.4). To see that (4.3) is satisfied, 
we consider A, B E <t and we may suppose that A and B 
depend only on a finite subset Ao of lattice sites. Now 
there exists Po such that 

1 
N(A) 

:6 p'(A n T(p,q)B) = _(1 ) ~ p'(A n T(p,q)B) 
(p,q)E" NA Ipl:<Po 

(p,q)E" 

+ _1_ ~ p'(A)p'(B). 
N(A) Ip I> 110 

Therefore 
(p,q)EA 

lim _1_ ~ p'(A n T(p q)B) = p'(A)p'(B). 
" .... ooN(A) (p,q)EA ' 

We have then two states p(n, v"' v y ) and p' having the 
same hydrodynamic parameters, invariant under T and 
satisfying (4.3). 

In the assumptions of Theorem 4.1 we excluded the 
bounQ,ary of the domain fl.. Let us precise now what 
occurs on this boundary. We know that if (n,v",v y ) be
longs to the boundary of fl., one of the four numbers n; 

is equal to one or zero. Therefore, there is a velocity 
Hi" for which all the sites are occupied or not. Then, 
in order for a state p E 5'(n,v",v y ) to be C-invariant, 
it is necessary that with probability one no collision 
occurs, that is C = 1 a.e. This means that T = To a.e. 
with respect to p. The time evolution is trivial in this 
case and this is why we disregarded the boundary of fl.. 

Note that the state p(n, v"' v y) defined by the Theorem 
4.1 depends analytically on (n, v"' v) in fl. in the sense 
that every expectation value of the form 
jnp.q;;(Jx(P,q;i)dp depends analytically on (n,v,(,v y ) 

in fl.. This is due to the fact that (see Appendix B) the 
solution X of Eq. (4. 7) is an analytic function of (n, v"' v) 
in fl. and thus the quantities ni(n,v",v y ) also. 

We conclude this section by showing that the state 
p(n, v,,, v:y) satisfies a variational principle. More pre
cisely let p E 5'(n, v"' v). We can define its entropy 
by (3.3). As p = TI1=1 @ Pi' we have in factH(p) = 
t~1= 1H (P;), where 

H(pj) = lim _1_ ~ [- p;,,,(Xi) 10gp;,A(X)], 
" .... 00 N(A) xiCA 

Proposition 4.3: Let p E 5'(n, v ,Vy) then pis T
invariant if and only if its entropy H(p) is maximum. 

Proof: It suffices to show that H(p) reaches its 
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maximum in a unique point which is precisely the state 
p(n, v x' v y )' USing the fact that H(p) = t~1=1H(Pi)' we 
can assert that given (n ll n 2, n 3, n4) the maximum of 
H(p) is reached iff eachH(pj) is maximum. But the 
maximum of H(p;) when n i is given is reached in a 
unique point which is the state without correlation; in 
addition, 

Now is it an elementary calculation to show that 
- t~1=1[ni logn; + (1 - n j ) 10g(1 - n;)] is maximum in 
the domain~1=;Ln; = n, n 1 - n3 = v x' n2 - n4 = Vy if 
and only if (4.5) holds. The proposition is then proved. 
In this section homogeneous states were only considered. 
For completeness let us mention that it is easy to con
struct nonhomogeneous T-invariant states. In fact con
sider a state p factorized. We set n;(p, q) = 
f (Jx(p,q;i)dp. Let us choose n1(p,q) and n 3(p,q) de
pending only on q, in the same way let n2 (p, q) and 
n4 (p, q) be depending only on p in such a way that 

n1 (q)n3 (q)/[l - n1 (q)][l - n3 (q)] 

= n2(p)n4(p)/[1 - n2(p)][1- n4(p)] = cte. 

It is clear that such a state is nonhomogeneous. But 
this state is T-invariant because it is separately T 0-

invariant and C-invariant. 

5. ERGOTIC PROPERTIES AND TIME CORRELATION 
FUNCTIONS 

In the remainder of this paper we shall fix our atten
tion on the state p(n, v x' v) and investigate its ergodic 
properties with respect to T. For brievity we shall 
omit the parameters (n,vx'v y ). 

Consider the dynamical system {K, T, p}, we recall 
that this system is said to be ergodicll if 

t-1 
l!~ -f 'Eo p(A n TT B) = p(A)p(B) '!I A, BE a. (5.1) 

The system is said to be mixingll if 

lim p(A n TT B) = p(A)p(B) 
T .... oo 

'!I A,B Ea. (5.2) 

Definitions (5.1) and (5.2) are particular cases of (4.3) 
and (4.4). It is obvious that (5.2) implies (5.1). We can 
rewrite the condition (5.2) in an equivalent form: 

lim f f(X)g(TtX)dp = f fdp f gdp '!I f,g E L2(K, p). 
t .... oo (5.3) 
Let us show that (5.3) is necessary and sufficient in 
order to ensure the approach towards equilibrium of 
local perturbations of the system. Consider a local ob
servable that is a function cp(X) : K ~ IR such that cp(X) 
depends only on the part of X lying in a finite subset A 
of Z2. Such a function takes a finite number of different 
values and belongs to C (K), the space of complex con
tinuous function defined on K. Note that any f E L2(K, p) 
can be approximated by a local observable in the norm 
of L2 (K, p), so that (5.3) is equivalent to 

lim ff(X)cp(TtX)dp = ffdpfcpp '!I fE L2(K,p) 
t .... oo 

'!I cp a local observable. (5.3') 

We can consider cp as a perturbation to the initial 
Hamiltonian of the system. The thermodynamic equili
brium state p' corresponding to the total Hamiltonian 
can be written as: 



                                                                                                                                    

1752 Hardy et al.: Time evolution 

p' = {exp(- (3cp)/[j exp(- (3cP)dp ]}p, (5.4) 

where p means p(n, v x' v ). Such a state is called a 
local perturbation of theYequilibrium state p. We have 
then 

Propos ition 5. 7: Any local perturbation of the 
equilibrium state p relaxes as t -> CJ) towards p if and 
only if p satisfies the mixing property (5.3).' 

Proof: Let p' be a state given by (5.4). We can 
write p' = l/I(X)/? where l/I(X) is a positive local observ
able such that J 1/Idp = 1. Now (5.3') implies that p' 
relaxes towards p in the sense of the vague tOpology12 
on the set of states on K. Conversely if (5. 3') holds 
whenever cp is a positive local observable such that 
jcpdp = 1 by linearity it holds for any local observable 
and the proposition is proved. 

Before investigating the mixing properties of the 
system {K, T, p} let us make the following simple re
marks on the much simpler system {K, To, p} where T 
is the free evolution. In fact we have ' 0 

Proposition 5.2: The system {K, To, p} is a Ber
nouilli shiftll of infinite entropy. 

Proof: For completeness we recall that a Ber
nouilli shift of infinite entropy is a dynamical system 
(K, T, p) such that there exists an uncountable partition 
P of K such that K = 0: 00 T"P and p factorizes under 
that decomposition. 00 

In order to prove the proposition, let us call T· the 
unit translation in the direction of velocity "i", i E P. 
Then {K, T, p} = 01=1{K j, Ti' pJ Now (Ki' T i , pJ is a 
Bernouilli shift of infinite entropy. 

It is known13 that Bernouilli shifts have the strongest 
mixing properties among all dynamical systems. There
fore, (5.3) is satisfied, if T is replaced by To. Now if 
(5.3) is satisfied for the free evolution it is reasonable 
to expect that (5.3) is still true for the evolution with 
collisions. Actually the presence of collisions should 
increase the mixing in the velocity space. In order to 
evaluate the efficiency of the collisions, let us calculate 
for instance the exact collision frequency for a particle 
in the system. 

Proposition 5.3: The mean free time between two 
successive collisions for a particle of velocity i is 
given by , 

tt = 1/n i +2(1 - n i +1)(1 - n j+ 3), (5.5) 

where the n i are given by (4.2) and satisfy (4.5). 

Proof: Let us prove (5.5) for i = 1 for instance. 
We introduce the following characteristic function: 

1 if a particle of velocity 1 is 
created at the origin at time 0, 
moves freely during the time in
terval [0, t - 1] and suffers a 
collision at time t, 

o otherwise. 
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ax(O, 0, l)dp. Now we remark that T-invariance of p 
implies that 

jAt(X, l)dp = ja rt(x) (- 1, 0; l)C~:a Tj-t+1(X) (j, 0; 1~ 
x a x(t - 1,0; l)a T(X)(t, 0; l)dp. 

It follows from (2.1) that 

ax(t - 1,0; l)a T(X)(t, 0,1) = ax(t - 1,0; l)ax (t + 1,0; 3) 

and that 
x a x(t, - 1; 2)u x(t, 1; 4) 

is independent ofax(t + 1,0;3)ux (t,-1;2)ax (t, 1;4),so 
that we have 

jAt(X, l)dp = n3(1 - n 2)(1 - n4)Ja (.:.... 1 O' 1) 

(

t-2 \T-1(X)' " 

x lJoa Tj(X) (j, 0; l)ja Tt-l(XP - 1,0; l)dp. 

By induction one gets easily the follOwing equation: 

jAt(X, l)dp = n3(1 - n2)(1 - n4)[1 - n3(1 - n2)(1 - n4)]t-l 

x ja rl (x) (- 1,0; l)a x (0,0; l)dp; 

therefore, 

00 

t1 = t~ tn3(1 - n2)(1 - n4)[l- n3(1 - n 2)(1- n4)]t-1 

= 1/n3(1 - n2)(1 - n4)' • 

Note that t t is also the mean free path for a particle 
of velocity i because each particle has a velocity equal 
to one in absolute value. 

We return now to the investigation of (5.3). We re
mark that it suffices to construct a complete orthogonal 
system of functions for which (5.3) holds. In our case 
we can take the following basis. Let us set S x(P q'i) = 
a x(p, q; i) - nj, we denote by Op 'j S x(p, q; i) any' fi~ite 
product of different functions S ~tp, q; i). This set of 
orthogonal functions generates the subspace of func
tions of L2(K, p) such that j fdp = 0; therefore, (5. 3) is 
equivalent to 

l!If},j O.STt(X)(P,q;i) 0 sx(p',q';i')dp=O. (5.6) 
P.q:t P',q';i ' 

The following program could then be adopted: Write 
Eqs. (2. 1) in terms of the functions S x(p, q; i), use the 
fact that si-(p, q; i) = (1 - 2n j)s x (p, q; i) + nj(l - n.) to 
write Dp,q;;STt(X)(P,q;i) as a polynomial of the fir'st 

degree with respect to each function S x(p, q; i); from the 
orthogonality property it results that the coefficient of . 
the mon~mial Dp'.q';i,SX(P',q';i') is exactly the time 
correlatIon function in the left-hand side of (5.6). The 
problem is thus to prove that the coefficients of this 
polynomial vanish asymptotically when the process is 
iterated. 

In this paper we do not pretend to achieve such a pro
gram. First of all we shall restrict our considerations 
to the Simplest time correlation functions js Tt(X) (p, q; i) 

sx(p',q';i') in the particular case where v" = v = O. 
In addition we shall make an approximation on Uie evolu
tion equations for sx(p,q;i) which will allow us to 
calculate the long time tail of these correlation func
tions. 
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6. THE LINEAR APPROXIMATION 

Let us write the Eqs. (2. 1) in terms of the functions 
sx(p,q;i) in the case where Vx = Vy = 0, that is, 
n1 = n2 = n3 = n4 = no, 

S T(X)(P, q; 1) = S x(p - 1, q; 1) - 6 x(p, q), 

ST(X)(P,q; 2) = sx(p,q - 1; 2) + 6 x (p,q), 

ST(X)(P,q; 3) = sx(p + 1,q; 3) -6x (p,q), 

ST(X)(P,q;4) =sx(p,q + 1;4) +6x (p,q), 

where 

6 x (p,q) = Jlsx(p - 1,q; 1) - JlSx(p,q - 1; 2) 

+ Jlsx(p + 1,q; 3) - JlSx(p,q + 1; 4) 

+ (1-2no)[sx(p,q-1;2)sx(p,q + 1;4) 

- sx(p -l,q; l)sx(p + 1,q; 3)] 

+ sx(p,q-1;2)sx(p,q + 1;4) 

x [sx(p -l,q; 1) + sx(p + 1,q; 3)] 

- sx(p -l,q; l)sx(p + 1,q; 3) 

x[sx(p,q-1;2)+sx(P,q + 1;4)] 

with Jl = no(l - no)' 

(6. 1) 

Our approximation consists in neglecting in Eqs. (6. 1) 
the nonlinear terms with respect to the functions 
sx(P,q;i). We get then 

ST(X)(P,q; 1) = (1 - Jl)sx(p - 1,q; 1) + Jlsx (p,q - 1; 2) 

-JlSx(p + 1,q;3) + JlSx(p,q + 1;4), 

ST(X)(P,q; 2) = Jlsx(p - 1, q; 1) + ( 1 - Jl)sx(p, q - 1; 2) 

+ JlS x(p + 1, q; 3) - JlS x (p, q + 1; 4), 

sT(X)(p,q;3) =-Jlsx (p-1,q;1) + JlSx(p,q-1;2) 

+ (1- Jl)sx(P + 1,q; 3) + JlSx(p,q + 1;4), 

S T(X) (p, q; 4) = JlS x(p - 1, q; 1) - JlS x(p, q - 1; 2) 

+ JlSx(P + 1,q;3) + (l-Jl)sx(p,q + 1;4). 
(6.2) 

It is natural to introduce the Fourier transform of 
sx(p,q;i): 

+00 +00 

S(t,ZI,z2;i) =:6 :6 zizgsTt(X)(P,q;i). (6.3) 
p=-oo q=-oo 

After substituting (6.3) into (6.2) we get 

Set, zl> z2) = M(z1>Z2)S(t - 1,zl,Z2)' 

where 

and 

(l-Jl)ZI Jlz2-JlZIJlZ2 
Jlz 1 (1- Jl)Z2 JlZl~ Jlz2 
- JlZ 1 JlZ 2 (1 - Jl)Z 1 Jl~2 
JlZ1 - JlZ2 JlZ1 (1- Jl)z2 
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Here C1 (resp.C 2 ) means the unit circle in the complex 
Z 1 (resp. Z 2) plane. 

We are interested in the asymptotic part of the right
hand side of (6.5) as t ~ 00. To evaluate Mt(z;t' Z 2), we 
introduce the eigenvalues {.\ a}' 0/ E (1,2, 3, 4), of 
M(z l' Z 2) and the corresponding eigenvectors {£a} that 
we suppose to be distinct for the moment. Let us call 
{e j} the natural basis of R4, we set 0 f = (e a' e) where 
( . ) means the Hermitian product and we set 6 ~, 
0/ E (1,2,3,4), the components of e i in the basis {£a}' 
We must be careful that O~ ;o! Of because {£a} is not in 
general an othogonal basis. We finally have 

Js x(O, 0; i)s Tt (x) (p, q;j)dp = e(p, q; i,j; t) 

Jl 4 dz dz . 
= -- :6 1 1 2 (.\a)tOf6~. (6.6) 

(2i1T12 a=1 C1xC2 p+1 q+l 
I Z 1 Z2 

The following proposition gives some qualitative re
sults about the eigenvalues {.\a} which will permit us 
to reduce the integration domain in order to evaluate 
the asymptotic part as t ~ 00 of the right-hand Side of 
(6.6). 

Proposition 6. Z: (a) I.\a I <;; 1 Y 0/ E (1,2,3,4) 
Y zl>z2 E C 1 X C 2 • 

(b) The regions of C 1 X C 2 where there exists at least 
one eigenvalue of modulus one, are the following: 

<R
1

: { Z 1 = + 1 (resp. Z 1 = - 1), 
z2=+1 z2=-1 

.\1 ='\2 =.\3 = 1 (resp.- 1) 

with the corresponding eigenvectors 

1 1 
1 0 
l' - 1 ' 
1 0 

o 
1 
o ' 

-1 

<R2 ={Z1 = 1 (resp• Z1 = - 1), .\1 = -.\2 = 1 
Z2 = - 1 Z2 = 1 

with the corresponding eigenvectors 

o 1 
1 0 
0' -1' 

-1 0 

<R3: {Z 1 = ± 1 (resp. Z 1 ;o! ± 1), 
z2;o!±1 z2=±1 

with the eigenvector 

_ ~ ~esp. !) 
o \£ -1 

f Zl=Z2 ~ Z1=Z2) <R4:) resp. , 
t Z 2;o!±1 z2;o!±1 

with the eigenvectors 

1 0 
1 0 
0'1 
o 1 
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Proof: Note that M(z l' z 2) = C • To with 

I-jJ. jJ. -jJ. jJ. 
jJ.1- jJ. jJ.-jJ. 

-jJ. jJ.1-jJ. jJ. C= and 

jJ. -jJ. jJ.1- jJ. 

o 

To is a unitary matrix and C is symmetric, its eigen
values are 1 and 1 - 4jJ. < 1, the corresponding eigen
vectors are 

1 
o 

-1 ' 
o 

o 
1 
o ' 

-1 

and 

1 
-1 

1 
-1 

Therefore the norm of a vector cannot be increased 
by the matrix M(z l' z 2) and this proves the part (a) of 
the proposition. 

To prove (b) we remark that an eigenvalue of 
M(z l' z 2) is of modulus one if and only if there exists an 
eigenvector of To, which belongs to the invariant sub
space with respect to the matrix C. This leads to the 
set of equations 

Z 1 (0' + (3) = i\(0' + (3), 

Z 1 (0' - (3) = i\(0' - (3), 

Z2(0' + ,,) = i\(0' + ,,), 

Z2(0'- ,,) = i\(0' - ,,). 
(6.7) 

Now it is an elementary calculation to show that the 
only solutions of (6. 7) such that 10' 12 + 1 {3 12 + I" 12 + 
1 612 ;c 0 are those given in the statement of the pro
position. 

The above result deserves some remarks. First of 
all there is an obvious symmetry of the domains with 
respect to the mapping (zl,Z2) ~ (- ZI'- z2); this will 
permit us to reduce the region of integration in the 
right-hand side of (6.6). Secondly it is natural to con
sider the quantities .J- 1 logi\" , 0' E (1,2,3,4) as the fre
quencies of" modes" that can propagate in the system. 
The hydrodynamic regime corresponds to the region 
z 1 "'" 1, z 2 "'" 1. In realistic systems it is conjectured 
that this is the single region where the imaginary part 
of the frequencies, that is the damping rate, vanishes. 7 

This is not the case in our system. Indeed in the region 
ffi3 there is a mode whose frequency vanishes. This 
means that when the system is driven by a perturbation 
homogeneous in the Ox (resp. Oy) direction, there is a 
component of the perturbation which remains constant. 
This component is precisely the hydrodynamic momen
tum along· the Ox (resp. Oy) direction. This very peculiar 
property is a consequence of the fact that the impact 
parameter in a collision is always zero. There is 
another region of C 1 X C 2, where some eigenfrequencies 
have a vanishing imaginary part. This is the region 
ffi4 where there are two real opposite eigenfrequencies. 
This can be interpreted by saying that when the system 
is driven by a perturbation homogeneous in the direc
tion of one of the bissectrices of (Ox, Oy), there are two 
components of the perturbation which propagate without 
damping. This is a new consequence of the fact that the 
impact parameter is always zero. 

In view of Proposition 6. 1, in order to evaluate the 
asymptotic part as t ---> ex) of the right-hand side of (6.6), 
we can limit the integration in a small neighborhood 
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of the region Uj;lffij' the remainder of C1 x C2 will 
give an exponentially decreaSing contribution. We can 
then write 

4 

r!:-(p, q; i,j; t) "'" L: (CHi) as t ---> ex) 
j; 1 

(6.8) 

The calculation of each contribution is rather messy 
and is reported in Appendix C. The result is the follow
ing: 

r!:-(p, q; i,j, t) "'" c(i, j)t -1/2 
J if i + j even and i odd, 
) with q = 0 or i even, 
~ with p = 0, (6.9a) 

r!:-(p, q; i,j, t) "'" c(p, q; i,j)t-3 / 2 in the other cases. 
(6.9b) 

The values for the coefficients c(i,j) and c(p, q; i,j) 
are given in Table CH of Appendix C. We should em
phasize the fact that the estimate (6. 9b) is valid unless 
the coefficient c(p, q; i,j) is not finite. Unfortunately 
we have no satisfactory proof of this property at present. 

7. DISCUSSION AND CONCLUSION 

We give in this section some comments on the above 
results. First of all one remarks that the long time 
tails given in (6.9) are rather unexpected. In fact, for 
two-dimensional systems, arguments based on the 
theory of propagation of long wave hydrodynamical 
modes 7•14 predict long time tails like t-1 for the time 
correlation function of the momentum at two different 
points in the fluid. In our model we recovered the in
fluence of some long wave modes, and it is noticed in 
Appendix C that only one mode contributes to the long 
time tail. This mode is called the vorticity diffusion 
mode by analogy with the other systems, but, as we shall 
see below there is, strictly speaking, no vorticity diffu
sion in this model and this is why we have long time 
tails like t-1 / 2 or t-3 / 2 • In fact let us introduce the 
microscopic momentum at the lattice point (p, q): 

vx(p,q;x) = sx(p,q, 1) - sx(p,q; 3) 

and 
vx(p,q;y) = sx(p,q; 2) - sx(p,q;4). 

We recall the fact, mentioned in Sec. 2, that the hori
zontal (resp. vertical) momentum is conserved on each 
horizontal (resp. vertical) line of lattice sites. This 
suggests that the horizontal (resp. vertical) momentum 
at the origin diffuses on the x (resp.y) axis like a one
dimensional diffusion process. Therefore, one should 
have 

Jvx(O,O;y)vTt(X)(O,q;y)dp "'" ct-1 / 2 • 

This is exactly in agreement with (6. 9a). For the 
other correlation functions estimated in (6. 9b) we have 
at present no satisfactory explanation of the long time 
tail like t-3 / 2 • Nevertheless, it is clear that this is again 
reminiscent of the fact that the impact parameter is 
zero for all collisions. 

The results (6.9) have been obtained after a lineari
zation of Eq. (6. 1). Let us make some remarks con
cerning the meaning of this linear approximation. We 
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would like to show how this approximation can be con
nected with the linearized Boltzmann equation. To see 
this, consider a nonhomogeneous probability measure 
p on K which is not T-invariant. We set n(p, qj i} = 
fax(p, qj i}dp. The four numbers n(p, qj i), i E P, are 
the analog of the velocity distribution function at the 
point (p, q) in a classical fluid. From the four numbers 
n(p, qj i) we can calculate the three hydrodynamic para
meters: 

4 
n(p,q) = ~ n(p,qji}, ( ) 

_ n(p, qj 1) - n(p, qj 3) 
Vx p, q - () , 

i= 1 n p,q 

( ) 
_ n(p, qj 2) - n(p, qj 4) 

Vy p, q - () . 
n p,q 

Let us suppose for simplication that these parameters 
are independent of (p, q) and that Vx = v y = 0, n = 4no. 
We set n(p, qj i} = no + 5n(p, qj i), where 5n(p, qj i) is 
the deviation from the local equilibrium. One can take 
the average with respect to p of Eqs. (2.1), one gets then 
a set of equations which are the analogs of the first 
equation of the BBGKY hierarchy. If one neglects the 
initial correlations (stosszahlansatz) and the nonlinear 
terms in 5n(p, qj i), one has exactly Eqs. (6.2), where 
s x(p, qj i) is replaced by 5n(p, qj i), and the approxima
tions we have made to arrive at these equations are very 
similar to the assumption for deriving the linearized 
Boltzmann equation from the BBGKY hierarchy. This 
suggests that our linear approximation is probably valid 
in the case of small values of JJ., which corresponds here 
to the case of low density no "" 0 as well as high density 
no "" 1. In view of the above remarks, the existence of 
modes very similar to the hydrodynamical modes when 
computing the asymptotic part of time correlation func
tion is not surprising. The interesting point is that we 
started in Sec. 6 from microscopic equations and not 
from kinetic equations. 

There is another interesting property of the linear 
approximation which must be pointed out. In fact the 
linear approximation gives the exact values for the 
correlation functions like 

jSrt(x)(O,Oji)SX(P,qjj)dp with Ipl+ Iql=t, 

that is, we are able to calculate exactly the time corre
lation between the initial perturbation at the origin and 
the resulting perturbation at time t on the boundary of 
the perturbed region. To see this, we recall that 
S rt(x) (0, OJ i) can be written as a polynomial with re-

spect to the functions s x (p, qjj). We can make the two 
following remarks about this polynomial: 

(a) In the pOlrnomial at time t there is no sx(p,qjj) 
with Ipl + Iq > t. In addition there is no sx(p,qjj) 
with Ip 1+ Iq 1= t such that j corresponds to a velocity 
directed outSide the square Ip I + Iq I ~ t. 

(b) When iterating from time t to time t + 1, only terms 
like sx(p,qji}sx(p,qjj) withj = i + 2 and like 
s x(p, qjj)sx (p, q; i)s x(p, qj k) with i '" j '" k in the poly
nomial at time t can contribute to the linear terms of 
the polynomial at time t + 1. 

These two remarks are direct consequences of 
Eqs. (6.1) and the fact that s i (p, qj i) = (1 - 2no) 
s x (p, q; i) + JJ.. In view of the above remarks we imme
diately see that the linear terms in srt+1(x)(0,Ojj) with 
Ip I + I q I = t + 1 come only from the linear terms of 

s rt (x) (0, Ojj) with Ip I + Iq I = t. This allows us to cal
culate jSrt(x)(O,Ojj)sx(P,qji)dp when Ipl + Iql = t. 
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In Appendix D we compute the long time tail of this last 
quantity, in the two characteristic cases, p fixed and 
Ip 1- Iq 1 fixed. The results are 

e(p,qji,j,t) "" eX (1- JJ.)tt IPI 

when Ip I + jq 1== t, P fixed (7.1a) 

e(p, qj i,j, t) "" c x t- 1/ 2 or c x t-3 / 2 

when Ipl+ Iql=t, Ipl-Iqlfixed (7.1b) 

In formula (7.1b) the two estimates c x t- 1 / 2 and c x t-3 / 2 

depend on the respective values of i and j. The cases 
are made precise in Appendix D. The interesting point 
in formula (7. 1) is that the long time tail is quite diff
erent according as p (resp. q) is fixed or Ip I - I q 1 is 
fixed. The meaning of the above results is the followingj 
if the system is perturbed at the origin at time zero, 
then the resulting perturbation at time t, at the point 
(0, t) for instance decreases exponentially at t -7 00 

while the resulting perturbation at time t at the point 
(t/2, t/2) for instance, decreases as t-1 / 2 or t-3 / 2 • In 
other words there is a part of the initial perturbation 
which travels with a velocity 1/12 and which is slowly 
damped. It is natural to think that this is the part of 
the perturbation which is carried by the sound waves. 
Indeed 1/12 is exactly the group velocity of the modes 
called sound modes in the Table C1 of Appendix C, be
cause they were the only modes which could propagate 
in the hydrodynamic regime. In some sense the above 
result is a rigorous proof of the existence of sound 
waves of velocity 1/12 in this system. 

Let us mention another interesting property of 
Eq. (6. 1). In fact in the case no = t there is a Simplifi
cation in these equations, namely the quadratic terms 
disappear. This implies that s t( ) (0, OJ i) is a poly-r. x 
nomial of odd degree with respect to sx(p',q'ji'). This 
is reminiscent of the fact that when no = t the state 
p(no) is invariant under the mapping £ (see Sec. 2) and 
that s (x) (p, qj i) = - s x(p, qj i) if no = t, so that 

jOsrt(x)(P,qji)nSx(P',q'ji')dp = 0 

whenever the two products are of different parities. 
Eventually this simplification can lead to rigorous re
sults in the evaluation of time correlation functions. 
This point is currently under investigation. 

We shall report in a subsequent paper the results 
obtained on the hydrodynamic description of the model 
and the definition of some sort of viscosity coefficient. 
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APPENDIX A 

Lemma: If (n,vx'v y) E A and if (4.5) holds, then 
0< Ai < 1. 

Proof: First of all note that if (n, vx ' v y) E A and if 
(4.5) holds, then 0 < n i < 1. It results that Ai> O. 

On the other hand A i is a continuous function of 
(n,vX'vy) on the convex A because the solution X of 
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Eq. (4. 7) is analytic in (n,vX'vy) (see Appendix B). The 
image of t:. under A; is thus an interval of R + containing 
the number t which is the particular value of A; for 
Vx = Vy = 0, n = 2. It suffices then to show that Ai = 1 
is impossible. Let us consider, for instance, the equation 
A1 = 1 together with (4.5): 

so that n3 = (1 - n 2n4)/(1 - n 2 - n4). But if 0 < n 2 < 1 
and 0 < n 1 < 1, then either 1 - n 2 - n4 ,,; 0 which im
plies n3 ,,; 0, or 1 - n2 - n4 ;;. 0 which implies n3 ;;. 1. 
The two conclusions are impossible and the lemma is 
proved. 

APPENDIX B 

The solution X of (4.7) which satisfies conditions 
(4.2) depends analytically on (n, v x' v y ) in t:.. Note that 
(4.7) reduces to 

X3 + Hn(1 - tn) - H(nv x )2 + (nv)2]}x 

+ is (1 - ~)[(nvy)2 - (nv x )2] = O. 

This equation is of the form X3 + Px + q = 0 with 

P = Hn(1 - n/4) - t[(nvx )2 + (nvy)2]), 

q = Ili (1 - tn)[(nvy)2 - (nv)2]. 

We remark that if (n, v x ' v) E t:. then 

(nv)2 + (nvy)2 ,,; Inv x 1+ Inv y I 
,,; min(n,4 - n) ,,; n(4 - n)/2 

so that p ;;. O. Therefore, in order that 4p3 + 27q2 = 0, 
we must have p = q = O. It is easy to see that the only 
possibility in ~ is n = 2, Invx I = Inv 1= 1 but these 
points belong to the boundary of t:.. This shows that the 
solution of (4.7) is an analytic function of (n, v x ' v y) in 
t:., and therefore the same property holds for n;. i E P. 

APPENDIX C 

In order to evaluate (6.6) as t ~ 00 we remark that the 
right- hand side can be written in the following way: 

e(p, q; i,j; t) 

/J. f . ~ f f dz 1dz 2°f°{. 
= -- AidA L.J P+l +1 , 

(2i1J-)3 C ,,~1 c1 c 2 Z1 z~ (A - A,,) 
(C1) 

where C is a circle in the A -complex plane centered at 
the origin and with a radius greater than one. The 
asymptotic part as t ~ 00 of the right-hand side of (C1) 
is given by the singularity in the A-complex plane which 
is the closest to the unit circle. We note that the right
hand side of (C1) can be written as 

(C2) 

where p(z l' Z 2; A) is some polynomial in (z 1> Z 2; A) and 
S(z 1> Z 2; A) is the characteristic polynomial of the 
matrix M(Z1,z2) introduced in Sec.6: 

S(Zl,Z2;A) = A4 + (/J.- l)(zl + z2)(1 + Z l z2)A3 

+ (1 - 2/J.)[z l z2 + (Zl + Z2)2Zlz2 + Z l Z2]A2 

+ (3/J.- l)(zl + z2)(1 + z1z 2)A + (1 - 4/J.). 
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It is known that a necessary condition for A to be a 
Singularity of the Z lZ 2 integral in (C2) is that 

An elementary calculation shows that the only solu-
tions of (C3) are A = ± 1, A = ± ";1 - 4/J., A = ± (1 -
4/J.). From the above considerations it follows that it 
suffices to find the leading part of the singularity at 
A = ± 1 and in fact at A = + 1 (the contribution of 
A = - 1 is the same by a symmetry argument). 

At this step it is more convenient to return to the 
expression (C1) and to use the possibility of restricting 
the integration domain as suggested by the formula 
(6.8). Let us investigate the contribution of each region. 

(1) First we compute the contribution of the region 
<R1 (see Fig. 4). The region <Rl is a small region of 
C 1 x C 2 surrounding the pOints (z1' z2) = (1,1) and 
(- 1, - 1). A symmetry argument allows us to compute 
only the contribution of the small region around (z 1> Z 2) 
= (1,1). We introduce the new arguments (kl,k 2) such 
that zl = exp(i arctk1),z2 = exp(i arctk2). A straight
forward calculation leads to the Table CI for the ex
pansion of the eigenvalues and eigenvectors of 

M'(Zl>Z2) near k = ..jk~ + k~ = O. 

In this table we use the convention that k 3 = - k 1> k 4 = 
- k2 and o(k i) means a quantity of order greater than ki. 

lt is clear that the purely damped mode will give 
an exponentially decreaSing contribution. Therefore, we 
have, to consider only the contributions of the three 
modes AD' A±. To simplify the expressions, we intro
duce the following notation: 

q,~/kl,k2) = 0f0{.(k1,k2)/(1 + kf}{l + k~)zfz~. 

Now the contribution to (<R1) of the mode AD reads as 

FIG.4. The different regions of integration in the evaluation of the 
long time tail of e(p, q; i,j; f). 

k 2 

(C4) 
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TABLE CI 

Mode 

Vorticity 
diffusion 

Eigenvalue 

A = 1 _ (1 - 2/l)k~k~ + 0(k2) 
D 2/lk2 

Sound 
waves 

A = 1 ± ik + 2(1 - 2/l)ktk.~ - (/l + 1!2)k
4 + 0(k 2) 

'.f2 8/.lk2 

Purely damped mode A. = (1 - 4/l) + o(k) 

TABLE Cll. 

r=O r=1 

1757 

Eigenvector 

liD = kid + o(k) 
• .f2k 

6* = i ± - -.-.! + o(k) ~ 1 k.) 
• .f2 k 

1i1= !(_1)i + o(k) 

r > 1 

"fH a2Tda 11 1" J kndk ~ - k n- 1dk(A - 1)-1/2 
a -, A - 1 + hY (sin2a)2k 2 Fa a 

- _11_ J" kn-1dk(A - 1)1/2 + cte(A - 1) (n-1)/2 
",3/2 a 

O(A - 1)1/2 
+ cte(A - 1)(,,-1)/2 
X log(A - 1) x log(A - 1) 

n odd n even 

"j"/2-, a2Tda 1 kndk ~ cte x (A - 1)<0-1)/2 log (A - 1) 
a , A-I + t'" (sin2a)2k2 

analytic 

TABLE CIII. 

r=O 

~ f k n- 1dk(A - 1)-1/2 
..;'" k~" 

We see that the k1 x k2 integral is singular in A = 1. 
In order to find the leading part of the Singularity, we 
shall separate the disk into sectors as indicated in 
Fig.4. Let us set k1 = k cose, k2 = k sine. We can 
show that the contribution of the sector E -'S e -'S 1T/2 - E 

is always negligeable in comparison with that of the 
sector I e I -'S E. Here we assume that E -'S 1. In fact we 
have Table Cll giving the leading parts of the singularity 
at A = 1 of typical integrals with which we are concerned. 

The contribution to (CR1 ) of the sound waves are much 
simpler; in fact we have 

(CR ) "'" IJ. 1 AidA! dk dk 4>t)kl>k 2) (C6) 
1 ± 21T2(2i1T) c k"'~ 1 2A -1 'F ik/../2· 

The k 1 x k 2 integral is again singular in A = 1, but 
the leading part of the singularity is always weaker than 
(A - 1)1/2. To see this, we remark that 

This shows that the contribution of the sound waves is 

After expanding the integrand of the k 1 x k 2 integral 
around e == 0, we are led to evaluate the leading part of 
the singularity at A = 1 of integrals of the type shown in 
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r = 1 

__ "_1 k n - 1dk(A - 1)1/2 
",3/2 k~" 

r > 1 

O(A - 1)1/2 

Similar results are obtained for the other sectors. 
Now, if we expand the integrand in the k 1 x k 2 integral 
near k = ° and e = 0, we find terms like k a e2r with 
r -'S n. In view of Table Cll it is clear that if r < n the 
sectors Ie - q1T/21 -'S E with q E {1, 2, 3, 4} give always 
the leading part of the singularity in A = 1. For 
r = n = 1 an explicit calculation shows that the logarith
mic parts of the contributions of the two sectors I e I -'S E 

and E -'S e -'S 1T/2 - E cancel, so that we have finally 

if i + j even, 
i = 1, 

if i + j even, 
i = 2, 

(C5) 

if i + j odd. 

always negligeable in comparison with the contribution 
of the mode AD' 

(2) We compute now the contribution of the region 
CR2 U CR3 • Symmetry considerations enable us to re
strict our studY' in the neighborhood of (z 1 = 1, z 2 '" 1) 
or (z 2 = 1, z 1 '" 1). In this region only one mode has 
to be considered. This mode is the natural continuation 
of the mode AD' We use again the variable s k 1> k 2 and 
take as the region of integration the sector k '" 1'/, 
I e I -'S E and its image by rotation of angle n1T/2, with 

n E {1, 2, 3, 4}. In the following we shall calculate the 
contribution of the first sector k '" 1'/, I e I -'S E. The con
tributions of the others are obtained by Similar argu
ments; we have 

(C7) 

Table CIllo Therefore, taking into account all the contri
butions of the same order for the four sectors, we get 
the following results: 
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(3) It remains to compute the contribution of CR4 • 
In this region we have to consider two modes which are 
the natural continuations of the sound waves. The con
tribution of these modes can be written as 

It is seen that the Z 1 X Z 2 integral is not singular in 
X = 1. 

Therefore, the long time tail of the correlation func
tions we have considered is given by adding the results 
(C. 5) and (C. 8) together. After this step a new 
feature appears. In fact we have for i + j even and 
i = 1, for instance, 

( •..• ) _ /1 (~)1/2J ofob(Zl = l,z2) 
ep,q,Z,),t --. q+1 dZ 2 4z IT 1 - 2/1 c2 Z l! 

1 
x -J dX xt(X - 1)-1/2. (C9) 

2iIT c 

But ofob(Z 1= 1> Z 2) is independent of Z 2 (see Table CI) 
so that the right-hand side of (C9) is different from 
zero if and only if q = O. This means that if q ;0' 0, one 
has to take the next term in the expansion of the inte
grand of the kl x k2 integral. The final results are 
summarized in Table CIV. 

APPENDIX D 

We want to calculate the expectation value e(p, q, i;j; t) 
when Ip 1 + Iq 1 = t and to compute the asymptotic part 
as t ~ ex; in the two following cases: 

(a) p (or q) is fixed; 

(b) Ip 1- Iq 1 is fixed. 

We shall suppose that p and q are positive; the other 
cases lead to similar calculations. Let us treat the 
first case: 

(a) p is fixed: We have the following equations: 

e(p; i, 3; t + 1) = (1 - l1)e(p - 1; i, 3; t) + /1e(p -1; i, 4; t) 

(Dl) 
e(p; i, 4; t + 1) = /1e(p; i, 3; t) + (1 - /1)e(p; i, 4; t), 

TABLE eIV. 

e(p, q; i,j; t) "" 
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if i + j even, i = 1, 

if i + j even, i = 2, 

(C8) 

where we have set e(p; i,j; t) = e(p, q; i,j; t) with q = 
t - p. Let us introduce the generating functions 
e(z 1; i,j; X) such that: 

1 dz 
e(p· i j. t) = --1 xt-1dx1 __ 1 e(z . i)·· X) 

, , , (2i IT) 2 C C 1 Z P + 1 1"" 
1 

where C (resp.C 1 ) is the unit circle in the X (resp.zl) 
complex plane. Standard calculations lead to 

where P is a polynomial of first degree with respect to 
X and z 1 and S(z l' X) is the determinant of the matrix 

\

X-(I-/1)ZI -/1Z1!. 

- /1 X - (1- /1) 

The integral is performed by a calculus of residues at 
z 1 = X[X - (1 - /1)]/(1 - /1)[X - (1 - /1)] + /12 • Then the 
X integral is Similarly performed at X = (1 - /1). This 
leads after simple calculations to 

e(p; i,j; t) "" cte x tP(1 - /1)t. (D2) 

(b) P - q is fixed: Here it is convenient to intro
duce the argument p' = p - q and to rewrite the re
currence relation in the following way: 

e(p'; i, 3; t + 1) = (1 - /1)e(p' + 1; i, 3; t') 

+ /1e(p' + l;i,4;t), 

e(p';i, 4; t + 1) = /1e(p' - l;i, 3;t) 

+ (1 - /1)e(p' - 1, i, 4; t). 

Now, using the same technique as in the previous case, 
we have 

where 

if i + 1 even, i = 1, q = 0 

if i + j even, i = 2, P = 0 

in the other cases 
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The Zl integral in (D3) is performed by the calculus 
of residues at the root of (D4) which has a modulus 
smaller than one. We get a function of i\. which is sin
gular at i\. = ± 1 and i\. = ± (1 - 2/J.). The asymptotic 
part of e(p', t; i,j) as t -7 <Xl is thus given by the singu
larity at i\. = ± 1. An elementary calculation shows that 
if i = 1 or 2, the leading part of the singularity is 
C x K±1, and if i = 3 or 4, the leading part of the sin
gularity is C x (i\. ± 1)-1/2. This gives immediately the 
estimates: 

~ Cc x t- 1/2 

e(p'; i,j; t) "" 
x t-3 / 2 

if i = 3 or 4, 

if i = 1 or 2. 
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A reduction of the Duffin-Kemmer-Petiau algebra to a direct sum of irreducible subalgebras for 
spin-O and spin-l bosons is presented. The subalgebras are defined by multiplication rules for the 
linearly independent basis elements. In the representations discussed the spin projection operators are 
independent basis elements of the subalgebras. The formal utility of these representations is 
demonstrated by obtaining the reduction of arbitrary operator products and trace theorems. The 
practical utility is demonstrated by application to the analysis of free and interacting boson field 
currents. Most importantly, one can understand the differences between DKP nonconserved currents 
and those obtained from second-order wave equations. 

1. INTRODUCTION 

In their original studies of first-order covariant wave 
equations describing spin-O and spin-1 fields, Duffin, 1 

Kemmer,2 and Petiau3 introduced a set of matrices that 
generate an algebra referred to as the Duffin-Kemmer
Petiau (DKP) algebra. Kemmer's development of the 
theory of the meson wave equation emphasized the simi
larity to the Dirac theory of the electron although the 
similarity is essentially only in the form of the equa
tions. The algebra generated by the DKP matrices has 
a structure very different from that of the Dirac matrices. 
A notable difference is that the DKP equation simul
taneously describes both spin-O and spin-1 particles. 
That is, the algebra is reducible. 

Many authors have discussed the structure of the DKP 
algebra for mesons. The original analyses of Fujiwara4 

and Tokuoka and Tanake5 are the basis of the present 
discussion. These original studies introduced spin
projection operators which project from the DKP field 
the spin-O and spin-1 components. More recently, 
Tokuoka 6 has used the spin projection operators to find 
the basiS elements of the irreducible representations of 
the DKP meson algebra. In addition, he used the tech
nique to find subsidiary algebraic relations which when 
combined with the equation defining the DKP algebra 
yield matrices which make up a particular irreducible 
representation. This approach has been formalized by 
Shimpuku7 in a general analysis of DKP algebras using 
ring theory. 

The analysis presented here can be regarded as an 
extension of the work of Tokuoka. We have found that 
past analyses of the reduction of the algebra have tended 
to emphasize the mathematical structure of the algebra 
rather than development of a formalism that is practical 
for the analysis of physical problems. It is in this latter 
direction that we extend the work of previous authors. 

We first note that it is not always advantageous to 
work with the irreducible representations of the DKP 
meson algebra. For example, in certain formal con
siderations the reducible form of the algebra is most 
convenient since one can treat both spin-O and spin-1 
particles simultaneously. However, in consideration of 
particular situations involving either spin-O or spin-1 
particles the redundancy of the reducible form of the 
algebra obscures the actual structure of the problem. 
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In addition, it is often of interest to compare results of 
an application of the DKP equation with results obtained 
from the Klein-Gordon (KG) or Proca equations, and 
such a comparison is not always obvious with the stand
ard representations of the DKP algebra. As observed in 
the above paragraph, it is this latter direction in which 
we are most interested. 

Since the spin projection operators introduced by 
Fujiwara4 select from the sixteen component DKP field 
those components corresponding to spin-O and spin-1, 
the prOjection operators provide a natural starting point 
for a physics-oriented reduction of the algebra. More
over, the spin projection operators provide the natural 
formalism for demonstrating the equivalence of the free 
field DKP equations and the Klein-Gordon and Proca 
equations.S Thus, in line with the preceding arguments, 
the essential point of our approach is to obtain a repre
sentation of the irreducible subalgebras in which the 
projection operators occur as independent basis ele
ments. 

To facilitate the discussion of the subalgebras the 
necessary aspects of the DKP equation and the matrix 
algebra are reviewed in Sec. 2. Then a reduction of the 
DKP meson algebra to a direct sum of the irreducible 
subalgebras is presented in Sec. 3. In Secs. 4 and 5 we 
discuss useful properties of the DKP algebra and equa
tion, such as the reduction of operator products, trace 
theorems, projection, raising and lowering operators 
and the consequent equations. We conclude our analysis 
in Secs. 6 and 7 by demonstrating the utility of these 
particular representations in applications to physical 
problems, involving spin-O and spin-1 mesons, respec
tively. 

2. THE DUFFIN-KEMMER-PETIAU EQUATION 
AND DKP ALGEBRA 

The DKP equation for spin-O and spin-l mesons is 

a,J'A I/I(x, t) = - ml/l (x, t). (1) 

Important Note: For wave and current equations 
such as (1) above, we will use the summation convention 
for repeated Lorentz indices. However, when dealing 
with the DKP algebra elements above, summation will 
only be implied when a ~ is explicitly written. See, for 

Copyright © 1973 by the American Institute of Physics 1760 
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example, the difference between equations (7) and (23) 
below. 

The four matrices f3>.. which are defined by the alge
braic relation 

f3Jlf3 vf3>.. + f3>..f3 vf3Jl == f3Jlov>.. + f3>..0VJl (2) 

generate the DKP meson algebra. In detail the defining 
algebraic relations are 

f3Jlf3 vf3Jl == f3"OVJl' 

f3Jlf3~ == (1 - f3~)f3Jl' 

f3Jlf3 2 == (5 - (32)f3Jl' 

From Eq. (3b) it follows that 

(3a) 

(3b) 

(3c) 

(4) 

Using Eq. (2) it is a straightforward task to write 
down the 126 independent elements of the DKP algebra. 
To do so it is convenient to introduce auxiliary elements 
associated with each index. There are two convenient 
ways of introducing the auxiliary elements. The first 
way is to define 

171' == 2f3~ - 1, (5a) 

(5b) 

and associate with each value of the index ~ the triplet 
(1, f3>.., 11>..)' The second way is to define 

t+ == f32 0,1' II' ~~ == 1 - f3~, (6) 

and with each value of the index ~ associate the triplet 
(f3>.., ~\, ~i). The algebra of the triplets (1, f3, 11) is given 
by Eq. (2) and the following easily verified relations: 

11~ == 1, (7a) 

11 >..111' == 11 I'll >.., (7b) 

11511 >.. == 11>..175' (7c) 

11>..f3Jl == - f3Jl11>.. (/l '" ~), (7d) 

f3Jl11Jl == 11Jlf3Jl == f3 Jl , (7e) 

11 5 f3>.. == - f3>..71 5· (7f) 

Likewise the algebra of the triplets (f3, ~+, ~-) is given 
by Eq. (2) and the following relations: 

~1 + ~i == 1, 

(H)2 == H, 

~Hi == ~>..H == 0, 

~>..~-;, == ~-;'~A' 

f3>..~1 == Hf3>.. == f3>.., 

f3>"~A == ~l..f3>.. == 0, 
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(8a) 

(8b) 

(8c) 

(8d) 

(8e) 

(8f) 

(8g) 

(8h) 

f3>..~~ == ~:f3>.., 

f3>..~: = ~;f3>.., 
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(8i) 

(8j) 

It follows from the definitions (5) and (6) that the two 
sets of triplets are related by 

~1 == t(l + 11>..), 
(9) 

~>.. == t<1 - 71>..), 

and one has the additional algebraic relations 

11>..~X == ± H, 

[715' Hl == 0. 

(lOa) 

(lOb) 

The 126 linearly independent elements of the algebra 
are listed in Table 1. The independent elements listed in 
Table I are for the algebra generated by the four mat
rices f3Jl and the unity (1). One can also consider the sub
algebra generated by the f3 matrices alone.9 The sub
algebra has 125 linearly independent elements. 

As is well known, the DKP algebra is reducible to 
irreducible subalgebras of 1, 25, and 100 linearly inde
pendent elements corresponding to the trivial identically 
vanishing, spin-O, and spin-l equations, respectively. To 
obtain the linearly independent elements of the sub
algebras Tokuoka6 used a theorem of Harish-Chandra10 

to write down the unit element for each of the subalge
bras. With the unit elements known one can then project 
out from the full algebra the linearly independent basis 
elements of the subalgebras. 

In the spirit of our above discussion we will first 
obtain the sub algebras in terms of the spin projection 
operators defined by Fujiwara.4 Defining 

(11) 

it follows from the algebra of the f3 matrices that 

(12) 

From (11) and (12) and the DKP equation (1) we have 
that 

0/lPI/i == - mPJlI/I 
and 

oJlPJlI/I ::::: - mPI/i. 
(13) 

TABLE I: The 126 independent elements of the DKP meson algebra. 
The elements r A can be taken to be one of either Ih, n, or ~>.. For 
example, Kemmer2 used the case r A = 1/ A. 

Element Number of Elements 

1 
4 

12 
12 

6 
4 
6 
4 
1 

12 
24 
12 
12 
12 

4 

126 
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The quantities PI/! and P/ll/! transform asspin-O and 
spin-1 fields, respectively. Thus, the five-component 
DKP field describing spin-O particles consists of a 
scalar field and a 4-vector field which is the 4-gradient 
of the scalar field. To obtain the spin-1 DKP field we 
define 

R/lU = R/l{3u' 

Il = 1, 2, 3, 

Il = 4, 

From the algebra of the {3 matrices it follows that 

RjJU =-Rull , 

R flU{3A = RI' 0UA - R U0I'A' 

(14) 

(15) 

Multiplying Ru on to the left side of the DKP equation, 
we have 

0IlRUI'I/! = - mRul/!, 

0ARUI/!- GURAl/! = - mRuAI/!· 

By defining 

Eqs. (16) become the usual spin-1 field equations: 

UI'U = GI'Q u - GuQIl , 

GI'UI'U = m2Qu' 

(16) 

(17) 

(18) 

From Eq. (18) we see that the ten-component Kemmer 
field for the spin-l particle consists of four components 
of a vector field (QII) plus six components which are the 
field strengths (UiJU ). [Note that when m .~ 0, Eqs. (18) 
become Maxwell's equations with UiJU ~ Fllu and QI' ~ 
Afl'] 

In the next section we will obtain representations of 
the spin-O and spin-l subalgebras in which the spin pro
jection operators are basis elements of the subalgebras. 

3. THE DKP SUBALGEBRAS 

From Eqs. (11)-(15) it is apparent that the projection 
operators (P, PI') and (.~ 1" RI'U> will generate two right 
ideals of the algebra. Moreover, since 

P(RI') = (RI')P = 0, 

(PI')(R~) = (.R1')(Pu) = 0, 

P(Rl'u) = (RiJU)P = 0, 

P~.'<Rl'u) = (Rl'u)(P A) = 0, 

(19a) 

(19b) 

(19c) 

(19d) 

the two ideals have zero intersection. By including the 
Hermitian conjugate projection operators, which pro
ject the various components from the sixteen-component 
Hermitian adjoint DKP field, one obtains sets of ele
ments which generate ideals of the algebra. The ele
ments of the two ideals are the subalgebras correspond
ing to spin-O and spin-I. That is, the {3-algebra has been 
reduced to a direct sum of two irreducible subalgebras 
(references to the trivial subalgebra will only be made 
where necessary). The article by Shimpuku7 is an ex-
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cellent source of material regarding the formal proof of 
this decomposition. Consequently, our discussion will 
only .indicate the formal arguments that are applicab~e. 

A. Spin-O subalgebra 

The twenty-five elements of the spin-O subalgebra 
(P algebra) are {p,PI"I'P'I'PJ,where we have included 
the sixteen elements 

(20) 

in addition to the projection operators. It is a straight
forward exercise to write down the multiplication table 
for the P-algebra and it is tabulated in Appendix 1. How
ever, by extending the range of the indices to five in
stead of four the multiplication rule for the elements 
can be written in a compact form. Defining 

(21) 

we have that the P-algebra consists of the elements 
{aP b I a, b = 1, ..• , 5}. The multiplication rule is then 

(22) 

From Eq. (22) it follows that the twenty-five elements 
are linearly independent and form a basis for the spin-O 
subalgebra. Representations of the P-algebra are given 
in Appendix 2. 

The unit element of the P-algebra is 

ep = P + L)(/lPI')' 
I' 

(23) 

With the unit element one can project from the full (3-
algebra the twenty-five independent elements of the five
dimensional spin-O subalgebra. For example, from Eqs. 
(23) and (12) we have that 

(24) 

The auxiliary elements for each index defined in Sec. 2 
are 

(25a) 

(25b) 

(25c) 

By repeated application of this procedure one obtains 
a set of relations between the elements of the P-algebra 
and the elements of the (3-algebra in the five-dimensional 
representation. 

The relation between the P-algebra and the (3-algebra 
in the five-dimensional representation is given by 

P = (3~(3~, Il ?! II, (26a) 

PI' = (3~(3/l' Il ?! II, (26b) 

I'P = j3flj3~, J1 ?! II, (26c) 

".P". = (3~(1 - j3~), Il ?! II, (26d) 

".P u = i3".i3 u, Il ?! II. (26e) 

Equation (26) reflects the redundancy of the independent 
elements of the (3-algebra when only a particular irre
ducible representation is considered. In particular, Eqs. 
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(26a)-(26d) are valid for all II such that II ;J! j)., and so the 
redundancy of using the complete algebra to describe the 
spin-O subalgebra is clearly exhibited. In addition to 
Eqs. (24), (25) and (26) there are the useful relations 

f3~f3" - f3"f3~ == TJ vf3J1. == PJ1. - "P (j).;J! II), 

~(f3~f3J1. - f3J1.f3~) == 3(PJ1. - J1.P ), 
v 

v 

(27a) 

(27b) 

(27c) 

(27d) 

We then have for the spin-O subalgebra that the set of 
elements {aPb I a, b == 1, ... , 5} defined by the multipli
cation rule 

and the definition 

replace Eq. (2) for defining the f3-matrices and their 
algebra. 

B. Spin-1 subalgebra 

To obtain the spin-1 subalgebra we proceed in an 
analogous manner. From the definition of the projection 
operators in Eq. (14) and their Hermitian conjugates the 
multiplicative properties of the operators are given by 

(Rj.lHfiv) ==R v0j.l4, (29a) 

(R j.l)(R v)..) == R VAO j.l4' (29b) 

(Rj.lA)(R v) == (Rj.lA)(Rvo) == 0, (29c) 

(RIl)(vR ) == R 4°l'v' (29d) 

(R jl V)(AR) == (R j.l)(VAR) == 0, (2ge) 

(RjlV)(AO R ) =:R 4.6.)JVAO' (29f) 

where 

.6.j.lVAO = 01'0 OVA -OjlAOVO' (30) 

So that the elements of the subalgebra can be given in 
a compact form, we introduce the matrices 

(31) 

This is the set of elements 

kV4=:i,R, k=:1,2,3, (32) 

The remaining elements of the subalgebra are 

jl VVA =: (jl Vv)f3 A =: (jlR)(R vA), 

VAVjl =: f3)A VjJ) == (VAR)(RjJ)' (33) 

VA VjlO == f3 v (A V jl)f3 a == (VAR)(R jlo)' 

Note that the elements are anti symmetric in double left 
and/or right indices. That is, 
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(34) 
VA VjJo == - AV VjJo == AV V OJ1.· 

The products of the sets of elements defined in Eq. (33) 
with elements of the f3-algebra are given by 

(jJ VVA)f3 0 == jJV"OAO - jJ VAOvo, 

f3 0 (VA Vj.l) == AVjJOO/J - /J VjJOOA' 
(35) 

and the corresponding expressions for the set of ele
ments VA V JJO • 

The one hundred linearly independent elements of the 
ten-dimensional spin-1 subalgebra (V-algebra) are thus 
the set 

The multiplication table for this set of elements is 
given in Appendix 1. However, as before, by extending the 
range of the indices the multiplication table can be 
summarized in a compact form. The elements of the V
algebra is then the set 

{abVcdia,b,c,d== 1, ... ,5}, 
where 

ab Veil == - ba Ved == ba Vde 

and 

(36) 

(37) 

The multiplication rule for the V-algebra elements is 
then 

(38) 

From the multiplication rule it follOWS immediately 
that the elements we have written down are in fact 
linearly independent and form an appropriate basis for 
the spin-1 subalgebra. A representation of the sub
algebra is given in Appendix 2. 

It is worth noting at this point that, for any element 
from the P-algebra and any element from the V-algebra, 

{p}{V} == {v}{p} == O. (39) 

The unit element of the V-algebra is 

e y == ~(jJ Vj.l) + .!. L; (jJv V"jJ)' 
II 2 JJV 

(40) 

As for the P-algebra, the unit element e y may be used 
to project the independent elements of the spin-l sub
algebra from the entire f3 algebra. For example, 

evi3A == f3 vev== :6(jJ V"A + AjJ VI'). (41) 
j.l 

With repeated application of this procedure, one obtains 
the following relations between the V-algebra elements 
and the elements of the f3-algebra [in all the relations 
(42) the indices are such that (J ;J! A ;J! P ;J! T]: 

r Vr == f3~f3~f3~, 

r Vp == - f3;f3~f3pf3T1 

r Vrp == f3~f3r{3p' 

(42a) 

(42b) 

(42c) 
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pT V T = {3p{3~ {3f, (42d) 

o ~A = {3~{3A{30 {3p, (42e) 

pA Vo = {3A{3,,{3p{3~, (42f) 

pT V Tp = {3p {3;{3l {3 p' (42g) 

AT V TO == (1 - {3~){3A{30' (42h) 

pA V OT := {3A{3" {3p{3T' (42i) 

In addition, there are the following useful relations: 

(43) 
EM := 2e v + E (fl V fl )· 
A fl 

To summarize, we have shown that the spin-1 sub
algebra is given by the set of one hundred linearly in
dependent basis elements {lib Vca I a, b, c, d = 1,2,3,4,51 
V antisymmetric in ab and/ or cd}. The elements are 
defined by the multiplication rule . 

(ab Vca)( ef Vgh ) = ab Vght.caef • 

With ten-dimensional {3 matrices defined by 

{3A = E (fl V jlA + Afl VJ.!)' 
fl 

Eqs. (44) and (45) replace Eq, (2) in defining the {3 
matrices and their algebra for the case of spin 1. 

4. REDUCTION OF OPERATOR PRODUCTS AND 
TRACE THEOREMS 

A. Operator products 

(44) 

(45) 

We begin this section by considering the reduction of 
operator products involving the {3 matrices. A product of 
{3 matrices can be reduced to linear combinations of the 
126 independent basis elements of the full (3-algebra by 
using the commutation relation (2) for the {3 matrices. 
Our goal is to obtain the reduction as linear combina
tions of the basis elements of the irreducible subalge
bras for spin-O and spin-1. To perform the reduction in 
a systematic fashiori we first introduce an auxiliary 
notation for the {3 matrices as linear combinations of the 
basis elements of the subalgebras. 

For spin-O and spin-1 we write 

with 

({3A)R == PA' ({3Ah == AP 

for spin-O, and 

({3 A) R == E fl V flA , 
J.! 

(46) 

(47a) 

(47b) 

for spin-l, From the multiplication tables for the P
anci V-algebras we have for both spin-O and spin-1 

({3 A) R({3 0) R = ({3 A) L ({3 0) L == 0, (48) 

while for spin-O 

Uh)R({3oh == P{jA'" 

({3 A) L({3,,) R == AP ", 

and for spin-1 
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(50a) 

(50b) 

Now consider the product of {3 matrices 
n 

7T1l = IT {3A.' 
i~1 ' 

(51) 

From the fact that ({3 A) R and ({3 A) L are nilpotent, we 
have for both spin-O and spin-1 

7T2n == ({3A
1
)R({3A2)L({3A)R "'({3A 2n )L 

+ ({3A)L({3A)R' ~. ({3).2n)R (52a) 

and 
(52b) 

With 7Tn in the form of Eqs. (52), Eqs. (49) and (50) can 
be used to obtain the desired reduction. The results are: 

Spin-O 

(53c) 

Spin-l 

(54a) 

7T2 = E [" V" t.(J1.1' AI' A2 , J1.2) + A " V" A (j(1-'1,1-'2)]' "I "2 1"1 "2 2 
J.!1'J.!2 (54b) 

7T3 == L; [J.!1 VJ.!3A3 t.(J1.1' A1> A2, J1.2){j(J1.2, J1.3) 
J.!1'J.!2 ,I' 3 

+ A V" (j(JlHJ1.2)t.(J1.2,A2,A3,1L3)]' (54c) 
1J.!1 "3 

7T 2n (n? 2) == E{I' VJ.! )t.(l-'l>A 1,1-'2,A2 ) 
J.! 1 2n 

x(.n t. (1-'2; -2' A 2i -1' A 2i' 1L2i)\ 
F2 J 

+ ~(AIJ.!lVJ.!2nA2n){j(1-'1'1-'2) 

x(.n t.(1L2i -2' A2i-2, A2i -l, 1L2}' 
t=2 / 

(54d) 

== E(J.! VJ.! A 1)t.(1L1, AI' A2 , 1L2){j(J1.2n, 1L2n+I) 
Jl 1 2n+l 2n+ 

X (li t.(1-'2i-2, A2i -l, A20 1L2i)\ 
.=2 J 

+ ~ (A1J.!1 VI'2n+1){j(J1.1' J1.2)t.(1-I2n' A2n , A2n +1 , 1-'2n+1) 

X '(li t.(1-'2i-2,A2i-2,A2i-1,J1.2i)\ • (54e) 
,~2 'J 
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In Eqs. (54d) and (54e) the summation is over all sub
scripts IJ-i that occur in the equations. With the general 
expressions given in Eqs. (53) and (54) any product of f3 
matrices can be reduced to a linear combination of two of 
the basis elements from each of the respective sub
algebras. Incidentally, by using Eqs. (26) and (42) in com
bination with Eqs. (53) and (54) the reduction of a pro
duct to a linear combination of independent basis ele
ments of the full f3-algebra can be obtained. 

Other operator products involving f3 matrices that are 
of interest contain the matrices f3Jl contracted with some 
4-vector aJl' To treat this case we adopt the Feynman 
slash notation 

p == f3'a = a'f3 = L;f3JlaJl' 
Jl 

(55) 

For consistency we also use the slash notation for the 
contraction of f3 matrices with themselves 

¢ == f3' f3 = L; f3Jlf3Jl' 
Jl 

(56) 

The commutation relations for the slashed operators 
follow from the basic commutation relation (2). The 
relations for operators rj are 

r,if3 Vf3 A + f3 Af3 Vr,i = r,iOVA + f3 Aav ' 

#f3 A + f3Al/r,i = r,ib A + f3 Ab• a, 

# f + ¢# ri = r,ib. c + ¢b. a. 

(57a) 

(57b) 

(57c) 

For the operator ~ the basic commutation relations 
are 

~f3v + f3 vtt = 5f3v, 

~t/ + ritt = 5r,i. 

(58a) 

(58b) 

Useful relations that fOllow from (58a) and (58b) are 

ttf3 vf3Jl - f3 vf3Jl¢ = 0, 

ttfl# - #¢ = o. 

(59a) 

(59b) 

The commutation relations (57)-(59) are for the full 
f3-algebra, Le., both spin-O and spin-I. 

Slashed operator products of the type 

(60) 

can be reduced by using the above results for products 
1fn and contracting with the required 4-vectors (a;)/J' 
Alternatively, one can proceed directly from (60) by 
writing the slashed operators as linear combinations of 
the baSis elements of the respective subalgebras. As in 
Eqs. (46)-(50), we have 

For both spin-O and spin-l 

r,iRfiR = PLJ'L = 0, 

while for spin-O 

PR(lL = a' bP, 

riLI/R= L;(aAbohPo, 
AD 

and for spin-l 
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(64a) 

(64b) 

With Eqs.(62)-(64) the product 1" can be reduced to 
linear combinations of the 4-vectors (ai)Jl and indepen
dent basis elements of the respective subalgebras. 

The remaining product of operators which we have to 
consider is fin. Again we proceed by decomposing the 
operator fI in the form 

For spin-O we define 

flA == L;f3 A(PA)' riB == Lf3A(AP ) 
A A 

and for spin-l we define 

flA == L f3A(Jl VJlA) , 
A.Jl 

fiB == L; f3 A(A/J V/J)' 
A.Jl 

(65) 

(66) 

(67a) 

(67b) 

We have defined flA.B in Eqs. (66) and (67) so as to 
maintain the analogy with the definition of (f3 Ah.R and 
(,t) L.R' However, the similarity is only in the form; riA 
riB are not nilpotent. In fact, for spin-O 

flA == L;APA' fiB = 4P 
A 

and for spin-l 

fI A == L; AJl V/JA' A.Jl 

fiB::::: 3L;JlV/J' 
Jl 

(68) 

(69 a) 

(69b) 

That is, flA.B are proportional to the basic idempotents 
of the unit elements for the two subalgebras. For both 
spin-O and spin-l 

while for spin-O 

and for spin-l 

To reduce fin we first use (65) and (70) to write 

From Eqs. (71) and (72) we have for spin-O 

(~n = riA + 4,!-lflB 

and for spin-l 

(fI)" = 2n-l~A + 3n-1/1B' 

(70) 

(71) 

(74) 

(75) 

To consider operator products involving combinations 
of f3 A' r,i and fI the reduction can always be carried out 
similarly. In particular, for a product of the form 

(76) 
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the reduction is a straightforward combination of the 
above results for the products 1T n and 1 m • 

For products involving i as well, it follows from Eqs. 
(5S), (59), (74), and (75) that it is sufficient to consider 
the products i1T n' 11T n' and ian' To give an example of a 
reduction of such a product, we will consider i1T expli
citly. Writing Eqs. (53) and (54) in the abbreviat~d 
form [the superscripts "1" and "2" refer to the first and 
second terms, respectively, in Eqs. (53) and ('54)] 

we have: 

Spin-O 

i 1T 2n +l = iA1T~n+l + jtB1T~n+l 
= 1T~n+l + 41T~n+l' 

,1T2n = /1B1T~n + iA1T~n 
= 41T~n + 1T~n; 

Spin-l 

611T 2n+l = 'B1T~n+l + 'A1T~n+l 
= 31T~n+l + 21T~n+l' 

/11T 2n = IB1T~n + /1A1T~n 
= 31T~n + 21T~n' 

(77) 

(7Sa) 

(7Sb) 

(79a) 

(79b) 

To summarize, the above results can be used to reduce 
operator products involving {3A' (i, and i to their sub
algebra representations. That is, the reduction gives the 
product as a linear combination of basis elements of the 
spin-O and spin-1 subalgebras. 

B. Trace theorems 

We now proceed to develop various trace theorems for 
the {3-algebra and the spin-O, -1 subalgebras. We will 
obtain the desired results by working with the linearly 
independent basis elements of the P- and V-subalgebras. 
First we establish two basiC theorems for the traces of 
the subalgebra basis elements. 

Theorem 1: For the spin-O subalgebra the linearly 
independent basis elements {p, P Il' Il P, IlP J have the 
following traces: 

TrP = 1, 

Tr(Il P ) = Tr(P Il) = 0, 

Tr(IlPv) = I5 llv ' 

(SOa) 

(SOb) 

(SOc) 

Theorem 2: For the spin-1 subalgebra the linearly 
independent basis elements {Il Vv' Il Vv'" AV VIl , IlV VAO} 
have the following traces: 

Tr(1l Vv) = I5 llv ' 

Tr(1l VvtJ = Tr(AV VIl ) = 0, 

Tr(llv VAO) = A IlVAO ' 

(Sla) 

(Slb) 

(Slc) 

Theorems 1 and 2 can be established by using the 
multiplication rules (22) and (3S) for the independent 
basis elements. From Eq. (22) we have that 
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But 

Tr(aPb)(cPa) = Tr(cP a)(aPb) = l5 aa Tr(cPb)' 

1766 

Since the set Lp ti} is a basis of a complete matrix 
ring, 

Tr(aPa) = l5 aa , 

which establishes Theorem 1. From Eq. (3S) we have 

Tr(ab Vca)(eJ Vgh ) = l!.caeJ Tr(ab Vgh ). 
But 

Tr(ab Vca)(ejVgh) = t:.ghab Tr(ejVca )' 

Since the set Lb Vgh } is a basis of a complete matrix 
ring, 

Tr(ab Vgh ) = t:.ghab , 

which establishes Theorem 2. 

From Theorems 1 and 2 we immediately have the 
following corollary results for the traces of independent 
elements: 

Corollary 1: For spin-O the set of idempotents 
{ep,P, L.) "p,,} have the traces 

A 

TrP = 1; Tr(L.) APA) = 4, 
A 

Trep = 5. 

Corollary 2: For spin-1 the set of idempotents 
{ev,L.) Il V Il , t L.) IlV V VIl} have the following traces: 

Il Il,V 

Tr(L.) Il VIl ) = 4, 
Il 

Trev = 10. 

Tr(t L; IlVVVIl) = 6, 
Il,V 

(S2a) 

(S2b) 

(S3a) 

(S3b) 

Using Theorems 1 and 2 in conjunction with Eqs. (53) 
and (54) the following three theorems are readily proven. 

Theorem 3: For both spin-O and spin-1 

Tr(1T2n +1) = 0, 

where 
2n+l 

1T2n+l = n {3A.' 
;= 1 I 

(S4a) 

(S4b) 

Theorem 4: For the spin-O subalgebra the trace of 
the product of an even number of {3 matrices is 

(S5a) 

where 

(S5b) 

Theorem 5: For the spin-1 subalgebra the trace of 
the product of an even number of (3 matrices is given by 

Tr1T2 = 2L.)t:.{t.L1,A1,A2,tLl) 
III 

= 615(A 1 ,A2 ), 

and for n> 1 

(S6a) 



                                                                                                                                    

1767 Fischbach. Nieto. and Scott: Duffin-Kemmer-Petiau subalgebras 

Tr7T2n =EA(1l2n'~1'~2,1l2) (.n A(1l2;-2'~2i-1>~2i>1l2i)\ 
I' 0=2 'j 

+ E A(~l' 1l2' ~ 2n' 1l2n) (.n A(1l2i-2, ~2i-2' ~2i-1' 1l2i)\ 
I' ,~2 ! 

(86b) 
where in the above the sum over Il means all Ili that 
occur in the equation and 

2n 
7T2n = IT {3A. (n = 2, ••• ). (86c) 

i~l ' 

The following theorem can be obtained from Corol
laries 1 and 2 and the results contained in Eqs. (65)
(75). 

Thearem 6: For the operator ~ we have the follow
ing traces: 

and for spin-1 is 

Finally, we collect together various trace results 
under a title of a final theorem. 

1767 

(91b) 

Thearem 8: For the spin-O subalgebra there are the 
following miscellaneous trace results: 

Tr{3~ = 2 

Tr7j1' = - 1, 

Tr~+ = 2, 

Tr~- = 3. 

(no summation!), (92a) 

(92b) 

(92c) 

(92d) 

Spin-O For the spin-1 subalgebra the corresponding trace 

Tr(~n = 4 + 4n , n = 1,2,· ... , 

Spin-l 

Tr~A = 12, Tr~B = 12, 

Tr(~n = 12(2n - 1 + 3n - 1 ), n = 1,2, .••. 

(87) 

(88) 

An important set of products for which it is desirable 
to know the traces is 

in = IT rI; 
i=l 

and 

or 

For the cases where the above products contain an odd 
number of {3 matrices we have the following corollary to 
Theorem 3. 

Carollary 3: For both spin-O and spin-1 sub
algebras 

Tri2n +1 = Tro2n + 2m +1 = O. (89) 

For the case of i 2n the trace of an even numbered 
product of slashed operators is given by the following 
corollary: 

Carollary 4: For both spin-O and spin-1 sub
algebras the trace of 12n is given by 

Tri 2n = Tr ( 11' {3 A.) (11' (a ih .) == Tr(7T 2n) (11' (a ih .) . 
i= 1 ' i= l' i= 1 ' 

(90) 
The remaining result to consider is for operator pro

ducts involving fl. By Eqs. (74) and (75) it is sufficient to 
consider ~7T 2n and 1# 2n' The required theorem then 
follows directly from Eqs. (78) and (79). 

Thearem 7: The trace of ~7T2" for the case of spin
O is 

(91a) 
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results are 

Tr{3a = 6 (no summation!), 

Tr7j1' = 2, 

Tr~+ = 6, 

Tr~- = 4. 

5. PROJECTION, RAISING AND LOWERING 
OPERATORS, AND THE DKP CONSEQUENT 
EQUATIONS 

(93a) 

(93b) 

(93c) 

(93d) 

In this section we will first show that the P- and V
subalgebra basis elements are complete sets of pro
jection, raising and lowering operators in the space of 
the DKP multiple field components. This will then aid 
us in examining the DKP consequent equations in the 
irreducible representations for spin-O and spin-1. 

A. Operators 

The interpretation of the P- and V-subalgebra basis 
elements as complete sets of projection, raiSing and 
lowering operators follows directly by noting that the 
subalgebra basiS elements have Kronecker product re
pre sentations. 

For spin-O we take the basis elements 

{K(5)} = {aPb la,b = 1, ... , 5}, (94) 

which have the Kronecker representation 

(95) 

(See Appendix 2 for the Pauli metric representation of 
the P-subalgebra.) 

If we now ask what new five-component field is 
obtained after operating with one of the basis elements, 
we have 

(96a) 

(96b) 

Thus we find that the five elements aP a project from 
1/1 the ath components. For a < b the elements aPb pro
ject from 1/1 the bth component and raise it to the ath 
position. Likewise the elements aPb (a> b) are lowering 
operators. It might be noted as well that 6'''~1 aP a pro
jects from the field the four components that transform 
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as a 4-vector. The element P == 5P5 projects the com
ponent that transforms as a scalar. 

For spin-1 we have the independent basis elements 

{K(10)} = {ab Vca ja,b, c,d = 1, ... , 5}. (97) 
with 

(98) 

From Appendix 2 with {m,n = 1, •.. , 10} and [cd] the 
ordered set [12] ,..., 1, [13]"'" 2, [14]"'" 3, [15]"'" 4, [23] 
,.., 5, [24]"" 6, [25]"'" 7, [34]"" 8, [35] ~ 9, [45]"'" 10, 
the Kronecker product representation of the basis ele
ment is 

(ab Vca)mn = o'(m, [ba])o'(n, [cd]), 
where 

o'(n, [cd]) = {o(n, [cd]), c < d 
- o(n, [dc ]), c> d. 

(99) 

(100a) 

(100b) 

As for the case of spin-O, the new field obtained by 
operating with the basis elements is 

l/!':' = o'(m, [ba])l/![cal' 

(lOla) 

(101b) 

Again we have that for [b a] == [cd], ab V cd projects from 
l/! the [cd] component and for [ba] < [cd] or [ba] > [cd], 
ab V cd is a raising or lowering operator, respectively. 

B. Consequent equations 

We now examine the DKP "consequent equations" 
using the irreducible representations for spin-O and 
spin-I. In,particular, we will show that solutions of the 
consequent equations are given by solutions of Eqs.(13) 
and (16). The DKP consequent equations are2 

We write these equations for spin-O as 

0A l/! = (OA)Pl/! + (op)pPAl/!, 

and for spin-1 as 

0Al/! = oA(6I' VI')l/! - 0p(AVp)l/! 
I' 

+ 0p(6 PI'VI'A)l/!. 
I' 

(102) 

(103) 

(104) 

Using the unit matrix in the two representations, Eqs. 
(103) and (104) reduce for spin-O to 

0A(6jlPjl)l/! = 0p(pPA)l/! 
jl 

'and for spin-1 to 

(105) 

OA(t~I'VVVJl) l/! =- 0p(AVp)l/! + 0p6(PJl V/JA)l/!. 
,. "(106) 

Recall the just derived properties of the basis ele
ments being projection and raising and lowering oper
ators. Using these properties it can be seen that Eq. 
(105) is an equation only for the four comp()nents of the 
spin-O field l/! that transform as a 4-vector. 

However, the lhs and the second term on the rhs of 
Eq. (106) are zero for the four components of the spin-1 
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field that transform as a 4-vector. Further, the fir,st 
termon the rhs of Eq. (106) is zero for the other six 
components. These two statements combine to mean that 
the spin-1 Eq. (106) implies 

(107) 

Equation (107) represents the subsidiary condition on 
the field to eliminate timelike mesons. In terms of the 
R-algebra we note that 

4 Vp == Rp. (108) 

Thus Eq, (107) can be written 

(109) 

Obtaining the constraint on the remaining field com
ponents (one remaining for spin-O, six remaining for 
spin-I) implied by Eqs. (105) and (106) is most easily 
done by considering the consequent Eq. (102) in an alter
native form. Equation (102) is derived by combining the 
equation 

0p{3p{3o({3Jl01' + m)l/! = 0 (110) 

and the defining relation (2) for the (3 matrices. 

Starting from (110) and using the P-algebra repre
sentation for spin-O, we have 

00 o"(PI')l/! + 0poo(pP)l/! = - moo(P)l/! - mop(pP o)l/!· 
(111) 

Multiplying Eq. (111) on the left by P we obtain 

(112a) 

Likewise, multiplying Eq. (111) on the left by P J)' we 
obtain 

(112b) 

Equations (112a) and (112b) are identical to Eq. (13). 

Similarly, after somewhat tedious algebra, it can be 
shown that the consequent equations for spin-1 have the 
solution (16). 

6. APPLICATIONS TO SPIN·Q MESONS 

Recentlyll-13 we have initiated a program to analyze 
the interactions of spin-O mesons using the DKP equa
tion instead of the Klein-Gordon equation. The analysis 
has led to an improved parameterization of the mesonic 
matrix elements. It is the purpose of this section to 
apply the algebraic formalism introduced in the previous 
section to show how it facilitates the analysis of such 
problems. By way of example, it will be shown that the 
P-algebra is a natural formalism to use to compare 
DKP results with results based on the Klein-Gordon 
equation. We will first consider the trivial case of free 
particles and then consider cases of interacting 
particles. 

A. Free field case 

The Klein-Gordon equations for a charged spin..,O 
particle are 

01'0,,¢= m2 <p, 

ooA>*=m2A>* Jl Jl'l' 'I' • 

(113) 
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The conserved charge current is 

'KG • *~ 
JI' ::: - zet> "I'et> 

::: - i[et>*al'et> - (al'et>*)et>]. (114) 

The normalized plane wave solutions of (113) are 

et>(x,t)::: (lN2PoV)e ip.x (115) 

et> *(x, t) = (l/.J2po V)e-ip.x. 

The DKP equations are 

(al'f3 11 + m)1/I = 0, all ~f31' - m~ = 0, (116a) 

where 

(116b) 

and the conserved current associated with the particle 
is 

(117) 

Normalized plane wave solutiol)s of the DKP equa
tions for spin-O particles are 

1/I(x, t) = (m/po V)1/2 u(p)e iP ' X , 

1/I(x, t) = (m/po V)1/2 u(p)e- iP' X 

where the five-component wave functions are 

(118) 

(119a) 

( 119b) 

The f3-algebra as defined by Eq. (2) imposes con
straints on the DKP field, namely, 

These constraint equations will be useful in later dis
cussions. 

Reducing the f3-algebra to the spin-O subalgebra and 
using the P-algebra representation, the DKP equations 
read 

al'(p)1/I = - m(PI')1/I, 

al1 (P I1 )1/I = - mP1/I 
and 

al'~P=m~I1P' 

al'~l1p = ml/iP. 

The constraint equations (120) become 

al'1/I = al'(p)1/I + a "C,PI1 )1/I , 

aill/i = al'l/ip + a/J~(jJP,,), 

(121) 

(122) 

(123) 

Now consider the free particle current in the DKP 
formalism. For spin-O the current is 
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j~KP = i~f3jJ1/I 
= i 1/I(P 11 + I'P)1/I. 

From Eqs. (121) and (122) we can write (124) as 

j~KP = il/i(PI1 ) 1/1 + il/i(I'P)1/I 

= - 1:.... (ii/P) al' (P1/I) + .i..(al1lfiP)(P1/I). 
m m 
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(124) 

(125) 

Since P1/I and lfip are solutions of the KG equation and 
are just the fifth components of the DKP fields, the KG 
and DKP free particle currents are identical. 

B. Conserved interaction current 

In the case of interacting particles the Simplest case 
we can consider is the interaction of spin-O particles 
with an electromagnetic field. Introducing the electro
magnetic field by the minimal substitution 

al' -') all ~ ieAI' = all', (126) 

the Klein-Gordon equations become 

a+a+'!'* = m 2 ,!,* I' I''t'' 't" • (127) 

The interacting meson current is 

j~G =- i[et>*a~et> - (a~et>*)et>], (128) 

which is conserved: 

(129) 

With minimal substitution in the DKP equations the 
interacting field equations are 

(a~f31l + m)1/I = 0, 

a~l/if311 -ml/i = O. 

The conserved current is 

j~KP = il/if31' 1/1, 

alljfKP = O. 

(130) 

(131) 

The field equations that are a consequence of the f3-
algebra in this case are 

a~1/I = a;'f3/Jf3 1l 1/l + 2~ F/Jp(f3 pf3 Il f3/J - {jPIlf3/J)1/I, 

- - ie-
a~1/I = a~l/I(3)Jf3" + 2m F"p1/I (f3"f3 Il f3 p - (jPIlf3,,), 

where we have introduced the electromagnetic field 
strengths via 

(132) 

± ieF"p = a~ a~ - a~ot = ± ie(a"Ap - 0pA,,). (133) 

GOing over to the second order wave equations from 
(132), we have 

a~a~l/I = m 2l/1 + ieFIl "f3 I1 f3"l/I 

+ 2~ a~F"p(f3pf3I1f3" - (jPIl f3 ,,)1/I, 

a~ a~lfi = m 2lfi - ieFIl " lfif3 1lf3 " 
(134) 

+ ~: a~ F"pii/(f3"f3 I1 f3 p - f3,,{jPI1)' 



                                                                                                                                    

1770 Fischbach, Nieto, and Scott: Duffin-Kemmer-Petiau subalgebras 

Finally, we have that the current can be decomposed 
as in the case of a Dirac particle so that 

j~KP = i ii/f3 jj l/I 

= 2~ {(a~ lj/) t/I -lj/a~l/I + av [lj/({3vi3 jj - i3 jj i3)l/I] 

(135) 

(Note that at this point our discussion of a DKP 
particle interacting with an electromagnetic field holds 
for either spin-O or spin-1 since we have used the re
ducible i3-algebra.) 

We should remark at this point that upon comparing 
Eqs. (127) and (128) with Eqs. (134) and (135) one might 
be lead to suspect that the conserved electrodynamics 
of spin-O particles in the Klein-Gordon and DKP forma
lisms differ. Such a difference might arise since the 
interaction is introduced by the same assumption in dif
ferent equations. However, we will in fact prove that 
there is no difference. First let us examine the struc
ture of the additional DKP terms in the spin-O case by 
introducing the P-algebra. 

The interacting field Eq. (130) becomes 

and 

a~Pt/I = - mPjjl/l, 

a~Pjjt/l =-mPl/i 

a~lj/p = m~jjP' 

a~~p = mlj/P. 

(136) 

(137) 

In terms of the P-algebra the consequent Eqs, (132) 
and the second order Eqs. (134) are 

and 

a+·1: = a+-;/,p + a+-;/,( P) + ~F -;/,P jj'l' v 'I' v'l' jj v m jjv'I' v 

a~a~l/I = m 2t/1 + ieF jjV(jjP)l/I + ~a~Fjjv(vP)t/I, 

a~ a~~ = m 2iiJ - ieF jjV~(vPjj) + ~ a~F jjV1J/P v' 

The expression (68) for the current becomes 

(138) 

(139) 

j~KP = -~ l(a~ljI)l/I - ~(a~l/I) + aAl/ICPjj - jjPv)l/I] 
2m 

- ~Fjjv1J/(Pv - vP)t/I}. (140) 

Although we have specialized to the case of spin-O via 
the P-algebra, the additional interaction terms are still 
formally present in the DKP Eqs. (139) and (140). The 
appearance of these additional terms arises from the 
v.ector component of the five-component DKP field. This 
can be seen from the fact that 

a~a~(Pl/I) = m 2(Pl/i), 

a~a~(ii/p) = m2(~p), 
(141) 

which follow from either Eqs. (136) and (137) or from 
Eqs. (139). The second order equations for the vector 
components of the DKP fields follows from (139) and are 
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(142) 

We will now proceed to prove that these apparently 
additional interaction terms are only part of the forma
lism, and the interaction in the DKP and Klein-Gordon 
formalisms are indeed the same. 

The proof is simple. Rather than writing the current 
decomposition (140) one proceeds directly from the ex
pression for the current before decompOSition. We had 

j~KP = i~i3jjl/l = ilj/(P jj + jjP)l/I. (143) 

From (136) and (137) we then have 

i - i-
jp,KP = - -l/Ia Pt/I + -(a+l/IP) ,. m jj m jj 

=-~[(~p)a~(Pl/I) - (a~lj/p){Pl/I)]. (144) 
m 

But since i{iP and Pl/I are solutions of the KG Eqs. 
(141) the two currents (128) and (144) are identical. 

C. Nonconserved electrodynamics 

It should be emphasized that in the above proof the 
equivalence of the Klein-Gordon and DKP descrip-
tions of interacting spin-O particles is only true for a 
conserved interaction charge. To see what happens when 
the interaction charge is not conserved let us remove the 
restriction that the electric charge be conserved. Retain
ing the minimal substitution prescription for introducing 
the electromagnetic field, we have the partially con
served currents 

and 

j~G =-i[cp;a~cpA-(a~cp;)cpA]' 

ajjj~G = - i(ml- m~)cp;cpA 

j~KP = iii/Bi3 jj l/lAl 

ajjj~KP = i(mB - mA)ii/Bl/i A' 

(145) 

(146) 

In the limit of the current being conserved we have 
m A = m B' It will be seen below that the mass difference 
associated with a partially conserved charge leads to a 
difference between the two formalisms. 

Proceeding as in the case of a conserved current, we 
have 

Now using the relations 

(P t/I A) == - -rm;,. cp A, 

(ljIsP) ==-"';mBcp~, 

Eq. (147) becomes 

(147) 

(148) 

j~KP = - i";mB/mAcp~a~cpA + i-/mA/mB(a~cp;)cpA' 
(149) 

which is clearly not Eq. (145) for the Klein-Gordon 
current.14 Note, however, that again in the limit mA = 
mB the two currents become identical. 

Equation (149) can be written in the more interesting 
form 
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(150) 

Equation (150) consists of two pieces. The first piece 
is the Klein-Gordon current multiplied by a factor which 
is unity only when m A == m B • The second piece does not 
occur in the Klein-Gordon current and would have to be 
included via an induced coupling term. Thus we can con
clude that using the same prescription for introducing an 
interaction in the DKP and KG formalisms can lead to 
inequivalent results for the case of a partially conserved 
current. 

At first sight, this conclusion appears to be surprising. 
However, it should be noted that although there is an 
intimate connection between induced couplings in the 
case of a partially conserved current and the mass dif
ference, the connection is not as obvious as is often 
assumed. 

D. General nonconserved currents 

It is relevant to comment here that not only does the 
DKP current have a different structure but the current 
divergence in(146) may have a zero at t == [(mA +mB)2].1l.15 
It is obvious that the two additional features are related. 
A detailed examination of the DKP and KG descriptions 
of partially conserved interaction charge currents is 
presented elsewhere,14 The question of the formal struc
ture of these currents is in keeping with our present 
discussion and it is to this question that we will now 
address ourselves. 

In some earlier workll - 13,16 we have been particu
larly interested in the nonconserved vector-current 
matrix element between pseudoscalar (scalar) meson 
states. (If the states were of opposite intrinsic parity, 
the relevant matrix element would be the axial current 
matrix element and all of the subsequent arguments for 
the case of a vector current would apply.) Since these 
are partially conserved currents, we should also consider 
the current-divergence matrix element. Indeed, since 
the current-divergence matrix element has a simpler 
structure, we will consider it first. 

For the case of a KG description we have 

i(m2 -m2) 
(Bia~y,\KG(O)iA) = 2V~E A fo(t) , 

A B 
where 

t == - (PA - PB)2. 

(151) 

In the limit that the masses of the two states become 
equal the current-divergence is zero. For the DKP des
cription of the current-divergence there are two possible 
terms: 

Da == a )y,\a == liiBPt/I Aga(t), 

Db = a,\ V,\b == liiB(6AP,\)l/IAgb(t). 
(152) 

However, as one would expect, the two possible terms 
are not independent since 

(153) 

Thus we have 

Db == liiBPl/IAgb(t). (154) 
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The particular choice for the current-divergence in 
the DKP formalism must be made on an independent 
basis, such as dynamical considerations. In earlier work 
we were lead to make the choice 

D == a,\v,\ = i(mB -mA) \fiB l/IAgO (t) 

== i(ms -mA)liiB(P + 6 AP ,\) l/IA go(t)· (155) 

This choice is "natural" in the sense that for physical 
DKP fields in the absence of explicit induced coupling 
we have 

a,\ V,\ == i(mB - mA)liiBt/lA' 

A point that should be emphasized here concerns the 
question of so-called "smoothness" assumptions for form 
factors such as go(t). This question arises because we 
can write (155) as 

i(m~ -m~) 
(B ID IA) == :.JE:E fo(t)go(t), 

2V EAEB 

fo(t) =~mA + mB)2 - t)/2(mA + mB)(mAnlB)1!2. (156) 

The fo(t) t-dependence comes from the wave functions. 
Smoothness assumptions about induced couplings apply 
togo(t). The choice for fo(t) is an assumption about the 
wave functions for the physical states and, in particular, 
is an assumption about the dependence of the current
divergence on the mass difference. 

We turn now to a discussion of the vector current 
matrix element. In the KG formalism this is 

(Bi V{W(O) iA) == 2V~E [(PA + Pshf+(t) + (PA - PBhf-<t)]. 
A 13 (157) 

For spin-O particles the only 4-vectors in the problem 
are the momenta of the particles and consequently the 
parameterization of Eq. (157) is necessary in the KG 
description. In the DKP formalism there are additional 
4-vectors arising from the /3-algebra. However, as one 
would expect, there can be only two independent form 
factors in the parameterization of a vector current 
matrix element. For completeness, and to demonstrate 
the utility of our algebraic formalism, we will explicitly 
prove that there are only two independent 4-vectors. 
Moreover, a detailed examination of possible induced 
vector couplings is important for the reasons raised in 
the above discussion of the current-divergence matrix 
element. 

The linearly independent basis elements of the spin-O 
subalgebra are 

{p,P,\, ,\P, '\P v }' 

For the present discussion it is convenient to trans
form to an equivalent set of linearly independent basis 
elements, namely, 

In terms of the five-dimensional representation of the 
/3-algebra these elements are 
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>"P1I + vP >,.:::;: f3>,.f3 11 + f3 vf3x, v ¢ A 

= {3~(1 - {3~), v = A ¢ J.l., 

xPv - yPx :::;: {3x{3v - {3v{3x. 

The possible vector couplings, including induced de
rivative couplings, are 

VAl:::;: IiiB (P X + X P) 1/IAg 1 (I), 

V-l = jfe(P x - xP ) 1/IAg2(t), 

Vf:::;: 0x(IiiBP1/IA)g3(t), 

Vx4:::;: 0JIiiBhPIl + vP X)1/IA]g4(t), 

5 (-VA = 0v 1/IB(AP 1I - vP A)1/IA]g5(t), 

VAS:::;: OA(ii/B1/IA)gS(t). 

(158a) 

(1 58b) 

(158c) 

(158d) 

(158e) 

(158f) 

Using Eqs. (121) and (122), the current element (158c) 
becomes 

U sing the results from the discussion of current
divergence the current element (158f) can be reduced to 

(160) 

To reduce the current elements (158d) and (158e) the 
following two identities are required: 

(ollliiB)(IlPv)1/IA + liiB(v P Il)Oy1/lA:::;: 01l(liiB1/IA) - 0J.!(liiBP 1/IA) 
and (161) 

(ovliiB)(IlPv)lItA -liiB(vPIl)ovlltA 

(
(mA + mB)-

:::;: T';;-m-lItB(PIl + Il P }1/IA 
A B 

(mB-mA) ) + 1/IB(PIl - ilP )1/IA h1 (t). 
2mAmB 

(162) 

(All hi(t) are explicit functions of t.) The identities 
(161) and (162) can be deduced from the constraint 
equations (123). Using these identities the current ele
ments (158d) and (158e) become 

(163) 

and 

5 (mA + mB)-
Vx :::;: lItB(PA + >,.P)lItAh2(1)g5(t) 

2mAm B 
(mA -mB)-+ lItB(PX - AP)1/I Ah3(t)g5(t). (164) 
2mAmB 

Thus we are left with the two independent vector 
current elements (158a) and (158b). That these two ele-
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ments are independent and are just linear combinations 
of the 4-momenta is easily demonstrated. Explicitly we 
have that 

liiB (PA) 1/1 A == - .JmB/mA q>;o>,. q> A, 

liIBCP)1/IA ="mA/mB(oAq>~)q>A' 

where q>; and q> A are KG fields. 

(165) 

(166) 

We emphasize that for partially conserved currents, 
the DKP and KG matrix elements are inequivalent in the 
sense discussed earlier when considering minimal sub
stitution and a partially conserved electric charge. Put 
Simply, the difference arises because although the in
duced coupling t-dependence is essentially the same in 
the two formalisms, the different wave functions for the 
physical particle states have different t-dependences •. 
The total t-dependence of the vector current matrix 
element is the combined dependence from both sources. 

7. CONSERVED AND NONCONSERVED 
SPIN-' CURRENTS 

In this section we give a brief comparison of spin-l 
currents in the Proca and DKP formalisms. The analysis 
is analogous to the discussion already given for spin-O 
currents in Sec. 6. 

For a free spin-1 particle of mass m the Proca equa
tions are 

(167a) 

(167b) 

where QlI is a 4-vector field (Q,Q4) with each cStmponent 
being defined as a solution of the KG equation. QII also 
has imposed on it the subsidiary condition 

o"Qy :::;: 0 

to remove timellke particles. 

The DKP equations for spin-l are 

01lf31l 1/1 = - m1/l, 

0llliif3 1l == mlii, 

(168) 

(169a) 

(169b) 

with the {3 matrices being taken in the ten-dimensional 
representation. The connection between the Proca equa
tions and the DKP equations is obtained by introducing 
the spin-l projection operators of the R -algebra. In the 
ten-component DKP representation are four components 
R 111/1 that transform as a 4-vector and six components 
R 1:/J1/I which are the meson field strengths associated 
WIth the spin -1 field Rv 1/1. Rewriting the DKP equation 
as coupled equations for these two sets of components, 
we have 

0A(RyA)lIt :::;: - m(R,)1/I, 

i\ (R >,.)1/1 - Ox (R y)1/I :::;: m (R VA)1/I. 

Defining 

the equations become 

oA(R"A)lIt == -m3/2Qv' 

0vQx - 0AQV =m 1 / 2(R vA)lIt. 

(170a) 

(170b) 

(171) 

(172a) 

(172b) 
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Thus 

(R v~Jl/I = (11m 112) UVA , (173) 

where U VA are the field strengths. 

If the Proca field Qv is taken to be complex the con
served charge current associated with the particle is 

o p 0 ( ....... * A ........ * A ) 
Jj.I :=- z Qv UI'V - Ul'vQv, 

(174) 
0j.lj: = 0. 

The corresponding DKP current is 

j~KP = ilf/{3J.1l/1, 0l'j~KP = 0, (175) 

which can be written in the V-algebra representation as 

(176) 

USing the definition of the V-algebra elements in terms 
of the R -algebra elements, the DKP current can be 
written as 

j~KP :::::: i~ IiIC,R)(RAI')l/I + i ~1iI(j.lAR)(RA)l/I. 
A A 

(177) 

From the definitions of Qv, U /W the current is 

°DKP - - i (Q *U U * ) JI' - V j.ly - l'yQy' (178) 

Hence for the free particle charge current the DKP 
expression for the current is identical to that obtained 
from the Proca equations,17 

Considering now two particles of different masses, the 
Proca equations imply a transition current of the form 

Jop =:_ ilQ~B*fjA _ fjB*Q~A) 
I' ~ y I'y I'V v (179) 

with divergence 

a JOp = - i(m2 _ m2)Q"./j *Q~ A Il Il A B y v· (180) 

The DKP transition current is 

The DKP transition current can be cast in a Proca 
form as the free particle current was, yielding 

jRKP = - i (:;r2(Q~)*U:v +i(:;r2(Uff)*Q~ (183) 

Clearly the DKP transition current (183) is not the 
same as the Proca current (179). The DKP form of the 
current contains a term proportional to the Proca 
current plus an additional term. 

ACKNOWLEDGMENT 

Two of us (E.F. and M.M.N.) would like to thank the 
Aspen Center for Physics for its hospitality during the 
summer of 1972, when part of this work was done. 

APPENDIX 1 

The multiplication table for the P-algebra is 

PP=P, 
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P(I'P) = (PI')P =: P(j.lPv) == (j.lPv)P == 0, 

(PIl)(PV) = (vP)(I"P) = 0, 

(j.lP)(P v) = j.lP v' 

(PIlHvP) = POIlV' 

(Pj.I)(vPA) = PA°j.lv' 

(vPA)(I'P) = vPOAIl' 

yP(j.lPA) = (IlPA)PV = 0, 

(IlPV )C)A) = j.lP>-.°vo· 

The multiplication table for the V-algebra is 

(j.I Vv)(o Vp) = II Vp 0vo' 

(I' V)(o VpT) = I'VpTll va' 

(A Va)(pv Va) = (0 Vp A)(I' Vv) = 0, 

(I' VV)(pAVOT) == (p>-,VaT)(j.I Vv) = 0, 

(j.I Vv>-.)(pa V T) = II V Tt::. v>-'pa' 

(IlAVy)(oVp) = Il tY pOya 

(VA Vj.I)(T Vpo ) = v>-' Vpa ll 1l7 , 

(I' VV>-')(T Vpo) = (v>-. VI')(po VT) = 0, 

(j.I VVA)(pa VTK ) = j.I VTKt::. V>-.pC1' 

(pOVTK)(v>-,Vj.I) = POVj.lt::.7KVA' 

(pOVTK)(j.I VVA) = (v>-,VI')(poVTJ:::: 0, 

(pOVTK)(VAVj.ly) == paVj.lyt::.TKVA' 
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In this appendix we give representations of the P- and 
V-subalgebras. Such representations can be obtained 
immediately from the multiplication rule for the inde
pendent basis elements of each of the algebras. 

We had for the P-subalgebra that the multiplication 
rule for the linearly independent basis elements is 

(aPb)(cP ,) = (aP d)O(b, c). 

We then have that a representation of the matrices is 

(aPb)mn = O(m, a)ll(n, b), 

since 

[(aPb)(cP d)]mn = O(m, a)O(n, d)O(bc) 

:::: (aP d)mnli(b, c). 

With the DKP equation written in the Pauli metric, 
the representation of the P-algebra is 

CPj)mn = O(m, i + 1)O(n,j + 1), i,j = 1,2,3, 

(4P4)mn :::: O(m, 1)Ii(n, 1), 

(5P5)mn = Ii(m, 5)O(n, 5), 

(5P j)mn = Ii(m, 5)Ii(n, i + 1), i:::: 1,2,3, 

(4P j)mn = (- i)O(m, 1)O(n, i + 1), i = 1,2,3, 
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(5P 4)mn = (i)6(m, 5)6(n, 1), 

(~5)mn = (5P J:m' 

(t P 4)mn = (4P i):m' 

(4 P 5)mn = (5 P 4):",' 

For the V-algebra we had that the multiplication rule 
for the linearly independent basis elements is 

(ab Vcd)(e/Vgh) = ab VghA cde/' 

where 

ab V ca = - btl V ca = btl V d c • 

With {m, n == 1, ..• , 10} and [cd] the ordered set [12] '" 
1, [13] '" 2, [14] '" 3, [15] '" 4, [23] '" 5, [24] '" 6, [25] 
'" 7, [34] '" 8, [35] '" 9, [45] '" 10, a representation of the 
V-algebra is 

(ab Vca)mn = o'(m, [OO])o'(n, [de]), 

where the modified Kronecker o-function is defined such 
that 

o'(m, [00]) = - o'(m, [ba]) 

and we choose 

~
' + 1 

o'(m, [00]) =. ' 
- 1, 

b> a 

b < a' 

Then, using the contraction 

~o'(m, [00 ])6'(m, [cd]) = o(a, c)o(b, d) - o(a, d)o(b, c) 
m 

J. Math. PhY5., Vol. 14, No. 12, December 1973 

we have that 

{(ab Vca)(e/ Vgh )} mn == o'(m, [00 ])o'(n, [hg])A cde/ 

= (ab Vgh)mn A cde/' 

which verifies the representation. 
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A mathematically rigorous discussion of the diffusion equation and of its connection with the 
Einstein relation linking the diffusion coefficient and the velocity autocorrelation function is 
presented. Diffusion is then propounded as a typical case for which the logical consistency of a 
purely mechanistic theory of dissipative phenomena can be established. 

INTRODUCTION 

In this paper we analyze a diffusion process as a test 
case of a stationary dissipative system to be understood 
from the point of view of statistical mechanics. The lit
erature on this subject abounds and one might justifiably 
be surprized that some serious problems of consistency 
still remain open. This seems however to be the case, 
although physicists admittedly accumulated a corpus of 
traditional wisdom in these matters. The purpose of this 
paper is precisely to show to which extent some of the 
semiheuristic arguments commonly found in the litera
ture can be elevated to the status of mathematically 
meaningful statements. Specifically, we are interested 
in the mutual consistency of: (i) a diffusion equation 
valid for all positive times, (ii) an Einstein relation link
ing the diffusion coefficient to the time integral of the 
second derivative of the position covariance (Le., to the 
time integral of the velocity autocorrelation function), and 
(iii) a purely mechanistic model in which the time evo
lution is conservative, i.e., can be described through a 
continuous, one-parameter unitary group. 

We solve this problem as follows: 

In Sec. 1 we review the phenomenological background 
for the diffusion equation we want to consider. This sec
tion is introduced for expository purposes only, and 
does not claim new results. 

In Sec. 2 we analyze an argument originally due to 
Lebowitz, and show (Theorem 1) that it leads to some 
difficulties when applied to the Situation described by 
our diffusion equation. 

In Sec. 3 we present a Hilbert space solution of our 
diffusion equation. SpeCifically, we determine (Lemmas 
1 and 2) the Hilbert space in which physics dictates that 
this equation be solved. We then show (Theorem 2) that 
our diffusion equation generates in this Hilbert space a 
contractive semigroup, the spectral properties of which 
we establish. Based on this solution, a description is 
then given (Theorem 3) of the analytic behavior of the 
position autocorrelation function (i.e., of the covariance 
of the stationary dissipative process defined by our dif
fusion equation). In particular, we show that the second 
derivative of this function diverges as t- 1 / 2 when t 
approaches + O. We then derive rigorously an Einstein 
relation for the diffusion coefficient. 

In Sec. 4 we show (Theorem 4) that the stationary dis
sipative system described by our diffusion equation ad
mits purely mechanistic models and we establish the 
canonical spectral properties of the time-evolution for 
some particular "minimal" models which we define and 
show to exist. These minimal mechanical models are 
proven to be not only ergodic, but to be also mixing and 
even to have Lebesgue spectrum. We finally indicate 
(Theorem 5) some consequences of the just proven com
patibility of the time-reversibility characteristic of 
mechanical systems, and of the irreversible behavior 
encountered in a stationary dissipative system. 

1775 J. Math. Phys., Vol. 14, No. 12, December 1973 

The key results are thus isolated in the form of 
theorems, the proofs of which are given in an appendix. 

1. PHENOMENOLOGICAL BACKGROUND 

The aim of this section is to review the phenomenolo
gical basis of the theory. 

We consider an ensemble of spherical particles, the 
movements of which are restricted to the positive real 
axis R+. Let p(x, t) denote the density of these particles 
at (x, t) where x and tare, respectively, the position and 
time coordinates. 

These particles are supposed to diffuse in some vis
cous medium at constant natural temperature /3(x, t) == 
f3 == (kT)-l, and to be submitted to an external potential 
V(x, t) == mgx. A more complicated space-dependance of 
the potential would only result in a somewhat more cum
bersome notation, without affecting the main conclusions 
of this paper. We will therefore stick to this simple 
potential. 

Let 1], r, and v denote, respectively, the viscosity of the 
medium, the radius of the particles, and the instantaneous 
velocity of the particles. 

For small values of r and v (specifically for 
rVPTJ-1 « 1), the Navier-Stokes equation leads to the 
Stokes law according to which the medium exercises on 
the moving particles a "frictional" force F == -(61Tr1j)v. 
We thus get the Langevin-type equation 

mlj == -(61Tr71)v - mg 

from which we conclude that the particles reach a ter
minal velocity 

where Il == (61Trl])-1. 

When the particles move at the terminal velocity 
(- v 0) they produce a flow 

CPs(x,t) ==-voP(x,t) =-Ilmgp(x,t). 

On the other hand, t~e flux due to diffusion is given by 
the first Frick's law 

D will be referred to in the sequel as the diffusion coeffic
ient. We thus obtain a net flow 

cp(x, t) == - vop(x, t) - D(a xp)(x, t). (1) 

The next step is to invoke the conservation law for 
matter, which when expressed in differential form reads 

Upon introducing (1) into (2) we get the diffusion 
equation 

Copyright © 1973 by the American Institute of Physics 
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(3) 

The constraint that the particles are restricted to 
move on JR+ means that an impenetrable wall is placed 
at x := 0, resulting in cp(O, t) = 0 for all times t. We thus 
have to solve the partial differential equation '(3) subject 
to the boundary condition 

Vop(O, t) + D(a xp)(O, t) = 0 for all t E JR+ • (4) 

As is well known, Eq. (3) subjected to (4) and to 

• ~ 00 p(x, t)dx = 1 for all t E JR+ 

admits a unique stationary solution 

Po(x, t) = (va/D) exp[- (vo/D)x] 

which when compared to the canonical equilibrium 
density 

Po(X, t) = (f3mg) exp(- f3mgx) 

leads to the identification 

D = /lkT = kT /67Trr; 

knowni as the Nernst 2-Einstein 3 formula. 

(5) 

(6) 

From the theory of Brownian motion,4 viewed as a 
probabilistic approach to the diffusion equation, we only 
need to recall here that the average distance ~ 
"travelled" by a diffusing particle during a time incre
ment t is given by 

~2 = 2Dt. (7) 

Stricto Sensu, ~ in this relation is to be interpreted as 
the dispersion at time t of a probability distribution con
centrated on a point x at time t = O. As is well known, 
relation (7) is verified experimentally over a very wide 
range of times. 

A heuristic argument l seems to indicate that the velo
city autocorrelation (v(O)v(t» for such a particle is an 
even function of time, which essentially vanishes outside 
of a veryymall neighborhood of t = 0, and which is re
lated to 6 2 by 

Upon comparison of (7) and (8), one gets 

D = foOO (v(O)v(t»dt. 

(8) 

(9) 

Although Einstein did not write this relation, it seems 
to underline part of his argument, and is thus referred 
to as the Einstein relation by some authors. For lack of 
a better term, we shall conform to this usage in this 
paper. We should also notice that (9) finds some support
ing evidence, although still on a heuristic level, in the so
called linear response formalism. I From a formal point 
of view, however, one should realize that the derivation 
of (9) should be submitted to some further investigation. 
We shall come back to this problem later on in this 
paper. 

2. THEORETICAL DIFFICULTIES 

In spite of their incontestable successes in describing 
phenomena associated with diffusion, the considerations 
reviewed in the preceding section do leave open serious 
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gaps as· to their internal consistency, as well as to th~ir 
conSistency with mechanics. 

As already pOinted out by Einstein,3 the velocity of a 
truly Brownian particle is a rather ill-defined concept. 
This is emphasized E.y the attempt to define f) as the 
limit, as t -? + 0, of 6/t, which diverges to infinity as 
t- 1 / 2 if one uses (7): the "trajectory" of a truly Brownian 
particle would be a continuous, nowhere differentiable 
curve. The traditional wisdom, going back to Einstein 
has it that mechanical considerations would prevent the 
diffusion equation to hold for "very small" times . 
Whereas we are willing to recognize the possibility that 
some departure from the diffusion equation might occur 
at "very small" times for some "real" physical systems, 
we shall prove, towards the end of this paper, that a dif
fusion equation, valid for all t E IR,+ is not incompatible 
with the fundamental laws of mechanics. 

An equally serious difficulty is brought to light by a 
careful analysis of an extremely interesting argument 
recently presented by Lebowitz. 5 We first want to go 
over Lebowitz' argument with a special emphasis of the 
assumptions under which it can be carried out. In doing 
so, we shall see that this argument can be extended suf
ficiently further than originally indicated so as to lead to 
the necessity of revising the otherwise quite reasonable 
assumptions underlying the original argument. 

Let '2: be a (classical) mechanical system where xj(t), 
vj(t) denote respectively the position and the velocity of 
the ith particle at time t, and let us write ( ... ) for the 
canonical equilibrium average for some natural tempera
ture 0 < (3 < 00. We say that ~ is smooth if the following 
conditions are satisfied. 

(a) The position autocorrelation function cp defined by 

cp(T - t) = (x j(t)x j(T» 

is continuous, and admits an absolutely continuous 
derivative; 

(b) ¢'(T - t) = - (vj(t)xj(T» = (xj(t)v;(T»; 

(c) q"(T - t) = - (v;(t)vj(T»; 

(d) (vi(O» = 0 = (xj(O)Vj(O»; 

(e) (X;(O» < +00. 

These conditions seem indeed to be reasonable if the 
Hamiltonian H(x l' ••• ,x N' VI' ••. ,vN ) of the system con
sidered is of the form H = T + V, where 

T = ~j(mvj2/2) V = V(x l , ••• ,xN ) 

and V comprises a "sufficiently smooth" interaction 
between the particles, and an external potential of the 
form 

Vext =~jVj(Xj) 

with either V;(x j ) := 0 for 0 .; x . .; Land V.(x.) = + 00 

otherwise (i.e., ~ is a finite sys'tem enclos~d ~ithin 
rigid walls); or Vj(x j ) = Arj for Xi '" 0 and V;(x j ) = + 00 

otherwise (Le., ~ is a semi-infinite system with a rigid 
wall at x = 0, and is submitted to an external homo
geneous field). 

In particular, we should point out that conditions (b) 
and (c) essentially express that 

dx; 

dt 

1 aH 
=--=vj 

m aV j 
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and that d/dt and ( ... ) can be interchanged. As innocuous 
as these conditions might appear at this point we shall 
see presently that one of them at least has to be softened 
if our mechanical system is to show a diffusive be
havior compatible with the Einstein formula. We shall 
show later on in this paper that such a modification is 
indeed required by the diffusion equation itself and that 
this modification is compatible with the fundamental 
laws of mechanics. 

The following theorem extends an argument originally 
due to Lebowitz. 5 

Theorem I: Let 6 be a smooth mechanical system. 

(1) If 6 is mixing with respect to time, Le., in par
ticular, 

lim l(ai(O)b;(T» - (ai(O»(b;(T» I = 0, 
T-->OO 

where (aib;) is any of the pairs (xi,X i ), (Xi' vi) and 
(Vi,V i ), 

Then 
T 

D = lim .~ (v;(O)v;(t»dt = O. 
T->CiO 

(2) If 6 is only mixing with respect to time in con-
figuration space, Le., in particular, 

lim l(x;(O)x;(T» - (x;(O»(x;(T»1 = 0 
T->CiO 

Then either lim r (v;(O)v;(t»dt does not exist 
T->CiO 0 

(3) The conclusion of (2) can also be obtained, without 
any mixing assumption, if anyone of the following con
ditions is satisfied 

(0 I(x ;(O)x ;(t» I is a bounded function of t, 

(ii) (X;(0)2) < 00, 

(iii) <{x ;(0) - (x i(O»}2) < 00 , 

(iv) 6 is of finite extension in configuration space. 

The proof of this theorem can be found in the Appen
dix. 

As already pointed out by Lebowitz, the third part of 
the theorem says in particular that a (smooth) mechani
cal system confined in a finite region of configuration 
space will never provide a model for diffusion in which one 
can recognize the occurence of a non vanishing diffusion 
coefficient D through the use of the Einstein relation (9). 

Moreover, the formulation of the theorem which we 
gave shows that the same negative conclusion holds 
under more general situations. In particular, the con
dition that 0 .; Xi'; L < 00 can be released to the weak
er condition that (x ;(0» and (x ;(0)2) be both finite, a 
situation which one might expect to be realized for a 
semi-infinite system in an homogeneous external field 
(see for instance Sec. 1 above). 

This raises some serious questions of consistency. 
The first one is linked to the reliability of the Einstein 
relation. Specifically, one should ask whether the heuris
tic derivation of this formula can be straighted to a 
rigorous derivation, starting from the diffusion equation. 
We shall answer affirmatively this question in the next 
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section. AntiCipating on this result, we conclude that 
one at least of the "smoothness" conditions has to be 
released. We shall determine precisely which one in 
the course of the next section. 

This suggests furthermore the question of whether 
the modification of the assumptions to be proposed in 
the next section will also invalidate the first and the 
second part of the theorem. We shall establish (also 
in the next section) that some mixing properties are 
indeed not only compatible with the diffUSion equation, 
as one would like to expect from heuristic insight, but 
actually follow from this equation as rigorous 
consequences. 

The last question suggested by the "no-go" theorem 
just given is that of the compatibility of the diffusion 
equation with the fundamental laws of mechanics. We 
shall also touch upon this question in Sec. 4. 

3. SOLUTION OF THE DIFFUSION EQUATION 

On the basis of the phenomenological considerations 
of Sec.1, we have to solve the partial differential 
equation 

0tP = AoP with 11.0 = voo .. + Do~ and 

(x, t) E IR+ x JR+ 

subject to the boundary condition 

VQP(O, t) + D(o .. p) (0, t) = 0 for all t E IR:. 

Our first step is to find a Hilbert space Jeo on which 
this makes sense, both mathematically and physically. 

In the sequel we denote by eo(JR+) the set of all bounded 
continuous functions A : JR+ -> C, equipped with the usual 
compositions laws with make eo(JR+) an Abelian C*
algebra. 

If P is a state on eo(JR+) we denote by (p;A) the ex
pectation value of the observable A E eo(JR+) in the 
state p. For instance, if 

po(x) = (vo/D) exp[- (vo/D)x], 

(Po;A) = foCiO A(x)Po(x)dx. 

If PI and P2 are two states on eo(JR+), we write PI -i P2 
whenever there exists a positive number ,\ such that 
(PI;A) .; '\(P2;A) for all positive A E eo(JR+). 

Finally, we mean by £2(W, dJ.l.(x» the Hilbert space of 
all functions >It: JR+ -> C which are square-integrable with 
respect to the measure IJ. on JR+, Le., such that 

ll>ltll~ = fo
CiO 

1>lt(x)12dlJ.(x) < 00. 

As is usually done we drop the index IJ. when IJ. is the 
Lebesgue measure. 

The following two well-known6 lemmas provide a phy
sical interpretation for our choice of the Hilbert space 
Jeo in which we shall solve the diffusion equation stated 
in the beginning of this section. 

Lemma I: Let Jeo = £2(JR+,dJ.l.(x» with dlJ.(x) = 
exp(voX/D)d.x, and CB(Jeo) be the algebra of all bounded 
linear operators on Je o• Then the mapping 7T: eo(JR.+) -> 

CB(Jeo) defined by (7T(A)>It)(x) = A(x )>It(x) is a representa
tion of the C * -algebra eo (JR+) satisfying the following 
properties. There exists an element 4>0 E Je o such that 
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(i) (~o' 7T(A)~0)1' = (Po;A) for all A E <!?,0(1R+), 

(ii) {7T(A)~o IA E <!?'0(1R+)} is dense in JCo' 

Specifically,~o(x) = (v o/D)1/2 exp(- vox/D). Up to 
unitary equivalence 7T is the only representation of <!?'0(1R+) 
satisfying properties (i) and (ii) above. 

Lemma 2: To any state P on <!?'0(1R+) su<;h that p ~ Po 
corresponds a unique positive element B E 17T(<!?'0(1R+))}' 
such that (p;A) = (~o,7T(A)B~o) for alIA E <!?,0(1R+). 
Conversely, this formula defines" a state P on <!?'0(1R+) with 
P -1 Po whenever B is a positive element in {7T(<!?'0(1R+»}" 
such that (~o,B<l>o)1' = 1. 

For the sake of notational simplicity, and when no con
fusion is likely to occur, we shall write A for 7T(A). For 
the same reason, we shall simply write <!?'0(1R+)" for the 
(maximal Abelian) von Neumann algebra {7T(<!?'0(1R+»}" 
generated in (p"(JCo) by 7T(<!?,Q(IR+»,and we will identify it 
with the algebra .r OO(IR\ dx) of all essentially bounded 
functions on R+ with respect to Lebesgue measure. 
Similarly, we shall simply denote by Po the unique nor
mal extension Po of Po to <!?, 0(1R+)" ,and thus write for in
stance the conclusion of Lemma 2 as (p;A) = (Po;AB). 

We now assert the integrability of our diffusion equa
tion within the space JC o = £2(1R+, d/1(x» of lemmas 1 and 
2 above, and we give some basic properties of its 
solutions: 

Theorem 2: Let :D(Ao) be the dense linear manifold 
in JCo constituted by all ~ E JC o such that (i) \)J has 
absolutely continuous first derivative, and (ii) 
vodxl}! + Dd~1JI E JC o' (iii) vol}!(O) + D(dxlJl)(O) = O. Let Ao 
be the operator defined on :D(Ao) by Ao == Vod~ + Dd;. 
With ~o(x) = (V O/D)1/2 exp(- vox/D), let JCo( ) (resp. 
JC$) denote the one-dimensional subspace of JC o genera
ted by ~ 0 (resp. the orthocomplement of JC o (0) in JCo)' 
Then 

(a) Ao admits only one eigenvalue, namely zero, and the 
corresponding eigensubspace is JCo(O). 

(b) The restriction A-o of Ao to :D(Ao) n JCo is unitarily 
equivalent to the self-adjoint operator A defined in 
JC = £2(1R+, dx) by A = - ~il/4D) 1- Dx2 on the natural 
domain :D(A) = {>It E JC I ( x41 >It(x) 12 dx < co}. 

-0 

(c) Ao is self-adjoint. Its spectrum Sp(Ao) is the union 
of a discrete part SPd(A o) = {O} and a part SPac(AO) which 
is absolutely continuous with respect to Lebesgue 
measure, and extends from - co to -(v5/4D). Sp(Ao) is 
simple. 

(d) Ao is the generator of a contracting semigroup 
{So(t) 1 t E IR+} of self-adjoint operators on JC o• In par
ticular, if So (o>(t) and So(t) denote, respectively, the 
restrictions of S(t) to the invariant subspaces JC o (0) and 
JC(j, we have So(O)(t) = I and IISo(t)II ~ exp(- vilt/4D). 

(e) For every pet) with p(O) -i Po satisfying the diffusion 
equation, there exists a unique positive element 
B E <!?,0(1R+)" such that (p(t);A) = (<I>o,AS(t)B~o)I" 

The proof of this theorem is sketched in the Appendix. 

Upon using the generalized Fourier transform 7 which 
establishes the unitary equivalence between A 0 acting in 
JC o and the operator 0 ITJ A acting in C i'jj JC,we can in par
ticular explicitly compute, for every t in IR+, the num
erical value of (p(t);A) for every A in <!?'0(1R+) whenever 
the initial state of :E satisfies the condition p -i PO' 
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(p(t);A) = (po;A) + (~o,A(I-Eo)So(t)(I-Eo)B<Po)I" 

where Eo is the projector from JCo onto JCo(O). In 
particular, 

1 (p(t);A) - (Po,A)1 ~ IIA~olll" II B<I> 011 I' exp(- v~t/4D) 

so that p(t) tends exponentially (in the w*-topology) to 
the equilibrium distribution Po as t tends to infinity. 
This illustrates the dissipative character of our dif
fusion equation. 

In a general system the time evolution would be given 
by Set) = exp[- i(n + iA)t] with n and A self-adjoint. If 
A = 0, the time evolution would be unitary and the sys
tem would be a conservative, mechanical system. Here 
the exact opposite occurs: n = 0 and A = Ao ,c O. It 
should be realized that the extreme dissipative ness ex
pressed by the self-adjointness and negative definite
ness of the generator (vodx + Dd;) of the time evolution 
is intimately linked to the measure d/1(x) = exp[vcr/D] 
imposed on us by our problem. 

It will be our task in the next section to show that this 
extreme dissipative behavior is nevertheless strictly 
compatible with a global mechanical evolution. 

We presently want to exploit the spectral properties 
of the diffusion equation which are established in 
Theorem 2 and compare their consequences to the 
assumptions and results of Secs.1 and 2. 

Lemma 3: Let {So(t) I t E 1I~:} be the semigroup gen
erated in JC o by our diffusion equation, and Ao be its self
adjoint generator. Then for every t> 0 and every 
integer n > 0 

(a) So(t)JCo C :D(Ao), 

(b) for every ~ and >It in JC o' (<I>, So (t)>It)!l is continuously 
differentiable to all orders and there eXIst An < CO such 
that 

I d7<<I>, So(t)>It)1' 1 ~ An t-n • 

The proof of this lemma is given in the Appendix. 

Theorem 3: Let X be the operator defined on the 
natural domain :D(X) coJCo by (X>It)(x) ==x>lt(x). Then 

(a) cp(t) =' (~o,XSo(t)X~o) is a continuous bounded 
function of t E IR+; I' 

(b) lim cp(t) = 2(D/vO)2 = (pO;X2), 
t---"'+O 

lim cp(t) = (D/vO)2 = (<I>o'X~o)~ == (pO;X)2, 
t->+OO 

(c) for any intege.r n > 0 the nth derivative ¢(n)(t) of 
cp(t) exists and is ~ounded on any closed semibounded 
interval of IR+ excluding t = 0, and 

lim cp (n)(t) = 0; 
t--,.+oo 

(d) lim cp'(t) = - D, 
l-+O 

lim I cp"(t) - vo(D/7T)1/2t- 1/2 1 = v~. 
t--,.+ 0 

The proof of this theorem is established in the 
Appendix. 
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We now turn to the physical consequences of our diffu
sion equation. In particular, we want to use the firm 
mathematical basis provided by the above results to dis
cuss the question of whether or not some of the semi
heuristic assertions of Secs.1 and 2 are compatible with 
this equation. 

We already noticed the fact that p(O) -1 Po implies that 
p(t) approaches exponentially Po as t tends to infinity. By 
Lemma 2, this result can be equivalently stated as saying 
that the following exponential mixing property holds; 
namely, that for every configurational observables A and 
B in e o(1R+) [or even in eo(IR.+)"], 

I (Po;AB(t» - (Po;A)(Po;B)1 ., IIAII'IIBII' exp(- vijt/4D), 

where (po;AB(t» = (<I>o,ASo(t)B<I>o)f1' 

Moreover, we see from Theorem 3 that a similar ex
ponential mixing property still holds for the position 
autocorrelation function obtained by substituting in the 
above expression the unbounded observable X to the 
bounded observables A and B. Consequently, if we want 
to adhere to a description compatible with the diffusion 
equation, and if we want to interpret (as suggested in 
Sec. 2) CP(t), - cp'(t), and - cp" (t) as, respectively, 
(x(O)x (t», (v (O)x (t», and (v(O)v(t», then Theorem 1 re
quires that either the Einstein formula or some smooth
ness assumption must default. Upon looking at the re
sults of Theorem 3, we see immediately which of the 
assumptions of Theorem 1 is in conflict with the dif
fusion equation: (v(O)v(t» is compatible with the diffusion 
equation if and only if it diverges as t-1 / 2 when t approach
es O. This singular behavior of (v(O)v(t» also manifests 
itself, though in a milder form, in the behavior of 
(v (O)x (t». Whereas this function is absolutely continuous 
on any interval [e,co) with e> O,and its limit exists as 
t tends to + 0, that limit however is equal to D, not to 
zero. This fact is of primary importance in relation 
with the Einstein formula. Indeed, upon using the abso
lute continuity of (v(O)x(t» and the fact that this function 
tends to zero as t tends to infinity, we derive the
Einstein relation as a consequence of the diffusion equa
tion (where vo and D are non-zero). Specifically, it 
follows from Theorem 3 that 

T 
lim lim I cp" (f)dt = lim ¢'(T) -lim cp'(e) = D, (10) 

E.-+O T-++OO E. T-7+ OO £-++0 

i.e., if we substitute in this mathematically rigorous 
result the above mentioned interpretation of cp" (t) for 
f> 0, then 

{
' T 

D = - lim lim. (v(O)v(t»dt. 
f-+OT-++OO E 

(11) 

We might notice at this point that the Einstein formula 
derived above is independent from the numerical value 
of vo' provided that vo be different from zero. This 
makes trivial a subsequent limiting procedure in which 
vo would approach zero. This evidently confirms the 
physical expectation that, within the limits of the theory 
behind the diffUSion equation, the value of the diffusion 
constant, as computed from the Einstein relation, is in
dependent of the strength of the external field. It should 
nevertheless be pointed out that the limit in which vo 
tends to zero should not be taken from the onset in a 
(semi-) infinite system, since the essential singularity 
of (v(O)v(t» would then become catastrophic: We would 
indeed have then that (v(O)v(t» is identically zero for all 
t > O. The same conclusion is reached if one approaches 
the situation vo = 0 for the semi-infinite system by 
letting L tend to infinity in the following diffusive 
system: 
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0tP = Ap with A = Do; and (x, t) E [0, L] X lR+ 

subject to the boundary conditions 

The reader will check that in this case (i) the diffusion 
operator A has Simple, discrete spectrum Sp(A) = 
{ - (n7T / L)2 Din E z+}, (ii) the stationary distribution 
becomes Po(x) = L-1, and (iii) the position autocorrela
tion function is 

(x(O)x(t» = L2 (1/4) + (8/rr4 ) ~o (2m + 1)-4 

x exp[- (2m + 1)2(rr2D)(t/L2)]) 

from which we conclude again, mutatis mutandis, to the 
validity of Theorem 3, and in particular to the validity of 
relation (10), and to the occurrence of a divergence of 
CP"(t) as t approaches zero, whereas cp"(t) approaches 
zero exponentially fast as t tends to infinity. [We notice, 
incidentally, that the diffusive cases just discussed 
appear actually to be only two particular examples of 
stationary dissipative systems for which the relation 
(10) holds in general.] This behavior of cp"(t) is re
flected in the fact that in the limit where L tends to 
infinity (t'{O)v(t» is identically zero for all t> 0, and 
diverges to infinity at t = O. This confirms the result 
obtained above when this physical situation is approached 
as the limit of a semi-infinite system where vo tends to 
zero. This fact, thus established from two different 
approaches, provides a rigorous basis for the ad hoc 
assumption that (v(O)v(t» ~ o(t) encountered in some 1 

heuristic derivations of the Einstein relation when 
vo = O. 

We now return to the case of a semi-infinite system 
where vo > 0, which is the proper domain of the in
vestigation carried out in this paper. We can summar
ize the results obtained in this section by the following 
conclUSions. 

Starting from the diffusion equation in a semi-infinite 
medium and in the presence of an homogeneous external 
field, we proved that the position autocorrelation 
function cp(t)[= (x(O)x(t» = (Po,XX(t» = 
(<I>o,XSo(t)X<I>o)..I:!.] and all its derivatives behave indeed 
as assumed in Theorem 1 when t tends to infinity. In 
addition, we proved that cp"(t) [= - (v (O)v(t» ] exhibits an 
essential singularity at t = 0, which violates the assump
tion of Theorem 1, and is responsible, indeed insepar
able, from the nonvanishing of the diffusion coefficient D. 

We should finally remark that we only addressed our
selves in this section to the problem of the derivation 
and interpretation of an Einstein relation compatible 
with the diffusion equation, namely formula (10) above 
where cp(t) = (Po,XX(t». This relation is nowestablish
ed as a direct consequence of the diffusion equation. 
Formula (11) on the other hand is of a less fundamental 
character. Stricto sensu it should only be considered as 
a rewriting of (10) in a suggestive notation. Moreover, 
the compatibility of the diffusion equation with the fund
amental laws of mechanics will only be examined in the 
next section. We can nevertheless affirm at this point 
that a strict adherence to the diffusion equation imposes 
that the respective roles of the upper (T ~ + co) and 
lower (e ~ + 0) limits appearing in the Einstein formula 
(10) run at countercurrent to some recent attempts5 •S- 10 

to check the occurrence or the absence of self-diffusion 
through an Einstein formula of the type of (11) 
where the one-particle velocity autocorrelation function 
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(v;(O)v;(t» plays the role of cp"(t). It might therefore be 
hoped that the present investigation provide a supple
mentary tool to elucidate the interpretation and true 
relevance of mechanistic models for diffusive processes. 

4. DIFFUSION EQUATION AND MECHANICS 

In this section we first define precisely what we mean 
in general by a mechanical system, by a stationary dis
sipative system and by the assertion that a dissipative 
system can be embedded as a subsystem of a mechanical 
system. We then show that the stationary dissipative sys
tem defined by the diffusion equation studied in the pre
ceding section can be canonically embedded in a minimal 
mechanical system, and we study the spectral proper
ties of the evolution for this mechanical system. 

A mechanical system is defined here as a triple 
(a,{a</>(t)!t E IR}, cp) formed by a C*-algebra a,a state 
¢ on a, and a weakly-continuous, one-parameter group 
tu q,(t) I t E IR} of unitary operators acting on the Hilbert 
space JCq, canonically associated to cP by the GNS con
struction, and such that 

(i) U q,(t)<I> = <I> for all t E R, 

(ii) U q,(t}-rr q,(A)U q,(- t) belongs to 1T q,(a)" 

for all A E a and all t E R. 

We denote by {a q,(t) I t E R} the group automorphisms 
of 1T q,(a)" generated by {U q, (t) It E R}. 

For the intelligence of the above definition we reca1l6 

that Lemma 1 can be extended to an arbitrary C*
algebra a as follows. 

Lemma 4: (GNS construction); To every state cP 
on a C·-algebra a corresponds a triple (JCq,,1Tq,(a),<I» 
consisting of a Hilbert space JCq,' a representation 1T q, 
of a into the algebra CB(JCq,) of all bounded linear opera
tors on JC w' and a vector <I> E JCq, such that (i) 
(<I>,1Tq,(A)<I» = (cp;A) for alIA E a, and (ii) 
{1T q,(A)<I> IA E a} is dense in JCq,. Moreover, (JCq" 1T q,(a) , <I» 
is uniquely determined, up to unitary equivalence, by the 
above conditions. 

As in Sec. 3 when no confusion is likely to occur we 
write simply A for 1T<k(A), a" for 1Tq,(a)",JC for JCq" 
U(t) for U q,(t), and a (t) for a q,(t). 

Our definition of a mechanical system supposes thus 
the existence of a time invariant state cp, and that the 
time evolution, unitarily implemented in the represen
tation of a canonically associated to cp, transforms the 
observables in a" amongst themselves, while preserv
ing their algebraic relations. This definition covers 
the case of a claSSical flow. ll The technical assumption 
that a(t) be an automorphism of a" rather than a is 
introduced for reasons on which we will not say more 
here than that is forced upon us by the consideration 
of various models (9,12,13) in statistical mechanics. 

A stationary dissipative system is defined here as a 
triple (cto,{So(t)!t E JR+}, cfJo) formed by a C*-algebra 
ao, a state CPo on ao, and a weakly-continuous, one
parameter semigroup {So(t) I t E JR+} of contractions 
acting on the Hilbert space JC o canonically associated 
to CPo by the GNS construction, and such that 

(i) So(t)<I>o = <I>o for all t E R+, 

(ii) (CPo,AB(t» = (<I>o,ASo(t)B<I>o)' 

Theorem 2 precisely gives an example of a stationary 
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dissipative system, namely, (e o(W), {So(t) I t E IR+}, CPo)' 
where 

(CPo;A) = fooo dxA(x)po(x) 

with po(x) = (VoiD) exp(- VoX/D) 

and where {So(t) I t E R+} is the semigroup generated by 
the diffusion equation 

with boundary condition 

Vop(O, t) + D(oxp)(O, t) = 0 for all t E R+. 

A mechanical system (a,{a(t)lt E R}, cp) and a station
ary diSSipative system (a o, {.so(t) I t E IR.+}, CPJ are said to 
be compatible if 

(i) a o is a sub C*-algebra of a, 

(ii) (cp;Aa(t)[B]) = (CPo;AB(t» for all t E R+ and 

all A and B in ao' 

We also refer to this situation by saying that 
(a, {a(t)! t E IR}, cp) is a mechanical model for 
(a 0' {s 0 (t) I t E IR+}, cp ), or that the time -evolution of the 
mechanical system fa,{a(t)lt E IR}, cp) when restricted 
to a o c ct generates a stationary dissipative system. 

Suppose now that (a,{a(t)lt E IR}, cp) and 
(ao,{so(t)!t E IR+}, cpo) are compatible. Because of Lemma 
4,we can identify <I>o with <I>,and JC o with the subspace 
obtained as the closure of (1.0<I>0 in JC. We say that 
(a, {a(t) It E R}, cp) is minimal with respect to 
(ao' {So(t) I t E R+}, CPo) if {a (t)[A]<I>o ! t E R,A E ao} is 
dense in JC. 

We now state the two results of this section, the proof 
of which are given in the Appendix. 

Theorem 4: The stationary dissipative system 
(eo(1l~.+), {So(t)! t E IR+}, CPo) generated by the diffusion 
equation 0tp(x,t) = (voo x + Do;)p(x,t) with boundary 
condition voP (0, t) + D(o xp)(O, tJ = 0 for all t E IR+, ad
mits a minimal mechanical model. The spectrum sp(H) 
of the generator H of the unitary group {U(t) I t E R} 
describing the time-evolution in any minimal mechani
cal model of (eo(R+),{So(t)!t E JR+}, CPo) is uniquely deter
mined by the stationary dissipative system itself. It is 
the union of a discrete part Sp d(H) = {O} which is non
degenerate, and of Sp ac(H) = IR which is absolutely con
tinuous with respect to Lebesgue measure and is count
ably infinitely degenerated. 

This theorem thus asserts the existence of mechani
cal models for our diffusion equation in the precise 
sense defined above. Moreover, it asserts the existence 
minimal mechanical models. Furthermore, these 
minimal mechanical models are not only ergodic but 
they are also mixing and even have Lebesgue 
spectrum. 

Theorem 5: In any mechanical model of our 
diffusion equation 

for all t E IR and all A and Bin ao' Moreover, the only 
vectors in JCo on which the generator H of the mechan
istic time-evolution is defined are of the form >t<I>0 with 
>t E C. 
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The first part of this theorem illustrates the com
patibility of the time-reversibility characteristic of 
mechanical systems, and of the irreversible behavior 
encountered in dissipative systems. The second part 
of the theorem indicates the source of some of the 
pecularities, such as divergent diagrams, often appear
ing in attempts I4 to derive irreversible equations from 
mechanistic assumptions. Indeed every term of a formal 
power expansion of (<I>o,AI(t l ), ... ,An(fn)<I>o) with 
AI" . ,An E (Lo would contain terms of the form 
(<1>0' AIH . • • HAn<l>o),where HAn<l> 0 is not defined except 
for the trivial case when A <I> 0 = a<l>o' Moreover, the 
fact that :D(H) n Jeo = {A<I> 0 I A E C} implies that 
cv(t)[X]<I>o = U(t)XU(- t)<I>o = U(t)X<I> 0 does not admit a 
derivative at t = 0, so that a velocity operator V(O) can 
actually not be defined on <1>0' This is evidently linked 
to the divergence of <I>"(t) as t approaches zero en
countered in the preceding section, and which we in
terpreted as violating one of the questionable smooth
ness assumption often made about mechanical systems. 

5. CONCLUSIONS 

We gave (in Sec. 4) a generalized definition of mech
anical systems, and proved that a mechanical system 
satisfying this definition can be canonically generated 
from the stationary dissipative system corresponding to 
a diffusion equation valid for all positive times. 

We proved that the time-evolution for the mechanical 
system so obtained has Lebesgue spectrum. 

We showed how and why this mechanical system can
not, however, satisfy some of the smoothness assump
tions often made on the more restrictive mechanical 
systems described in Sec. 2. These restrictive assump
tions are not used in the subsequent sections, thus 
allowing us to indicate precisely which of the smooth
ness assumptions should be modified, and to give ex
plicitly the weakened version of these assumptions 
which is satisfied. 

In the framework imposed by a strict adherence to the 
diffusion equation, we gave a mathematically sound deri
vation, and thus a reliable interpretation, of the Einstein 
relation [our formula (10)]. 

On the firm mathematical basis provided by the 
analysis carried out in this paper we can further specu
late that the time-scale renormalization of a smooth 
mechanical system oftenI5 invoked to derive a diffusion 
equation will result in a dynamical system which will 
still satisfy the general definition of a mechanical sys
tem proposed in Sec. 4 and the weakened smoothness 
properties of the time-evolution indicated in Sec. 3, and 
which will admit a reduced description by a diffusion 
equation generating a stationary dissipative system in 
the sense of Sec. 4. 
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APPENDIX 

Proof of Theorem 1: We first notice that the 
smoothness conditions imposed on ~ imply that 

(1'j(O)V i(t)dt = -.( cp"(t)dt = - cp'(T) + cp'(O) 

= (Vi(O)xi(T) - (Vi(O)Xi(O) = (vi(O)xi(T). 
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It is therefore sufficient for the purpose of establish
ing the theorem to study the limit as T tends to infinity, 
of (l'i(O)X i(T). If ~ is mixing, we have in particular 

lim (vi(O)x;(T» = (v;(O»(x/O» = 0 
T-+OO 

thus proving the first part of the theorem. To prove the 
second part of the theorem, we first notice that 

(Vi(O)Xi(t) =- cp'(t) =-~ (Xi(O)xi(t). 
dt 

If now ~ is mixing in configuration space, we have, 
since on the other hand (xi(O) = (xi(t» is finite,that 

lim cp(T) = lim (x;(O)x;(T» = (X;(0»2 
T-+OO T-+OO 

which is finite. Consequently, either the limit, as T tends 
to infinitY,of cp'(T) does not exist,or it exists and is 
zero. Upon using the remark opening this proof, we see 
that the second part of the theorem is now proven. To 
prove the third part of the theorem, we notice that if 
(iv) is satisfied, then so is. trivially (iii). Moreover, 
since (xi(O» is finite, (iii) and (ii) are equivalent. Final
ly, by Schwartz inequality, and the fact that (xi(O) = 
(xi(t» is finite, (ii) implies (i). Now, (i) says that I cp(t) I 
is bounded. Consequently, cp'(T) either approaches zero 
as T tends to infinity, or it does not approach any limit
ing value. Joined to the remark opening the proof of the 
first part of the theorem, this completes the proof of the 
theorem. • 

Proof of Theorem 2: The unitary transformation U: 
Je = £2(IR+,dx) ~ Jeo = £2(JR+,dfJ.(x» defined by (U>Ji)(x) 
= >Ji(x)'exp(- vox/2D) reduces our problem to the study 
of the differential operator A' = - (v~/4D) [ + Dd~ with 
boundary condition vow(O) + 2D(dx w)(O) = O. The 
theorem follows then directly from Theorem XIII. 5. 35 
of Dunford and Schwartz 7 and from Lemma 2. • 

Proof of Lemma 3. Since So(t)<I>o = <1>0 for all 
t E ~+, it is sufficient to restrict our attention to Je(j. 
Let {E A I - eX) < A ~ - v5/ 4D} be the spectral family 
associated with A(j. By definition >Ji E Je(j belongs to 
:D[ (A(j)n] if and only if 

II(A(j)nwll~ = i:a 
A2nd11EAwll~ < eX), with a = v5/4D. 

For any <I> E Je(j and any t > 0 we have 

II (A(j)nSo(t)<I>II~ = i:a 
A2n exp(2At)dIlE A<I>II~ < B;II<I>II~, 

where 

Bn = (n/et)n = Ant-n < eX) whenever t> O. • 

Proof of Theorem 3: We recall that <I> (x) = 
(v O/D)1/2 exp(- voX/D). Clearly, <1>0 E :D(X~ and thus 
cp(t) is well defined. {So(t) I t E JR+} is strongly con
tinuous and uniformly bounded. By Schwartz inequality 
this proves (a). Since cp(t) is continuous 

and a direct computation shows that (<I>O,X2<1>O) = 
2(D/vO)2. This proves the first part of (b). LefEo 
be the projector from Jeo onto Je(O)o' We have then 
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Hence 

lim / <p(t) - (<I>o,X<I>o)~ / = O. 
t-+ + 00 

A direct computation shows that (<I>o,X<I>o) = (D/vo)' 
This completes the proof of part (b) of the theorem. 
Part (c) follows directly from Lemma 3. The proof of 
part (d) requires some straightforward classical analy
sis. From the explicit form of the generalized Fourier 
transform used in the proof of Theorem 2, we find that 

<p (n)(t) = (- 1)nv5(v5/4D)n-2 1T- 1 fa 00 ax x2(1 + x2)n-3 

X exp[- V5(1 + x 2)t/4D]. 
In particular, 

lim <p'(t) = </,,'(0) = - (4D /1T) J 00 ax x2(1 + X2)-2 
t~+O 0 

= _ (2D/1T)JO 1 duu-1/2 (1-u)1/2 =-(2D/1T)B(l/2;3/2) 

= - (2D/1T)r(1/2)r(3/2)/r(2) = - D. 

This proves the first assertion of part (d). To prove 
the second, we start again (this time with n = 2) from 
the explicit form of ¢ (n)(t) given above, and we get 

00 

<p"(t) = v5 (exp - v5t/4D)1T-1 J~ dx x 2(1 + x 2)-1 

x exp(- V5x2t/4D) 

= voD l/2 exp(- v5t/4D)1T-1 

x .~ 00 duu[u + (vO/4D)j1 exp(- ut) 

= VO(D/1T)1/2t-1/2 exp(- v5t/4D) 
,00 

- v2 1T-1/2 / du exp(- u2) o 'a(t) 

where a(t) = (v5t/4D)1/2. 

From this follows immediately the last statement of 
theth~rem. • 

Theorem 5 depends on Theorem 4 only inasmuch as 
Theorem 4 establishes the existence of the mechanical 
models dealt with in Theorem 5. Since the assertions of 
Theorem 5 are not limited to minimal mechanical 
models, we prove that theorem first. 

Proof of Theorem 5: To say that (a,{QI(t)/ t E JR}, <P) 
is a mechanical model for (eo(IR+), {So(t) / t E JR+}, <Po) 
means that for all A and B in eo(JR+) and all t E JR+ we 
have 

Since SoU) is self-adjoint, this is equal to 

from which the first part of the theorem follows im
mediately. Moreover, since eo (JR+)<I> 0 is dense in Jeo we 
obtain by continuity that for all t E JR and all wand \)I' in 
Jeo we have (\)I',U(t)w) = (\ji',So(/t/)w). Hence (w'U(t)w) 
is an even function of t. To impose in addition that w 
belong to 'J)(H) implies that the derivative of this func
tion exists and is continuous and thus vanishes at t = O. 
Hence w E 'J)(H) n Jeo implies that the derivative of 
('I<',SoU)'I<) exists and vanishes at t = 0, i.e., that 
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('1<', AoW) = 0 for all W' E Jeo' Le., AoW = O. Since 0 is 
a nondegenerate eigenvalue of Ao' w must indeed by 
colinear to <I> o' This concludes the proof of Theorem 
5. • 

Proof of Theorem 4: To prove the first two parts 
of the theorem one could invoke the Nagy extension 
theorem. 16 For reasons which will become clear later 
on, we prefer to conduct the proof by sketching the con
struction of an explicit example. To this effect, con
sider the subspace Je of Jeo 0 £,2(1R, dy) defined as 

Je = {A<I>O 01/A E C} EP Jet 0 £,2(JR,dy), 

where Jeo = .r 2(1R., exp(vox /D)dx), <I> o(x) = (VO/D)1/2 
exp(- VoX/D), Je(j is the orthocomplement of <1>0 in Jeo' 
and 1 E £,2(JR,dy) is the function 1(y) = X[O,OO)(Y) 
exp(- y/2). We identify Jeo with the subspace Jeo 01 c 
Je, and a o with eo(IR+) 0 I. Let {U(t) / t E IR} be the 
weakly-continuous, one-parameter group of unitary 
operators acting on Je, generated by the self-adjoint 
operator H = Ao 0 (2P) where P = - id y • We then 
define a as the C* -algebra generated by the elements 
of (P.,(Je) of the form U(t)AoU(- t) for all t E IR and all 
Ao in a o. Clearly, U(t)AU(- t) generates an automor
phism group {QI (t) / t E IR} of a". Finally, we take for <I> 
the normalized vector <1>00 1, and for cP the resulting 
state on a. To check that (a, {QI(t) / t E IR}, cp) is a min
imal mechanical model for (eo(IR+),{So(t)/t E IR+}, CPo) 
it is sufficient to check that the restriction {U ... (t) / t E IR} 
of {U(t)/ t E IR} to Je(j 0£,2(IR,dy) satisfies the following 
properties: 

(i) (w v U ... (t)w 2) = (w l' Sc(t)w 2) for all t E IR+, and all 
Wv w2 in Jet 01; 

(ii) {U.L(t)W / t E IR, w E Jet 0 1} generates a dense 
linear manifold in Je(j 0 £2(1R, dy). 

This is easily done if one first performs the unitary 
transformations indicated in the proof of Theorem 2 
which generated an isometric isomorphism from 
Jec 0 £,2(IR,dy) on .r2(1R+ x lR,dxdy) and transform 
{U ... (t) / t E IR} into {U'(t) / t E IR} with 

(U'(t)w)(x,y) = w(x;y - 2A(X)t) 

with A(X) = (vO/4D) + Dx 2• 

This straightforward computation concludes the proof 
of the first part of Theorem 4. To prove the second 
part of the theorem it is sufficient to notice that the pair 
(Je, {U(t) / tE JR}) attached to a minimal mechanical 
model (a,{QI(t)/t E IR}, cp) of a stationary dissipative sys
tem (a o' {So(t) / t E IR+}, CPo) is uniquely determined, up to 
unitary equivalence, by the pair (Jeo, {So(t) / t E IR:}) 
defined by this system. To prove the last part of the 
theorem, it is sufficient to prove that the spectrum of 
the generator H'" of {U ... (t) / t E JR} is absolutely con
tinuous with respect to Lebesgue measure, covers JR, 
and is countably infinitely degenerated. This is achiev
ed by noticing that the unitary transformation 

(Vw)(x,y) = (2A(X) 1I2w(x, 2A(X)Y) 

from £,2(JR+ x JR,dxdy) onto itself transforms 
{U'(t) / t E IR} into {U"(t) / t E JR} with 

(U"(t)\ji)(x,y) = l/I(x,y - t) = exp[- i(I0 P)t]w(x,y). 
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Clearly, I ® P has the desired spectral properties 
and so has thus H.J.. to which it is unitarily equivalent .• 

ISee, for instance, G. H. Wannier, Statistical Physics (Wiley, New 
York, 1966). 

'w. Nerst, Z. Phys. Chern. (Frankf. a. M.) 9, 613 (1884). 
3Five papers published between 1905 and 1908 by Einstein on diffusion 

and Brownian motion are collected in A. Einstein, Investigations on 
the Theory of the Brownian Movement, edited by R. Furth (A.D. 
Cowper, trans!.) (Methuen, London, 1926). 

4E. Nelson, Dynamical Theories of Brownian Motion (Princeton U. 
P.,Princeton, N. 1., 1967). 

5J. L. Lebowitz, in Statistical Mechanics, edited by S. A. Rice, K. F. 
Freed, and J. C. Light (University of Chicago Press, Chicago, 
1972). 

6See, for instance, Th.I.1.14 and the last lemma to Th.II.1.3 in G. G. 
Emch, Algebraic Methods in Statistical Mechanics and Quantum Field 
Theory (Interscience, New York, 1972). The generality with which 
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IOJ. L. Lebowitz and J. Sykes, preprint (1972). 
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An extension of ordinaryparastatistics is considered which makes use of all the representations of 
the parastatistics algebra obtained from the usual ansatz. Govorkov's demonstration that such an 
extension, for parastatistics of order 2, implies a U(2) symmetry, is generalized for parastatistics of 
order p. The parastatistics algebra, restricted to N dynamical states, is characterized by the 
irreducible representations of U(N), SO(2N), and SO(2N + 1) which it contains. It is shown that 
these representations have mUltiplicities equal to the dimensions of associated representations of 
U(P), O(P) and C(P), respectively, where C(P) is a subalgebra of the enveloping algebra of O(P), 
but is not a Lie algebra. The symmetric group S (P) also appears, as a subalgebra of the enveloping 
algebra of C(P). It is shown how a nondegenerate vacuum state may be defined for the generalized 
parastatistics algebra of order p, and how to construct state vectors corresponding to arbitrary 
numbers of quarklike particles and antiparticles. Such states belong to irreducible representations of 
U(N), and can be obtained by the application of one kind of creation and annihilation operators to 
certain basic states, here called reservoir states, which correspond to the different irreducible 
representations of SO (2N + 1). The specialization to parastatistics of order 3 is discussed in detail 
with the application to a quark model of the hadrons in view. It is shown how to define isospin and 
hypercharge in a significant way in this model, which, however, differs in some respects from 
Gell-Mann's well-known 3-fermion model, and also from Greenberg's 3-parafermion model. Some of 
the physical implications are examined. 

1. INTRODUCTION 

The idea that all particles appearing in nature should 
be formed from particles of spin half is an old one, 
which suggested, for instance, de Broglie's theory of 
fusion,l the neutrino theory of light,2 and Yukawa's non
local model for composite particles.3 All such theories 
have met with grave difficulties, but a more recent 
manifestation of the same idea, the quark model of the 
hadrons,4 has been suffiCiently successful to be taken 
seriously. Since quarks have not been positively identi
fied in isolation,:; however, there is ample room for 
speculation concerning their nature and properties. 

In the original proposal of Gell-Mann,4 a triplet of 
quark fermi fields is conSidered, the three types of 
quarks and anti quarks being assigned to the triplet and 
antitriplet representations of U(3). However, Green
berg6 has suggested that quarks may be parafermions, 
satisfying parastatistics of order 3. As Fritzsch and 
Gell-Mann7 have pOinted out, the introduction of a trip
let of parafermi fields of order 3 is in a certain sense 
equivalent to the introduction of nine fermi fields, to
gether with supplementary conditions which place a 
restriction on the allowed states. To see this, one need 
only recall that a parafermi field of order 3 may be 
thought of as constructed from three (commuting) 
fermi fields via the ansatz introduced by one of us8 in 
the original formulation of parafermi field quantization. 
The supplementary conditions then reflect the fact that 
the ansatz yields a reducible representation of the 
parafermi field algebra, from which a suitable irredu
cible representation is to be selected. 

These observations suggest a further pOSSibility, that 
only one type of parafermi field of order 3 need be 
iptroduced in order to describe all the hadrons and 
the associated U(3) multiplet structure. In the context 
of the usual formulation of the quantization of such a 
field this suggestion proves unrewarding, because the 
stat~s available do not form complete U(3) multiplets. 
This deficiency may be traced to the fact that one has 
restricted one's attention to an irreducible represen
tation of the parafermion algebra, and, following 
Govorkov,9 one is led to consider more general re
presentations previously rejected on the grounds that 
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the "vacuum state" appeared to be degenerate. lo From 
Govorkov's point of View, this degeneracy was only a 
consequence of the incorrect identification of the 
vacuum state, and the generalized parafermi statistics 
had real possibilities for the definition of such physical 
quantities as isospin and hypercharge. He considered 
generalized parafermi statistics of order p = 2, showed 
that n-particle states form U(2) multiplets, and gave 
the expreSSions for the U(2) generators. However, he 
was unable to complete the corresponding task for p = 
3, although he did indicate that one-, two-, and three
particle states form SU(3) multiplets, and, despite 
some effort, 11 his idea has not been properly realized. 

In the meantime, progress has been made in the 
investigation of parastatistics algebras,12 and the 
authors 13 have described the structure of those repre
sentations of the parafermion algebras usually adopted, 
with emphaSis on the representations of subalgebras 
isomorphic to the Lie algebras of certain unitary 
groups. Here we undertake a similar task for the gene
ralized parafermion algebras, with particular reference 
to the case p == 3. 

Irreducible representations of the algebra of N pairs 
of parafermion creation and annihilation operators are 
known to correspond to irreducible representations of 
SO(2N + 1). We adopt a certain reducible representa
tion of SO(2N + 1), defined by the well-known ansatz,8 
and are then concerned with labeling not only the vari
ous irreducible representations of SO(2N + 1) which 
occur, but also the irreducible representations of U(N) 
contained within each irreducible representation of 
SO(2N + 1), since these correspond to collections of 
states with a fixed number of particles present, and a 
fixed symmetry type. So we are led to consider a rather 
difficult state labeling problem, essentially that of com
pleting the set of commuting operators provided by the 
invariants of the chain, 

SO(2N + 1) :::J O(2N) :::J SO(2N) :::J U(N) P U(N - 1) ::::J ••• 

::::J U(l)]. (1) 

We find that there is a related chain of algebras also 
represented in the space of generalized parafermi sta
tistics of order p, viz. 

Copyright © 1973 by the American Institute of Physics 1784 
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U(p) => O(p) => SO(p) --t C(P), (2) 

where SO(P) --t C(P) means that the algebra C(P), which 
is not a Lie algebra, is a subalgebra of the enveloping 
algebra of SO(p). Recently Druhl, Haag, and Roberts, 
and subsequently Ohnuki and Kamefuchi,14 have con
sidered the generalized parafermion algebra from a 
quite different point of view, and in their work, the chain 
U(p) => O(P) => SO(p) is identified and discussed as a 
chain of "non-Abelian gauge groups." We find that in 
fact the algebras U(p) lSi U(N), O(P) lSi SO(2N), SO(P) lSi 
0(2N), and C(P) lSi SO(2N + 1) are all represented, and 
the Casimir invariants of associated algebras, such as 
U(P) and U(N), are so related that the problem of com
pleting the commuting set of operators defined by the 
chain (1) is precisely that of completing the set defined 
by the chain (2), in a certain class of representations of 
U(P). For P ~ 3, this is well-known to be a very diffi
cult problem, and we do not find an explicit solution. 
However, for P ;, 3 we do find an operational way of 
establishing a satisfactory basis in the representation 
space, thus implicitly defining a solution to the prob
lem. Stated briefly, the picture which emerges in that 
case is as follows. 

One begins with an irreducible representation of 
three commuting fermi fields, the ansatz components. 
This contains a reducible representation of the para
fermion algebra of order 3, whose irreducible com
ponents may be labeled completely by the eigenvalues 
of two operators 1 and 1 3 , which we identify with the 
total isospin and third component of the isospin: Thus 
for each 1= 0, t, 1, ... ,one has 13 = 1,1- 1, .•• ,- I. 
Representations labeled by different values of 1 are in
equivalent, while those labeled by the same 1 and differ
ent 13 are equivalent. The representation with 1 = 13 = 
o is the one usually adopted for the descriptions of para
fermions of order 3, and it contains the nondegenerate 
vacuum state. Each of the other representations con
tains degenerate "reservoir states", which may be 
thought of as containing a number 2I of isospin-carry
ing particles and antiparticles, but on which all the 
parafermion annihilation operators vanish. Other states 
within each representation are obtained by applying 
polynomials in the parafermion creation operators to 
such reservoir states. Every state in a particular basis 
for the Fock space of the system can be characterized 
by the U(3) multiplet to which it belongs and its asso
ciated eigenvalues of I, 13 and the hypercharge Y [to
gether with the U(N - 1) => U(N - 2) => ••• => U( 1) labels 
associated with the space-time degrees of freedom]. 
The U(3) multiplet structure is precisely the same as 
that obtained in the usual model with three anticommut
ing fermi fields. Indeed one can assert that within the 
space of the generalized parafermion algebra, there 
acts irreducibly the algebra of three anticommuting 
fermi fields, in terms of which the physical U(3) genera
tors may be defined in the usual way. However, such 
fields have no important role in the physical interpre
tation of the model. For example, they carry definite 
quanta of Y and 13 , while the parafermion creation and 
annihilation operators, which are more appropriately 
associated with the "quarks" in this model, are iso
scalars and do not carry definite quanta of hyper
charge. The hypercharge and other U(3) labels only 
become diagonal in this picture when an n-particle 
state is appropriately symmetrized. So we have here a 
model which reproduces all the multiplet structure of 
the usual quark model, but has a quite different inter
pretation at the level of the constituent subparticles. 

Section 2 is concerned with analysis of the structure 
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of the representation space for quantized parafermi 
statistics of order p. Emphasis is given to the repre
sentations of the algebras SO(2N + 1) => O(2N) => 
SO(2N) => U(N) and U(P) => O(P) => SO(P) --t C(p). The 
labeling problem is precisely defined. In Section 3, the 
structure and multiplicity of "reservoir states" are 
examined, together with the way in which other states 
can be constructed from these by application of para
fermion creation operators. Section 4 is devoted to a 
more detailed treatment of the case p = 3, with impli
cit solution for the state-labeling problem, and defini
tion of the U(3) generators. A brief description of the 
physical interpretation of some U(3) multiplets is given. 

2. GENERALIZED PARASTATISTICS 

The absorption and emission operators of a kind of 
parafermions will be represented by ar and a r = a:, 
and for convenience we shall suppose that the affix r 
takes only a finite number of values 1, 2, ... ,N, though 
in the applications N is, of course, unlimited. As in our 
earlier paper,13 we define ap as equal to ar when p = r, 
and equal to ar when p == r + N, so that the Greek sub
script takes values from 1 to 2N. Then, if the non
vanishing elements of gpo are 

Ip - ul = N, 

the commutation relations 

[ap,ao] = 2apo ' 

rap, a 0 Tl = gpoaT - gPTao 

imply that the ap and a or may be regarded as generators 
of a representation of SO(2N + 1). We also define gPO = 
gpo' and aP = gPoao' etc. 

If an arbitrary irreducible representation of SO(2 N + 
1) is labeled in the usual way by its highest weight (L1' 
L 2 , ••• , LN), the representation ([ tp]N) = (tp, tp, ••. , 
tp) corresponds 13 to ordinary parastatistics of order 
p. In the generalization which we wish to consider, the 
reducible representation ([ t]N) 0 ([ t] N) 0· .. lSi ([ t] N), 
with p factors, is adopted. Then each irreducible re
presentation with ti ~ Ll ~ L2 ~ •.• ~ LN ~ 0 (and tp -
Lr integral) occurs with a definite multiplicity in the cor
responding representation space, which we shall de-
note by Hp- In particular, the ordinary parastatistics 
representation ([ tp] N) occurs once. 15 If w = tp when 
P is even, but w = t (P - 1) when p is odd, and Mj is the 
number of Lr not less thanj (j = 1,2, ... , w), the re
presentations (L 1 , L 2 , ••• ,LN ) may also be labeled 
[Mv M2, ••• ,Mw ]' where N ~ Ml ;;.. M2 ;;.. ••• ~ Mw ;;.. 0 
(and M.t is integral). 

The Lr and M.t can be regarded as operators in Hp 
with eigenvalues constant within any irreducible re
presentation of SO(2N + 1). In this sense they are con
nected with the Casimir invariants of SO(2N + 1), con
structed from the generators all and apo ' For example, 
the quadratic invariant of SO(2N + 1) iS16 

u2(2N + 1) = aPoaop + aPap 

= 2 L; Lr(Lr + 2 N + 1 - 2r) 
r 

= 2~(!P - w)(tp - w + N) 

- ~ M;(Mi - P + 2w + 1 - 2i - 2 N) \ • 
, '} (3) 

The Lr (or Mi ), of course, cannot distinguish between 
isomorphic representations of SO(2N + 1) contained in 
Hp" 
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Within each representation of SO(2N + 1), there are 
generally several irreducible representations of SO(2N), 
with generators Clpo ' Anyone of these is labeled by its 
highest weight (A1' A2' ... ,AN)' which occurs once and 
only once within the representation (L1' L 2 , '.' ., L N) of 
SO(2N + 1), provided Lr - Ay, Ay - LY+1 and Lr+1 -
AY+1 are nonnegative integers for all r < N and I AN I ". 
LN" It follows that if the representation (A l' A2' ... , AN) 
occurs, so does the representation (A1' A2"" ,- AN)' 
This pair of irreducible representations of SO(2N) (or 
Single irreducible representation in the case AN = 0) 
forms an irreducible representation of O(2N), which can 
also be labeled by [ltv 1t2' ••• , It w ]' where Itj is the num
ber of I Ay I not less thanj (j = 1,2, ... w). Then N;;. 
1t1 ;;. 1t2 ;;. ••• ;;. Il-w ;;. O. The Ay and Il-j are related to 
the Casimir invariants of SO(2N) and O(2N), construc
ted from the Clpo ' with the quadratic invariant being 
given by16 

a2 (2N) = ClPoCl o
p 

= 2~ Ay(Ay + 2N - 2r) 
y 

= 2 (N(tP - w)(tp - w + N - 1) 

-:y Iti(lti - P + 2w + 2 - 2i - 2N)). (4) 

The Ay (or Itj ) cannot distinguish between isomorphic 
representations of SO(2N) or O(2N) contained in Hp-

Within each representation of SO(2N), there are 
generally many irreducible representations of U(N), 
with generators 

aY
s = t([aY,as] + POYs)· 

Any such representation is labeled by its highest 
weight (11, ~J ••• , IN)' where [since the weights of 
SO(2N + 1) and SO(2N) are sets of eigenvalues of 
all - tp, a 2

2 - tp, etc.] 0 ". IY+1 ". iy ". Ay + tp ". 
Ly + tp ". p. The iy are integers, which can be re
garded as the lengths of the rows in the Young dia
gram associated in the usual way with the symmetry 
type of the corresponding tensor representation of 
U(N). Alternatively, the representation may be labeled 
[m 1,m;2' ••• ,mp],where mi is the number of iy not less 
than i U = 1,2, ... ,P), or the length of the ith column 
in the associated Young diagram. Then N ;;. m1 ;;. 

~ ;;. ••• ;;. mp ;;. O. The iy and m i are related to the 
Casimir invariants of U(N), constructed from the aY s' 
with, for example, 17 

a Y 
Y = ~ Iy = ~ mil 

r i 

aY as = ~ iy(lr + N + 1- 2r) 
s y r 

= - ~ mi(mi - N + 1 - 2i). 
i 

The Iy (or m i ) cannot distinguish between isomorphic 
representations of U(N) contained in He [nor indeed 
between isomorphic representations of U(N) contained 
in an irreducible representation of SO(2N)]. We now 
turn our attention to the problem of describing the 
multiplicity with which isomorphic representations of 
U(N) occur in Hp-

One way of defining the generalized parastatistics 
representation is via the ansatz 8 

p 
a=~(J(i), (5) 

p i=l P 

in which the ap (i) are fermion creation and annihilation 
generators for a fixed value of i, but commute for dif-
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ferent values of i. The only way we shall make use of 
this ansatz, however, is by the properties with which it 
endows the operators 

C (Ij) = aY(;) ay (i), 

in particular 

[c (ij), a Y s] = 0, 

{c (ij), C (jk)} = C (ik) (i;>< j ;>< k), 

[c (ij), c (j0] = C (ii) - C (jj) (i;>< j), 

[c (ii), c (j})] = 0 (i;>< j), 

[C(ii),C(i j )] = C(ij) (i ;><j), 

[c (ij),C (kl)] = 0 (i;><j;>< k ;>< i) (6) 

and 
~c (ij) = t(aPa - Np), 

o 0 P 
• ,J 

P 
~ C (ii) = aY y = ~ iy = ~ mil 
i=l y i 

~ C(ij)C(ji)= - aY sa s y + (N + p)aY Y 
i ,j 

= - ~ iy(ly - P - 2r + 1) 
y 

= ~ mi(mi + p - 2i + 1). 
i 

Now the operator c (ii) has integral eigenvalues, and 
it is evident from (6) that 

which has unit square, anticommutes with c (ij) and c (ji) 
providedj ;>< i, and commutes with all other c (kl). Let 
us define 

bjk = (i) j+k lIalla+1' •• lIbC (jk), j < k, 

bkj = - (i)j+k8a 8a+1 ••• 8bc(kj ), j < k, 

bjj = c (jj), (7) 

where the subscripts a, a + 1, •.. ,b of the lI's include 
all values between the odd integer a, equal to j or j + 1, 
and the even integer b, equal to k or k - 1. Thus b12 = 
- ill1 lI2c (12), b23 = ic (23), and b51 = 818,2l13 84c (51). Then 
it is easy to verify that 

[bjj,b kZ] = 0jkbiZ- °iZbkj' 

the commutation relations characteristic of U(p). It 
follows that an irreducible representation of the bi ;, and 
of the c (ij) also, defines an irreducible representation of 
U(P). Moreover, since the bij are U(N) invariants,Hp 
carries a representation of U( P) @ U(N) , with generators 
biJ,a Y

s ' Now 

~ b;; = ~c (ii) = ~ m i , 
iii 

~ bi 0 bOi = ~ C (ij)C (ji) = ~ mi(mi + P - 2i + 1),'" 
i,j JJ i,j i 

and the expressions on the right sides of these equa
tions are precisely those adopted by the Casimir in
variants of U(P), when the irreducible representations 
are labeled (m1, m2 , ••• , mp). In other wordS, each irre
ducible representation of U(P) @ U(N) contained in Hp 
is labeled by the m1' ~, ••• , mp' which are the lengths 
of the rows in the Young diagram corresponding to the 
U(P) representation (m1'~' ••• , m p), and the lengths 
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of the columns in the Young diagram corresponding to 
the associated U(N) representation [ml' m2' ••• ,mp]. 
Since there are no invariants of U(N) which cannot be 
expressed in terms of the bii' no irreducible represen
tation of U(P) 181 U(N) can occur more than once in Hp
Then it is not difficult to see that every such repre
sentation with N ", ml ", m 2 ", ••• ", mp ", 0 must occur 
just once. We may say that the representation [ml' 
~, ••• ,mp] of U(N) occurs in Hp with a multiplicity 
equal to tlie dimension of the representation (m l , ~, ••. , 
mp) of U(p). This is one way of describing the struc
ture of Hp. 

Turning now to the question of the multiplicity with 
which isomorphic representations of SO(2N) occur in 
Hp ' we note that 

y(ij) = C(ij) + c(ji) (i "'j) 

is an SO(2N) invariant and that, with one exception, all 
invariants of SO(2N) can be constructed from the y(ij). 
[The exception is the pseudo scalar SO(2N) invariant 
associated with the sign of AN" More precisely, the 
y (ij) are O(2N) invariants, from ~hich all invariants of 
O(2N) can be constructed.] It follows from (6) that 

{y (ij), y (jk)} = Y (ik) (i '" j '" k), 

[y(ij),y(kl)] = 0 (i "'j '" k '" I) (8) 

and, consequently, 

(9) 

We define 

y =.6 Y (ij) = ~(aPa - NP). 
j >i P 

(10) 

By subtraction of (4) from (3) we find 

aPa = 2(N(~P - w) + .6lJ.i(lJ.i -P + 2w + 2 - 2i- 2N) 
P i 

- Y Mi(Mi - P + 2w + 1- 2i - 2N)) , 

and it follows that the eigenvalues of y are integral. 
From consideration of the parastatistics algebra of 
order 2 contained within the entire algebra, for which 
y reduces to y (12), we infer that y (12) has integral eigen
values, and this conclusion is, of course, independent of 
the superscripts of y (ij). Hence the commuting invariants 
y(12),y(34), ••• ,y(2w-1.2w) of O(2N) all have integral 
eigenvalues. If we introduce 

it ~ollows further fr~m (9) that 0ij anticommutes with 
y (Ik) and y (Jk) when 1 '" j '" k. Let us define 

(11) 

{3jk = - (i)j+kOa,a+1'" (Jb-1.by(jk), j < k, 

{3kj = - {3jk' 

where the subscripts a, a + 1, ... , b - 1, b constitute 
the same sequence of integers as in (7). Then it is 
readily verified that 

[{3,i' {3kl] = 0ik {3j I + OJ I {3ik - 0jk {3i I - Oil (3jk' 

the commutation relations characteristics of SO(P). It 
follows that an irreducible representation of the [3ii' and 
of the y (ij) also, defines an irreducible representation 
of SO(P). Since the eigenvalues of i[3jk are integral, ten-
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sor but not spinor representations of SO(P) occur. In
deed, a close examination reveals that 0ij 0= (JiOj' so that 

and the SO(P) algebra is a subalgebra of the U(P) alge
bra already discussed. Now U(P) contains O(P) as well 
as SO(P). In the present Situation, O(P) may be regard
ed as obtained from SO(P) by the addition of the" re
flections" 0i' Since the [3ij are O(2N) invariants, and the 
(Ji are SO(2N) invariants; it follows that Hp carries re
presentations of SO(P) 181 O(2N) and O(P) 181 SO(2N). 
Recalling that U(N) c SO(2N) c O(2N), we may charac
terize the structure of the generalized parastatistics 
algebra by the diagram 

O( 2 N) :) SO( 2 N) :) U(N) 

~I/ 
/I~ 

U(P) :) Q(P) :) SO(P) 

If an irreducible representation of SO(P) is labeled 
by its highest weight (K l' K 2 , ••• , Kw )' the quadratic in
variant of SO(P) is 

But 

~(P) = .6 [3ij (3ji 
i .j 

= 2.6 y(i j )2 

i>j 

= 2 L:; Kj(Kj + P - 2j). 
'J 

~(2N) = - 2.6 Y (ij)2 + N(N - l)P + ~Np2 
j>i 

= 2N( ~p - w)( ~p - w + N - 1) 

(12) 

+ 2.6 (N - K:i)(K:i + N + P - 2j), (13) 
J 

and by comparison with (4) above, we see that for P even 

K:i = N - IJ. w+1-j (j = 1,2, ... ,w - 1), 

IKw 1= N-1J.1 

and for P odd 

(14) 

Kj == N - IJ. W +1-j (j == 1,2, ... , w). (14' ) 

[Note that if P is even and K w '" 0, then (14) implies 
1J.1 < N, which in turn means AN = O. Thus KwAN = 0 for 
P even. Moreover, (14) implies also that AN and Kw can
not both be zero in that case.] 

From these relationships between the invariants of 
SO(P) and SO(2N) , we can deduce the SO(P) 181 SO(2N) 
structure of l!;.' Each irreducible representation of 
SO( P) 181 SO(21V) in Hy is labeled {(K l' K2 , ... , K w)' (A l' 
A2' •• " AN)}' where tfie Kj are integers related to the 
Ilj as in (14) or (14'), the Il

J 
being defined in terms of 

the I A r I as before. Every such representation with 

N"'K1 "'1'2", .. ·",IKw l ",0 

for P even, but 

(15) 

(15') 

for P odd, occurs just once in Hp. This is another way 
of describing the structure of that space. 

A description of the SO(P) 181 O(2N) or O(P) 181 SO(2N) 
structure of the space is rather involved, especially for 
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p even. For p odd, it follows from what we have said that if 
the representation {(~, "2, .•. , Kw)' (A 1, A2' ••• , AN)} 
occurs, so does the representation {(Kl' "2, ... , Kw )' 

(A l' A2' ••• ,- AN)}' Each such pair forms an irreduc
ible representation of SO(P) ® 0(2N) which we may 
label {(K1, "2, •.. , Kw)' [~1' ~2' ... '~w]}' Then every 
such representation of SO(P) 18> 0(2N) occurs just once 
in Hp' provided the conditions (14') and (15') are satis
fied. On the other hand, each member of this pair forms 
an irreducible representation of O(P) 18> SO( 2N). On 
the first member, the inversion operator ~ = li1 ~ .•. lip, 
which extends SO(p) to O(p), has the value 

(16) 

as may be seen by evaluating it on the state of highest 
weight with respect to SO(2N). On the second member 
of the pair, the value of ~ is 

exp[i1T(A1 + A2 + ... + AN - 1 - AN + tNP)], 

which is oppOSite in sign to (16), since 2 AN is an odd 
integer when P is odd. Irreducible representations of 
O(P) 18> S0(2N) may therefore be labeled {(K1, K2, ••• , 
Kw; ~), (A1' A2' •• " AN)}' and every such representation 
occurs just once in Hp' provided the conditions (14'), 
(15'), and (16) are satisfied. 

Now we come to the question of the multiplicity with 
which isomorphic representations of S0(2N + 1) occur 
in Hp. Let us define 

C (ij) = (t - I' (ij»)liij' (17) 

From (14) and (10) we see that 

~(2N + 1) = - 22:) (C(ij)2 - t) + NP(N + tp). (18) 
) >i 

By considering the application of this result to para
statistics of order 2, it is evident that C (12)2 is an 
SO(2 N + 1) invariant, and the same must be true of 
C (i))2. We can therefore resolve ap into two parts: 

ap = (2y (ij) - 1)([1' (ij), ap ] + {I' (ij) - t, ap}) 

the first of which anticommutes, and the second of which 
commutes, with both I' (ij) - t and liij' Hence C (i) com
mutes with ap, and is itself an invariant of SO(2N + 1). 
From (8) it tollows that 

{C(ij),C(jk)}=C(ik) (i ~j ~k), 

[C(i j ), C(kl)] = 0 (i ~ j ~ k ~ 1). 

Although these relations are the same as those satis
fied by the I' (ij), the fact that the eigenvalues of the C (ij) 
are half-integral and not integral ensures very different 
properties. If we denote by C(P) the algebra of the C (i}), 

then in view of (11) and (17), C(P) is a subalgebra of 
the enveloping algebra of SO(P), which relationship we 
denote by SO(P) -) C(P). In general an irreducible re
'presentation of SO(P) defines a reducible representation 
of C(P). We shall show that irreducible representations 
of C(p) in Hp may be labeled (K1 , K;" ••• ,K w), where the 
K j are related to the M, already defined. Moreover, each 
irreducible representation of C(P) provides a (usually 
reducible) representation of the symmetric group S(P), 
i.e., C(P) -) S(P). However, we have not been able, for 
general values of p, to set up a one-to-one correspond
ence between irreducible representations of C(P) and 
irreducible representations of some Lie algebra, in the 
way that irreducible representations of the c (iJ) can be 
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associated with those of U(P), and irreducible repre
sentations of the I' (ij) with those of SO(P). [For P = 3, 
we shall see in Sec. 4 that it is possible to set up such a 
correspondence between C(3) and SU(2).] 

Since the eigenvalues of I' (ij) are 0, ± 1, ± 2, ... , the 
eigenvalues of C (iJ) form a series t, - !, ~,- ~ , ... , 
with a maximum value (- l)k(k + t) in a particular 
irreducible representation. We shall suppose that, in an 
irreducible representation, the maximum eigenvalue of 
I C (12) I is K 1 + t and that the maximum eigenvalue of 
IC(2j-1)2j l isKj + t,whenthe IC(2i-12i)1 (i<j) already 
have their maxima. Then the K j (j = 1, ... , w) may be 
used to label the representation. Let 

Pij = cos [h(C (ij) - t)]. 

Then it follows from the identities analogous to (9) 
satisfied by the C (ij) that P" commutes with C (ik) + 
C (jk) but anticommutes witfi C (ik) - C (jk>, and hence 

Pij C (ik) = C (jk)Pij , i ~ j ~ k. 

Since also Pi~ = 1, the Pi; provide a representation of 
the symmetrIC group S(p). 

To establish the relation between the IS and the M, , 
we note that the vector In) corresponding to the maii
mum eigenvalue (- l)n(n + t) of C (ij) satisfies 

(C (ik) - (- l)nc (jk») In) = 0 (i ~ j ~ k), 

(C (ik)2 + C (jk)2) In) = (n + t) In), 

and hence compute the unique eigenvalue of the invariant 
w 

2:) C (ij)2 = 2:) (K. + t)(K + P - 2j + t) 
»i j=l J } 

within the irreducible representation considered. From 
this result and (18) we obtain the value 

a2(2N + 1) = NP(N + tp) - 22:) K(K. + P - 2j + 1) (19) 
j J } 

for the quadratic invariant of SO(2N + 1). By compari
son with (3) we see that 

K j = N - M w + 1- j (j = 1,2, .. . ,w). (20) 

Since the C (ij) are SO(2 N + 1) invariants, Hp carries 
a representation of C(P) 18> SO(2N + 1). The result (20) 
shows that each irreducible representation of C(P) 18> 
SO(2N + 1) in Hp is completely characterized by the 
K '. It is easily seen that H

j 
contains, just once, each 

sJch representation of C(P 18> SO(2N + 1) with 

We may say that the representation [Ml' M2 , ••• , Mw] of 
SO(2N + 1) occurs in Hp with a multiplicity equal to the 
dimension of the representation (Kl' K 2 , ••• ,Kw) of 
C(P), where K j = N - Mw+ 1- j ' This is a third way of 
describing the structure of Hp. 

Since SO(P) -) C(P) -) S(P) and SO(2N + 1) ~ 0(2N), 
we may enlarge the characteristic diagram to 

SO(2N + 1) ~ 0(2N) ~ SO(2N) ~ U(N) 

~18>~ 
~~ 

U(P) ~ O(P) ~ SO(P) -) C(P) -) S(P) 

Because no representation of U(P) 18> U(N), O(P) 18> 
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SO(2N), SO(P) ® O(2N), or C(P) ® SO(2N + 1) is con
tained more than once in Hp ' it is possible to make cer
tain deductions from the results described above. In 
particular, the representation [ml' m2, ••• ,mp] of U(N) 
is contained in the representation [M1' M 2, ••• , Mw] of 
SO(2N + 1) the same number of times as the represen
tation (N - M w' N - Mw-l' ••• , N - M 1) of C(P) is con
tained in the representation (ml'~"'" mp) of U(p). 
Similarly, if P is odd, the representation [m1'~' ••• , 
mp] of U(N) is contained in the representation (~1' 
~2"'" ~N) of SO(2N), the same number of times as the 
representation (K1, K2, ••• ,Kw; ~) of O(P) is contained in 
the representation (m1'~' ••• ,mp) of U(P), where the 
Kj and ~ are related to the ~T by (14') and (16). But it is 
easily seen that ~ = exp[ i1T(m1 + m2 + ... + mp)] through
out the representation (m1'~' ••• ,mp) of U(P). Hence 
the representation [ml' m2' .•• ,mp] of U(N) cannot occur 
in the representation (~1' ~2' ... , ~N) of SO(2N) unless 

exp[i1T(m1 + m2 + ... + m p)] 

= exp[i1T(~l + ~2 + ... + ~N + ~NP)]. 

We turn next to the problem of finding a suitable com
plete set of labeling operators in the space Hp. Such a 
set.sho.uld con~ain the ~ (or IS), si?Ce these charac
terize Irreducible representatIOns ill Hp of the ordinary 
parafermion [SO(2N + 1)] algebra. It should also con
tain the mi, since these label irreducible representa
tions of U(N), each of which corresponds to a collection 
of state vectors with a fixed member of particles pre
sent and with a definite symmetry type. 13 So it is 
appropriate to try and set up a SO(2N + 1) => O(2N) => SO(2N) => 
U(N) [=> U(N - 1) => ••• => U(l)] basis. The set of Casi
mir invariants of SO(2N + 1) => O(2N) => SO(2N) => U(N) 
is not in general a complete set of commuting U(N) in
variants in Hp. We have seen that these invariants are 
directly related to those of U(p) => O(P) => SO(p) ~ 
C(P), in associated representations. Then the problem 
of completing the former set by the addition of further 
suitable U(N) invariants is precisely that of completing, 
in the associated representations of U(P), the set of 
labeling operators provided by the Casimir invariants 
of U(p) :::> O(p) :::> SO(P) ~ C(P). It is well known18 that 
it is extremely difficult to find an operator suitably to 
complete, in general representations of U(3), the set of 
labeling operators provided by the invariants of U(3) :::> 
SO(3), so the problems faCing us here for P ~ 3 are 
formidable indeed. One complete set of commuting 
operators in a representation of U(P) is provided by the 
invariants of the chain U(P) :::> U(P - 1) :::> ••• => U(l). In 
the present situation, the corresponding subalgebras of 
the bij algebra are obtained by restricting the ranges of 
the subscripts i and j to the values 1 to P - 1, then 1 to 
P - 2, and so on. The corresponding orthonormal basis 
is quite unsuitable for our purposes, as it is a basis in 
which the K j and K· are not diagonal. However, there 
must exist at least one orthonormal basis in which 
they are diagonal, and this basis must be related to the 
former one by a unitary transformation T. If we de-
fine eij = Tbij T*, then the e;j will generate an equiva
lent set of U(P) representations, and the invariants of 
the chain U(P) :::> U(P - 1) :::> ••• :::> U(l) defined now in 
terms of the ejj rather than the bij , will again be a com
plete set of commuting operators. In the corresponding 
orthonormal baSiS, the K j and K· will be diagonal. If 
we can find the operator T, or it least the e ij , and can 
identify the functional dependence of the K· (in particu
lar) on the invariants of U(P) :::> U(p - 1) :5 ... :::> U(l) 
(defined in terms of the e; .), then we shall have a satis
factory solution to the lab~ling problem. 

J. Math. Phys., Vol. 14, No. 12, December 1973 

1789 

For P = 2, the problem may be solved more directly. 
We have in that case 

~l=ca~ ~2=-i~~ca~ 

~1=W1~c~~ ~2=c~~ 
(21) 

and while the operators ~i bii , ~i . b;. b p and bll do not 
comprise a suitable complete com~uii~g set, the opera
tors ~i bii , 6i ,j bij bj ;, and p = i (b12 - b21) do. For 
p = 812'Y (12) = Y COS1Ty, whence y = p COS1TP, and the 
SO(2) and C(2) labels K1 and K1 are related to y by (12), 
(17), (18), and (19), which yield 

However, one can also give explicit expressions for 
the eij in this case, following Govorkov. 9 He found 

ell = ~c (11) + c (12) + c (21) + c (22»), 

e12 = ~(- c (11) + c (12) - c (21) + c ~2»), 

e21 = ~- c (11) - c (12) + c ~1) + C ~2»), 

e22 = ~(c (11) - C (12) - c ~1) + C ~2»), (22) 

and the operators 6; eij '~i ,j eij l1i' and E1.1 are a suit
able complete commuting set, since E1.1 - l2 2 = y. 

In this paper, we are concerned mainly with the case 
P = 3. Rather th9Jl attempt to write down simple closed 
expressi?ns for all the operators eij in that case, we 
shall defme some of them explicitly, and the rest in a 
rather implicit, but nevertheless complete way. Es
sentially, our method involves the identification of all 
the states in a suitable U(3) => U(2) :::> U(l) baSiS, which 
then defines a suitable set of U(3) operators eij' We 
~hall sho:v how all states in Hp can be built up by apply
mg creatIOn operators to certain "vacuumlike" states, 
and subsequently how each state so constructed can be 
allotted U(3) :::> U(2) => U(l) quantum numbers, depending 
on its mode of construction. So we have an "opera
tional" definition of the required complete set of label
ing operators. In the next section, we discuss the struc
ture and multiplicity of "vacuumlike" states in H and 
the way in which other states in Hp can be constrtcted 
from them. These observations form the basis of our 
treatment of the case P = 3, given in the following sec
tion, and should be useful if a complete solution of the 
labeling problem for larger values of P ever becomes 
desirable. 

3. PARTICLE AND ANTIPARTICLE STATES 

We shall call an eigenvector in Hp of each of the U(N) 
generators aT T a state vector, or state, provided it be
longs to an irreducible representation of U(N). It will 
?e called a basic state vector, or basic state, provided 
It also belongs to an irreducible representation of 
SO(2N + 1). 

In a theory in which both particles and antiparticles 
are present, we assume that N = 2W is even, and that, 
for r ... W, aT creates a particle, but for r > W, a 
creates an antiparticle. The vacuum state vector then 
belongs to the representation of U(N) labeled (PW OW) 
and is defined by , 

aT I > = 0, r ... W, 

aT I > = 0, r > W, 

together with the conditions 

(c (ij) - Woij ) I ) = 0. 

(23) 
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This last condition ensures that the vacuum state is also 
a basic state, belonging to the representation of 
SO(2N + 1) labeled ([%P]N). Other vectors are formed 
by applying a sequence of creation operators and in
variants of U(N) to the vacuum state vector; the result
ing tensors, e.g., aqarc (12)asc (23)a u I ) (where s > W), 
may be resolved into components belonging to irreduc
ible representations of U(N) which are, by definition, 
state vectors. We wish to describe in detail how this 
decomposition is to be effected. 

The conditions (23) alone are insufficient to define 
the vacuum (unless P = 1), and there may be many basic 
states, which we call reservoir states, corresponding to 
vectors I K') satisfying 

arlKI) = 0, r ~ W, 

arIK') = 0, r> W. 
(24) 

Within a given representation of S0(2N + 1), such 
states correspond to weights which are in the same 
equivalence class as the highest weight, i.e., their 
weights are obtained from the highest weight by certain 
permutations and changes of sign of its elements. Since 
all such weights are simple,21 it follows that any repre
sentation of U(N) containing a reservoir state can occur 
at most once within a given representation of SO(2N + 
1). Moreover, it can be seen, again from the weights, 
that all such representations of U(N) are contained in 
the same representation of SO(2N), labeled (I,., L 2 , ••• , 

LN-l'LN) or (I,., L 2, •.. ,LN-l,' - L N), according as W is 
even or odd. Supposing that I K') belongs to an irreduc
ible representation of U(N) labeled (l{, 12, .•. , ZN)' or 
[k{, k2' ••• , kp], within the representation (L 1, L 2, ••• , 
L N ) of SO(2N + 1), we shall next determine the limita
tions on the values of the Z; and ki. 

By applying a suitable product of particle creation 
operators a r to the reservoir state IK'), we can attain 
a vector of highest weight, in the same representation 
of SO(2N + 1), belonging to the representation of U(N) 
labeled (L 1 + %P, L2 + %P, ••• , LN + %p). Since only 
W of the Z; are changed in this process, at least W of 
the Z; must have values not less than %p. Again, by 
applying a suitable product of antiparticle creation 
operators ar to such a vector I K') we can attain a vec
tor of lowest weight in the same representation of 
SO(2N + 1), belonging to the representation of U(N) 
labeled (%P - LN, %P - LN-l>"" %P - L 1). Since only 
W of the Z; are changed in this process, at least W of 
the Z~ must have values not greater than %P. Hence, 
P ;, Z{ ;, .. • ;, l ~ ;, % P ;, l ~+ 1;' ... ;, l;';, 0, and N ;, k 1 ;, 
••• ~ k'w;' w;, k~_ w+l ;, ••. ;, k; ;, 0, where, as before, W = 
%P if P is even, but w = t(p - 1) if p is odd and in that 
event k~+1 = W. 

In general, the number of antiparticles in a reservoir 
state is different from zero. However, corresponding to 
any reservoir state I K') there exists another reservoir 
state I K), within the same representation of SO(2N), 
in which the antiparticles have been replaced by par
ticles. Explicitly. 

where the product Or' is over all values of r (greater 
than W) associated with antiparticles in IK'). Suppose 
that I K) belongs to the representation of U(N) labeled 
[W + kl' W + k 2, ••• , W + kp], where k; ~ 0 when i > w. 
If 

N 

S = ° (ar)P r=W+l 
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is the operator which creates antiparticles to saturate 
every level, then SIK) is a basic state, in the same re
presentation of SO(2N + 1) as the reservoir states 
IK) and IK'), and is labeled [~, k 2 , ••• , kp ]. Since k; 
must here be nonnegative, 

k; = 0, i = w + 1, .. . ,p. 

By multiplying SIK) with a contravariant tensor opera
tor formed entirely from the ar (i.e., without factors 
aT or c (ij» with a symmetry corresponding to the irre
ducible representation (jl,i2' •.• ,ip] of U(N), we obtain 
a vector I J, K) of the direct product of the irreducible 
representations Ul,i2, ••• ,ip] and [kl' k2' ••• , kp]. This 
vector IJ, K) can be resolved into basic vectors 
IM( J, K) belonging to irreducible representations 
[ml' ~, .•• ,mp] of U(N), where 1 7 

max(jl + kp, kl + i p) ~ m 1 ~ il + kl' 

max(jl + h + kp + kp- 1 , kl + k2 + i p + i p- 1) 

~ m 1 + m2 ~ il + h + kl + k2' 

m 1 + ~ + ... + mp = il + kl + h + k2 + ... + i p + kp • 

(25) 

Each of the vectors IM( J, K) belongs to the same irre
ducible representation of SO(2N + 1) as IK). 

The above discussion suggests that isomorphic re
presentations of U(N) in Hp may be distinguished by the 
associated sets of values of the i; and the k;, and the 
eigenvalues of the commuting invariants of SO(2N + 1) 
(constructed from the C (ij?)which resolve the multipli
city of representations with the same k;, among the 
reservoir states. In the next section, we shall confirm 
that this is so for p = 3. However, it should be pOinted 
out that we have no guarantee that every set of values 
of the i; and k; consistent with a given set of values of 
the m i will correspond to a different isomorphic repre
sentation of U(N) in general. In fact, it is easy to con
firm that the only completely symmetric tensor involv
ingp operatorsaT,aS, ••• ,ax is {ar,{as,{ ••• ,ax } ••• }}, 

and even in expreSSions where other creation and anni
hilation operators are present, such a symmetrized 
product can be separated in this form. Hence it may be 
assumed that ip = mp-

4. PARASTATISTICS OF ORDER 3 

According to what has been said in Sec. 2, the repre
sentation [ml' ~,m3] of U(N) occurs in H3 a number of 
times equal to the dimension of the representation 
(ml'~' ms) of U(3), and there act in H3 a corresponding 
set of U(3) generators eij (i,i = 1,2,3) such that the 
Casimir invariants of the chain U(3) ::> U(2) ::> U(1) form 
a complete set of commuting invariants of U(N). More
over, the elements of this set may be assumed to com
mute also with the operators Kl (= K below) and K 1 (= K 
below), which label representations of C(3) 181 80(2N + 1) 
and 80(3) 181 0(2.N) in H3 , so that K and K are functions 
of the elements of that set. 

Rather than the notation eij for all the U(3) genera
tors, we shall use the more familiar 13 = t<e:tl - E22)' 
1+ = II + i12 = e:t2' L = II - iI2 = E21' and Y = (e:tl + 
e22 - 2e33 )/3, together with e:t3' e31, e23, and e32 • We 
seek to identify or characterize these operators, and 
to express K (in particular) as a function of the CaSi
mir invariants of the chain U(3) ::> U(2) ::> U(I), i.e., of 
ml'~' m3• Y, I, and 13 (where 12 = 1(1 + 1), I;, 0). 
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By considering the reduction of the representation 
([ t] N) 0 ([ t] N) 0 ([ t] N), we find that the irreducible 
representations of SO(2 N + 1) contained in H3 are 
labeled ([!]N-K, [t]K), or alternatively [N - KJ, where 
K = 0,1, ... , N, and there are (K + 1) isomorphs corres
ponding to a particular value of K. These may be dis
tinguished by the eigenvalues t, - !, ... (- 1)K(K + t) 
of C (12). The corresponding representation of C(3) is 
thus (K + 1)-dimensional, and is labeled (K). Each such 
irreducible representation of SO(2 N + 1) decomposes 
with respect to SO(2N) as ([!]N-K-1,[t1 K,± t) EEl 

([ !1 N- K, [t1 K- 1, ± t), with the exception of ([!]N), which 
gives ([i1 N-1, ± t) EEl ([!] N-1, ± !), and ([ t1 N), which gives 
([t]N-1,± t) only. Thus inH3 there are (2K + 1) irreduc
ible representations of SO(2N) labeled ([!]N-K, [t]K), 
where K = 0, 1, ... , N and a similar number with the 
sign of the last weight reversed; alternatively there are 
(2K + 1) irreducible representations of 0(2N) labeled 
[N - K]. The isomorphs may be distinguished by the 
eigenvalues 0, ± 1, "', ± K of y(12) , and the correspond
ing representation of SO(3) is labeled (K), and is (2K + 1)
dimensional. Clearly, when K has a value KO' then K = 
Ko or KO - 1, except that K = 0 if K = O. In other words, 
the (2Ko + 1)-dimensional representation (K = Ko) of 
50(3) reduces into irreducible representations of C(3) 
of dimension KO' labeled (K = KO - 1), and KO + 1, labeled 
(K = KO); except that the represe!ltation (0) of SO(3) 
yields only the representation (0) of C(3). Now it is 
easily seen that if a representation of U(3) contains re
presentations of SO(3) labeled (K1), (K 2 ), ••• , of dimen
sion (2K 1 + 1), (2K 2 + 1), ... ,then it contains represen
tations of SU(2) corresponding to 1= tKl> t(K 1 - 1); 
tK2, t(K 2 - 1);···, of dimension K1 + 1, K1; K2 + 1, 
K2 ; •• '. It follows that the irreducible representation 
(K) of C(3) appears in any given representation of U(3) 
the same number of times as the irreducible represen
tation of SU(2) with 1= tK, which has the same dimen
sion (K + 1). We may therefore choose the eij in such 
a way that I is equal to tK, and the enveloping algebras 
of C(3) and 5U(2) (with generators 11,12, and 13) are the 
same. Then we see from (18) and (19) that 

412 = K(K + 2) = C (12)2 + C (23)2 + C (31)2 - t. (26) 

It also follows from this identification of C(3) and 
SU(2) representations that the isospin generators 11, 
12, and 13 are SO(2N + 1) invariants, commuting with 
all a'Y" and ar • Thus these parafermion operators are 
associated with isoscalar particles. Note that the func
tional dependence of K on ml> m2, m3, Y, I, and 13 has 
now been fixed as simply K = 21. The most natural 
characterization of the isospin in this formalism is by 
the C(3) operators C1 = C(23), C 2 = C(31), and C 3 = 
C (12), which satisfy 

(27) 

etc., rather than by the components of I, which are gene
rators of SU(2). However, we shall show later in this 
section how the two sets of operators are related. 

Next we come to the identification of the hypercharge 
operator Y. It is convenient to introduce the 0(2N) in
variant y defined in (10), which reduces here to 

y = taPap - 3N/2 

= y(12) + y(13) + y(23) (28) 

and which may be seen from (13), (18), and (19) to have 
the eigenvalues (K + 2) or - K in the representation 
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[N - K] of SO(2N + 1), and (K + 1) or - K in the repre
sentation [N - K1 of 0(2N). Hence K = K - 1 if the 
eigenvalue of y is positive and otherwise K = K. Con
sider now the reservoir states, which, according to the 
analysis of the preceding section, belong to U(N) re
presentations of the form [W + kl> W, W + k 31. Here k1 
is the number of particles, and - k 3 the number of 
antiparticles in the reservoir. From (24) and (28) we 
find that the corresponding eigenvalues of yare - (k1 -
k 3). Thus 1= t(k1 - k3) on such reservoir states. A 
general M representation of U(N), labeled [ml>~' m3], 
may be regarded as belonging to the decomposition of 
the direct product of a J representation [j1,j2,j3]' asso
ciated with an appropriately symmetrized product of 
operators a r , and a K representation [k, 0, 0], to a state 
of which that product is applied. Such basic states in 
[k, 0, 0] are obtained by adding all possible antiparticles 
to reservoir states I K), which contain k particles only, 
and are therefore labeled [W + k, W, W]. (The "preced
ing" vectors of Govorkov 9 belong to representations 
labeled [k, 0, 0].) 

Bearing in mind that I commutes with ap ' one sees 
that if a particular M representation is associated with 
a certain value of I, then the corresponding K represen
tation has k = 21. Moreover, in view of the inequalities 
(25), the maximum isospin in a set of isomorphic M 
representations will be t(m1 - m3 ). This can be re
solved into two Casimir operators i(m1 - m2 ) and 
1(~ - m3 ), corresponding to the isospins in the sub
multiplets of greatest and least hypercharge, respec
tively. The hypercharge Y itself should vary between a 
minimum value (~ + m3 - 2m1)/3 attained when k = 
m2 - m3, h = j3 and j1 = ml' and a maximum value 
(m1 + m2 - 2m3)/3 attained when k = ml - m2,jl = j2' 
andh = m3 • Thus 

Y = t(m1 + m2 + m3) + h - j1 - h· 

As we pointed out at the end of the last section, multi
plets corresponding to different values of the ji are not 
always independent, and for p = 3 the ambiguity is most 
simply removed by imposing the condition 

(29) 

so that the formula for the hypercharge and isospin may 
be written 

Y = t(m1 + ~ - 2m3) + Jz - j1' 

I = 1 k = 1 (m1 + ~) - 1Ul + j2)' (30) 

Within a given representation [ml'~' ~1 of U(N), it 
is evident that the values of the j; are completely deter
mined by Y and I, when the condition (29) is adopted; 
moreover, the values of Y and I allowed are just those 
which occur in the U(3) multiplet (ml' rnz, m3 ). Thus, we 
have verified that the condition (29) does not exclude any 
states contained within the representations of the genera
lized parastatistics algebras. 

The operators ml' rnz, m3, Y, I, and 13 (which we have 
not yet defined) form a complete set of commuting U(N) 
invariants in H3 , and by fixing their eigenvalues on a set 
of basic states we implicitly define the eij completely, 
since all their matrix elements are then determined. 
Although these U(3) generators do not provide the sim
plest characterization of the algebraic structure-we 
have already seen that C(3) arises more naturally than 
5U(2)-we wish to show how they can be constructed if 
required. 
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The choice of theisospin SU(2) generators 1 ± and 13 
is not, of course, unique, but can be made so by requiring 
that 

UI+u* = wi., 

U13U* = 13, 
(31) 

where w is a complex cube root of 1, and U is the opera
tor inducing a cyclic transformation of the ansatz com
ponents. Thus 

Ufl;U* == wa;, 

UapU* == ap' 

where we have defined 

rL = a (1) + wo(2) + w2 0 (3) 
-p p p p' 

a" = 0(1) + w 2 a (2) + wo (3) p p p p' 

(32) 

(33) 

in terms of the psuedofermion operators appearing in 
the ansatz (5). This U is in the symmetric group S(3) 
discussed in Sec. 2. Indeed, if 

~ == cos [iN(cj - i)], 

it follows from (27) that, e.g., U3C1 == C2U3 and U3C2 == 
CI U3, and since U must be an SO(2 N + 1) invariant, we 
have 

U == UI U2 = U2U3 == U3UI • 

We can easily construct one set of SU(2) generators 
H± and H3 by writing 

H3 = i[~ - i(- 1)K], 

H. =!(C3 )(CI + C2)(~ - CI ), 

H_ = (C:!- C1 )(C1 + ~lf(C:3). 
Since 

[H3,H±] = ± H±, 

H.JL == (j(C:3)]2[(K + 1)2 - (~ + W][(K + 1)2 - (C3 - ~)2], 

H_H. == (j(C:3 + I)F[(K + 1)2 - (C3 + ~ )2][(K + 1)2 

- (~ - i)2], 

the required commutation relations will be satisfied, 
provided!(Cs) is defined by 

4[!(C3)]2[(K + 1)2 - (~ + i)2][(K + 1)2 - (C:3 - ~)2] 

= (K + 1)2 - [C3 - i(- I)K - iF. 

It is important to note that any SO(2N) vector, i.e., a 
linear combination of ap ' a;, and ap" with coeffiCients 
which may be SO(2N) invariants, can change the eigen
value of H3 by at most ± 1; the same will apply to 13 , as 
defined below. 

The H· and ~ are evidently connected by a unitary 
transfoimation, which we next determine. If 

V3 == 1 + U~* + U*u3, 

U:3 = exp(41TiH3/3), 

it is easy to verify that the relations (31) are satisfied, 
provided 
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The need to take a limit here arises from the fact that 
V3 has one aCCidentally vanishing eigenvalue, in the 
representation of C(3) corresponding to K = 2. In any 
irreducible representation of SO(2N + 1), the matrix 
elements of U can readily constructed from the norma
lized eigenvectors of HI in a representation in which 
H3 Is diagonal, and those of V can be derived therefrom. 

The hyper charge changing operators e23 , e32 , e 13, 
and e31 can be split into two parts, one of which increa
ses the isospin / by one-half unit, and the other decrea
ses it by one-half unit; thus 

eij = (e j )+ + (e j )-, 

(e jj )+/= (1- i) (e jj )+ (i <j = 3 or j < i == 3) 

(ei)-I== (1+ i) (e j )-. 

Instead of (e j .)+ and (e j )-, we shall first construct 
operators (Dij)/and (Dij )- which differ from them only 
in normalization. We shall need to make use of the 
U(N) invariants ml' ~, and m3' and since our object is 
to construct all the SU(3) generators at least implicitly 
from the creation and annihilation operators, we note 
that the mj are determined by ml + m2 + ~ = ar r' 

2(m1 + 2~ + 3m3 ) - (m~ + m~ + m~) 
== a r s as r - (N - l)a r r' 

3(ml + 4m2 + 9m3 ) - 3(m~ + 2m~ + 3~) 
+ (my + m~ + m~) == a r sa s lair - (2N - ~)ar sa s r 

+ iarr[a S s + (N-l)(2N- 1)] 

(summation over repeated affixes implied). The opera
tors ar,i == [mj,a r ] and ar,i = [ar,m;J change the eigen
values of m i by + 1 and - 1, respectively, leaving the 
other mj unchanged. Moreover, they have no effect on 
lor 13 , since they commute with the SO(2N + 1) invari
ants. 

The hyper charge changing operators are U(N) invari
ants which change the ~alue of both 13 and 1 by one-half 
unit, and must therefore involve a; and a;t. It follows 
from (31) and (32) that a; has components which change 
13 by + i and - 1, while a; has components which change 
13 by - i and + 1. To separate the components which 
change 13 by ± i, we make use of the identity 

[A2, [A2, [A2, a;]]] = [2A4 - A2, a;], 

where we have set A == y - i. This identity can be veri
fied directly, or deduced from the fact that a; can have 
only components which change the eigenvalue A' of A to 
± A', ± (At + 1) or ± (At - 1). It is evident from (19) 
and (28) that the components which change I by ± i are 
those which change A'to - A' or At ± 1, and are there
fore contained in the vector 

0/; = {A,[A2,a;]}- [A,a;]. 

Of course a; is defined similarly in terms of a/,. The 
vectors a tr , O/"r(r "" W) and a~, a;' (r > W) can be used 
to create particles and antiparticles respectively in the 
reservoir. 
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We may now assert that the invariants which increase 
the hypercharge and change the isospin (I3' 1) by fixed 
amounts are 

(DI3 )+ == [0:' 'T, aT. 1]' (D23 )+ == [0:' liT, aT,l]' 

(DI3 )- == [a T
•2, 0:';], (D23 )- == [a r ,2' O:'n. 

For these invariants do not alter the values of ml' 
~, and m3' and whereas the factors ap,i change the 
values of 11 and h, the factors O:'~ and 0:';' cannot. By 
inspection of the expression (30) for Y, it is clear that 
the above operators will all increase Y by one unit; 
their Hermitian conjugates (l~n)-' (~2)-' (~1)+' and 
(~2)+ will similarly decrease Y by one unit. Hence we 
may write 

(e jj )+ == Fij[(Dij )+ (~i)-]-1/2 (D;j)+ 

for i < j == 3 and j < i == 3, where the Fii are nor~aliza
tion factors known from the work of Baird and Bieden
harn l9 ; 

F13 = F(Y,- 1- 1,- 13), 

F23 = F(Y,- 1- 1,13), 

F31 = F(Y + 1,1- i,-: 13 + i), 
F32 = F(Y + 1, 1- i,I3 - !), 

2(I + 1)(21 + 1)[F(Y, I, 13)]2 = - (I + 13 + 1) 

x (m1 - j.L + 1- i Y + 2)(m2 - j.L + 1- ! Y + 1) 

X(m3 - j.L + 1- iY), 

j.L == t (m1 + ~ + m3 )· 

This completes the determination of the U(3) generators. 

Turning now to the physical interpretation implied by 
the above identifications, we note that there are simi
larities to Gell-Mann's well-known theory,4 but also 
important differences. It is a requirement of Gell
Mann's theory that the fundamental particles are quarks, 
each of which has a definite isospin and hyper charge 
and, on account of its fractional charge, cannot be posi
tively identified with any particle so far observed in 
nature. The generalized parastatistics also requires 
the hadrons to be composite particles, but the funda
mental particles do not carry a definite isospin and 
hypercharge. The reservoir particles carry the iso
spin, but are of two kinds, one of which has 13 = - 1 or 
+ t, and the other has 13 = - tor + 1. The external 
particles have zero isospin, but, as can be seen from (30), 
have Y == - ~ or + ~. The indeterminacy of these quan
tities, and the charge 13 + t Y, is resolved by the sym
metry type of the state in which the particles appear. 
There are quarkish states with fractional hypercharge, 
as in Gell-Mann's theory, which can, however, be ex
cluded by requiring that the particle number should be 
a multiple of 3. There is also a requirement that strong 
interactions should involve only the U(N) generators 
aT s' which conserve isospin and hyper charge and, as 
Gray20 has shown, are consistent with the cluster pro
perty which is indispensable in a theory of composite 
particles. 

In Table I, we list the well-known hadrons and the 
corresponding quantum numbers suggested by the pre
sent interpretation. 

The X is of course formed by creating an antipar
ticle and filling the "hole" with a particle. Even exclud
ing the quarkish states, there are obviously some Simple 
assignments of quantum numbers to which no known 
stable particle can be found to correspond, notably the 
fermion Singlet m1 = ~ = m3 = W + 1, which can, how
ever, be identified as a combination of a baryon and 
meson. If we denote the number of objects of this kind 
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TABLE I. Table of hadrons and assignments of quantum numbers. 

x 

(A,Ti,A) 
(N,K,:E;) 
(a,K,N) 
(~, 17,"2;) 

Z* 
~* 
N* 

o o 

(2,1,0) 

3 3 

o 

o 

o 

o 
1 
o 
1 

o 
1 
2 
3 

o 

o 
o 
1 
1 

o 
o 
o 
o 

o 

o 
1 
"2 
1 
2: 
1 

o 
1 
"2 
1 
3 
"2 

by Nl' the numbers of barY-.2.n, meson, and antibaryon 
octet states by Ns' Ns' and Ns' we have in general 

m1 - W == Nl - Nl + Ns + 2 Ns, 

~ - W = Nl - ~ + Ns -Ng, 
m3 - W == Nl - ~ - Ns - 'iNs' 
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o 

o 
1 
-1 
o 

-2 
-1 
o 
1 

All possible values of the mj for which m 1 + ~ + m3 

is a multiple of 3 can be obtained by suitable substitu
tions in this formula. It may be noticed that the higher 
admissible SU(3) multiplets (e.g., the 27-et) can be con
structed from octets, and even the decuplet can be con
structed in this way. 
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The properties of Riemannian geometry necessary to relativity have been used as a basis to derive a 
more general geometry. Emphasis is placed on a.natural development with the result of considerable 
generalization. Several examples are discussed including the Brans-Dicke field equation which are 
but one special case of the new manifolds. The scalar field is not introduced ad hoc but is a natural 
geometrical quantity. 

I. INTRODUCTION 

Riemannian geometry has become a tool of tremendous 
value to the physicist and finds application in fields as 
different as relativity and elasticity. It is particularly 
the relativist, however, who has most benefitted, and it is 
he who has oftimes tried to generalize Riemannian geo
metry to gain even more insight. 

This paper approaches the question of generalizing the 
geometry somewhat differently from past efforts. 1 

Those properties which seem physically desirable are 
assumed, and the resulting structure is then deduced. 
The geometries which emerge are considerably more 
general than Riemannian geometry, and, in fact, even 
the coordinate system has a rather unusual secondary 
role. Several concrete examples are discussed includ
ing a derivation of the Brans-Dicke field equations as a 
special case. 2 

II. PHYSICAL ASSUMPTIONS 

It is always a matter of judgment to extract those parts 
of a theory which are physically important. The follow
ing properties of Riemannian manifolds, however, have 
been of great use and will be constructed into the geo
metry. 

AI. Paths 
A2. Tangent vectors 
A3. Metric 
A4. Covariant differentiation 
A5. Contraction of indicies 
A6. Length preserving parallel propogation 
A7. Vanishing torsion 
AB. Curvature tensor 
A9. Bianchi identities 

What has not been deemed fundamental is the standard 
coordinate patch presentation. 

III. SPACE SET 

The axiomatization is begun very differently from that 
of a Riemannian manifold. Instead of beginning with a 
Hausdorffspace and coordinate patches, a net of para
metrized paths is used. These paths fill the space and 
might be expected to be a sufficient substitute for the 
coordinate system. 

Axiom 1: There exists an index set I called the path 
index set. G = I @ R (R = set of real numbers) is called 
the path set. There is an assumed equivalence relation 
for G called a coincidence equivalence. The quotient 
space S is called the space set. 

I is a set of labels for the paths, and G is the set of 
paths. Intuitively each path has a parameter t, and (i, t) 
is meant to represent the position (as a function of t) of 
the path labeled i. Since paths may intersect, each point 
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in space may have many labels, i.e., (i, to) and (j, uo) 
could both be the same point. Thus an equivalence rela
tion (that of coincident points) is assumed. The resulting 
quotient space S is meant to be a generalization of co
ordinate space. Throughout this paper, whenever the 
meaning is clear from context, we will follow the not un
usual convention where the same symbol is used for an 
element in G and its equivalence class in S. 

IV. TANGENT VECTORS 

The next step is to introduce tangent vectors. Often a 
tangent vector has been identified as an equivalence 
class of paths passing through some fixed point. In this 
case a function acts on a tangent vector to produce the 
directional derivative-which is just the derivative of 
the function along any of the paths in the tangent vec
tor's equivalence class. 

Definition 1: Given PES and its equivalence class 
{p} S. G, Tp = R (9 {p} is called the basic tangent 
space at p. An element of T p is called a basic tangent 
vector with the real number its length. 

Here .a bas~c tangent vector in T p is identified with a 
path z passmg through p and a length 0'. It is thus an 
ordered triplet ~ = (0', i, to) where p = (i, to)' 

It should be pointed out that T 1'. need not be all the usual 
tangent space. T p might incluae only tangents in the 
open light cone or even just a finite number of tangent 
directions. Examples of this type will be considered. 
One might guess that the sparseness of Tp would lead to 
considerable freedom. 

V. METRIC LINEARITY 

Each tangent space must be a linear space if an index 
formalism is to be developed. Scalar multiplication can 
already be defined simply by Q1(fJ, i, to) = (Q1{3, i, to)' It 
turns out that it is natural to introduce the full linearity 
simultaneously with the metric. 

Axiom 2: There exists a real-valued symmetric 
function g, called a metric, on Up ES (Tp (9 T ) and a 
constant N, called the dimension of S, which ~atisfy 
(a) For each Tp there is a finite set {1} a IQl = 1 ~ N} 
~ Tp such that for any ~ E Tp there are unique real num
bers t ex for which 

N 

g(~,n= ~ ~exg(1}ex'~') 
ex = 1 

is satisfied for all ~' E T p; 

(b) g(Q1~, ~') = Q1g(~, e) for all ~,~' E T p ' 0' E R. 

In this axiom the ~ ex look like coordinates in an N dimen
sionallinear space with basis {1)ex}. In fact, if there 
were a completeness condition on T p ' then the ~ex would 
form a linear space. In general, however, the set of ~ ex 
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must be extended which leads us to the following corol
lary to Axiom 2. 

Corollary 1: For each PES letT p be an N dimen
sional real linear space. There is a map ¢ g : T p -7 Tp 
such that 

(a) span ¢g( T p) = '1' p; 

(b) Whenever CPg(~l) = ¢g(~2)' theng(~l' 1;) =g(~2' 0 
for all ~ E Tp; 

~c) Letg: cP (T) 0 ¢g( Tp) -7 R be defined by 
g(cp g (~1)' cP g(t 2» = g (~1' ~ 2 ). Then g has a unique bi
linear extension to '1' p 0 '1' p' 

Proof: Choose both an {1),,J set as in axiom 2 and a 
basis {Va} forTp' Let CPg<O = ~~=1 ~a Va' This map 
satisfies the theorem. 

For later reference one of the properties of cP g is listed 
as a second corollary. 

Corollary 2: cpg(a~) = acpg(~) for all aE R, ~ E Tp. 

For ease of notation, the extension of g to '1' p will also be 
denoted g. It will be assumed as usual that g has an in
vertible matrix representation g a8 in '1' p' '1' p will be 
called simply the tangent space at p, and its elements 
tangent vectors. Note that since '1' p = span CPg( T ), any 
linear operator is uniquely determined by its v~es on 
CPg(Tp)' 

VI. DIFFERENTIABLE FUNCTIONS 

A differentiable function is defined as follows: 

Definition 2: Let f: 5 -7 R be a real-valued function 
on a space set 5 such thatf(i, t) is a differentiable func
tion of t for all paths i E 1. f is then said to be differen
tiable on S. 

It was mentioned earlier that differentiable functions 
would be operators on tangent vectors. Hence comes 
the following definition of the differential df. 

Definition 3: For a differentiable function f the dif
ferential df : Up ES T p -7 R is defined by df(a, i, to) = 
a df /dt (i, t) It = t 

o 

As with the metriC, the differentials should be linear 
operators. However, it is not necessary for the linearity 
to be the same as for the metric. The linear structure 
for df is introduced analogously to that of g. 

Axiom 3: There is a ring D of functions differenti
able on 5 (usual addition and multiplication with inverses 
for nonzero functions) satisfying 

(a) For each Tp there is a set {71ala = 1 -7 N} s:;;. Tp 
( N = dimension of 5) such !.hat for any ~ E T p there 
exist unique real numbers ~ a so that for any fED 
dfm =~~=1 ~ad.f(iia); 

(b) The constant functions are in D. 

As with T p ' there is a certain sparseness allowable in D. 
While it will be closed under all the operations we will 
consider, it will still not be necessary for D to include 
all differentiable functions on S. An example of this type 
will be considered later in the paper. 

The next two corollaries for df are analogous to corol
laries 1 and 2 for g. 

Corollary 3: For each PES there is a map cP j : T p 
-7 '1' p called an f map such that 

(a) span cP j( T p) = '1' p; 

J. Math. Phys., Vol. 14, No. 12, December 1973 

1795 

(b) Whenever cP j (h) = cP j(~ 2)' df(~ 1) = df (~2) for all 
fE D; 

(c) For each PES andf E D letA(: cP j( Tp) -7 R be de
fined by df(CP l.(m = df(I;). Then df has a unique linear 
exten sion to <[' p' 

Proof: Analogous to Corollary 1. 

Corollary 4: cpj(aO = acpjm for all a E R, ~ E Tp' 

The extensions of df will again be denoted df for simpli
City, and the vector representation of df in Tp will be 
denoted f, a' It may be remarked here that while f a will 
share many of the usual properties of the partial deriva
tive, it is a distinctly different operator. In particular, it 
will be shown later thatf,a,B - f,8,a need not vanish. 

The situation is as in Fig. 1. There are two different 
types of maps on T p embedding it in a linear space '1' p-

In Riemannian geometry the two are locked together by 
demanding that cP j = cP g' Certainly some relation is re
quired if gaB is to act on f.a type indices, however, the 
relation may be much more general without sacrifiCing 
the benefits of the usual index formalism. 

Axiom 4: For every point PES there are specified 
an f map cP j and a g map cP g from T pinto '1' p' 

With this axiom, the domain of df can be extended from 
Up EsT p to include Up Eo S Tp by using Corollary 3. Ther e 
is a similar extension for the domain of g to include 
Up E: S ('1' p 0 '1' p) by using Corollary 1. Strictly speaking 
these are new maps, but we choose to continue the for
mer notation and just note the change of domain. 

The next axiom will complete the transition from the 
abstract entities T p to the familiar N-dimensional 
linear spaces T p' 

VII. TENSORS 

The next step is to introduce tensor fields for covariant 
differentiation, and an unfamiliar situation is confronted. 
Without a coordinate system, there are no natural, 
guaranteed well-behaved vector fields such as the iJ/iJxi 

provided by the coordinate patches. One could resort to 
the f a vector fields and deal with neighborhoods, but 
this raises topological questions which are not felt to be 
central to the development. Consequently, to remedy 
this problem, a well-behaved reference basis is hypothe
sized. 

Axiom 5: There exists a set of N( = dimension of 5) 
functions {VI' ••. , V N} on 5 where {Vj (p)} is a basis in 
'1' p' With respect to these bases gaS E D and for all 
fED f,a ED. 

FIG. 1. There are two independent maps from the basic tangent space 
into the tangent space. One is generated by the metric and one by the 
differentiable functions. 



                                                                                                                                    

1796 Richard H. Hudgin: Generalizing Riemannian geometry 

In terms of this basis field a differentiable basis field 
can be defined. 

Definition 4: Let A zk (p) be an invertible N x N matrix 
(N = dimension of 5) composed of N2 functions in D. 
{W k (P)} = {AZk( p)Vz (P)} is then a differentiable basis 
field. 

The stage is now set for a development closely parallel
ing that of normal Riemannian geometry. When the 
treatment is standard, it is assumed that the reader can 
fill in missing details, but when the treatment deviates, 
the presentation will be rigorous. 

Tensors of rank M at p are to be linear operators on 
<f p 181 ••• 181 <f p = <f f, and they will have matrix repre
sentations defined by 

R(~l""'~M)=Ra "'a ~~l ... ~~M 
1 M 

Tensors of rank zero are the real numbers. 

Indices will be raised and lowered using gafl and its in
verse ga/3. Composition, contraction, permutation, addi
tion, and multiplication by real numbers produces new 
tensors from old as usual. 

A tensor field R(P) will give for each p a tensor at p 
with some fixed rank M. With respect to a differentiable 
basis field, the matrix form of R(p) = Ra .. , a (p) will 

1 M 

always be assumed to be a differentiable function on S. 
gaB,gafl, andf,a are already differentiable. One can 
check that all differentiable basis fields are equally good 
in determining differentiability of a tensor field. 

VIII. COVARIANT DIFFERENTIATION 

Covariant differentiation is critical to any extension of 
Riemannian geometry, and the necessary-suffiCient con
dition for a Unique differential operator will turn out to 
be quite simple. First, the operator is defined by listing 
certain ones of its usual properties. 

Definition 5: d is a differential operator if it converts 
tensor fields of rank M T a ..• a into tensor fields of 

1 M 
rank M + 1 denoted T a •.. a . a and satisfies 

1 M' M+l 

(a) df is the differential of f, i.e.,!; a = f,a 

(b) (jTa1"'aM);aM+l =f,aM'lTcx1 ''' aM 

+fTa '''a 'a 
1 M' M+l 

(c) (Ta "'a + U a "'cx )'a = TCX1"';aM>1 1 M 1 M' M+l T 

+ U a .... CX 
1 ' M+l 

(f) f, a; B - f. B; a = O. 

Many properties can be quickly derived from this list, 
i.e., Tcx; B = gay Ty; B follows from (d) and (e). 

To deduce the usual form of the covariant derivative 
using Christoffel symbols, begin by verifying 

(jg).cx=fg.a+gf. a forf,gED 

from the definition of df. 
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Then for any two differentiable tensor fields ~a' 17 B use 
this result plus (e) and (a) to prove that 

gall.y~a7jB +gall~a.y17/3 +gall~cx17ll.r = (gcxll~a17Il),y 

= gall ~a; y 171l + gall ~a17B; y' 

This rearranges to 

(gaB t _ lc gall I: _ gall I: ) 11 
'>a;y 2 • r '>a '>a. Y "Il 

= - (gall 11 _ ! gall 11 _ gall." )1: 
-'Il;y 2 .y·'1l -'Il.y'>a· 

Since the right side is linear in ~a' so is the left side. 
One concludes that 

g all I: _ lc gall t _ gall I: = CBa t 
'>a;y 2 ,y'>a '>a.y y'>a 

for some matrix field c~a independent of ~a' 

This can be rewritten in the standard form of 

~a;y = ~a.y + rg,y~p' 

where r~y is some matrix field independent of ~a' 

To extend this proof to tensor fields of arbitrary rank 
show that any tensor field can be written as a sum of 
terms of the form n& -.. ~f1 ,then apply (c). The 

1 M 
usual results emerge. 

One can derive the ray in any of a variety of standard 
ways. 

We begin by using gaB; y = O. 

I. gall; Y = gall. y + rg,ygp!3 + r~ygap = O. 

Now use the torsion -free condition (f) on a function 
fE D: 

f. a;!3 -f. 8;a = U, a. B - f. B.a) + (rg,8 - r§o)f.p = o. 

Thus 

can be determined simply by twice differentiating func
tions in D. 

Equations I and II completely fix rg,Il' The easiest way 
to write the solution is to lower the superscripts on r~1l 
and 5~1l to [p, a{3] and 5 p • all' Then 

[a,{3y]=-t(glla,y +gay.ll-gYIl.a+ 5 B.ay +Sa.rB 

- 5 y ./3a)· 

One can now go back and calculate the covariant deriva
tive for raised indices with the usual result. Perhaps it 
might be mentioned that 5g,B is not a new quantity special 
to the generalized manifolds developed here. It appears 
whenever the basis vectors are freed from the a/axi of 
the coordinate system and are allowed to be any com
plete set of independent vector fields. 3 

What has been outlined here is a uniqueness proof for 
the differential operator d. In fact, a complete charac
terization has emerged just as it does in Riemannian 
geometry. The sole restriction placed on the manifold 
resulted from the torsion-free condition (f). These re
sults are summarized below with the generalization of 
a standard theorem of differential geometry. 
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Covariant Derivative Existence-Uniqueness Theorem 

If for a differentiable basis field { voj there is a matrix 
field S€.jl such that I. "', 13 - I a, '" = 5€.8 I. p is satisfied 
for all] ED, then and only then is there a differential 
operator satisfying Definition 5. Furthermore, dis 
unique and is defined by 

Till "'8N =Tal "'8N + rP Tal "'8N 
a 1 "'C(M;C(M+l a l ··'C(M,Ci M + 1 ct1Ct,M+l pa 2 ···u.i\d 

, .. + rP Tal "'ilN - rill TP'" BN 
"'M"'M+l "'1 "-p paM +l "'1''''''M 

'" _rBN Till -" P 
palV1 + 1 a l ···aM ' 

where r€'il is given by 

r~B = - t gP Y(g ",y, 8 + gy B, '" - g S"', Y + Sa, y 8 + 5 Y ,8'" 

-58 .",y) 

IX. CURVATURE TENSOR 

The curvature tensor can be found as usual by investiga
ting ~a; 13; ~ - ~a; y; 13' Using the explicit form for the 
covariant derivative, one can find that 

~a;a;y - ~a;y;8 = Rcx pay ~P, 

where 

R"'Syo = r"'so, y - r a
8y , 0 + r"'por Pay - rapyrp 130 

- railpspyo' 

- The usual tensor formulas for inverted derivative in-
dices are also valid and can be similarly deduced. 

This curvature tensor actually satisfies all the usual 
symmetries: 

(a) Rcxayo == - Raao Y' 

(b) R aByo = - R Bayo , 

(c) R aByo = R yoaB ' 

(d) Ra[ByoJ = 0, ] denotes antisymmetrization. 

(a) follows immediately from the definition. (b) follows 
fromh,a;B-h,B;a= O,whereh =gTAP~A. (c) isim
plied by (a), (b), and (d). (d) then remains to be shown. A 
direct calculation of (d) using the explicit matrix form 
above gives 

'= Q~yo' 

This quantity can be shown to vanish as follows: Differ
entiate with respect to y the expression 

I, "', B-1, a,a = - 5~BI, p 

and get 

l,a,B,y -I,B,a,y =-S'txB,yl,p -5€.8/,P,Y' 

Antisymmetrize with respect to (a, (3, y), and wherever 
inverted final derivative indices appear use the S matrix. 
The result is (with relabelling) 

Q%ro/, a = O. 

Since I is arbitrary, 
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X. BIANCHI IDENTITIES 

The Bianchi identities still hold in the general case, The 
standard proof of Riemannian geometry works here as 
well,4 

XI. EXAMPLES 

Example 1: The simplest case is that of a single path 
i which never crosses itself: 

G = {(i, s) I S E R} = 5. 

The basic tangent space at the point (i, s) is 

T (i, s) = {(a, i, s) I a E R}. 

In this case T (i, s) is already a linear space, s~ce all 
multiples of the single independent vector (l, z, s) are in 
T (i ,s)' To get to 'l'(i, 5)' ¢ j and ¢ g satisfy 

Thus the most general ¢ j and ¢ g can only multiply each 
length by a constant, 

By an appropriate choice of basis for T (i ,5)' we are free 
to have 

¢g(a, i, s) = a. 

Then 

¢ j(a, i, s) = a X(s), 

where X (s) is some nonzero, differentiable function of s. 

The simplest reference basis is to use 1 at every point. 

Now g IV the only metric component, is specified as a 
nonzero differentiable function of s, and the construction 
is finished. 5 II = 0 trivially since 5 €.b = - 5 §a-

D is the set of differentiable functions on R, and 

j
. __ 1_ ij, 

1 - -
, X(s) ds 

Finally, 

rb = - ~ gIl,1 = __ 1_ dg ll (s)_ 
2 gIl 2g11X ds 

Example 2: Consider the case of RN with N indepen
dent vector fields H h), ... , ~ ~N)}' The ~ ~cx) can be inte
grated for each a to give a set of paths using 

dx k 
__ - ~k 

ds - (a)' 

Here 5 = RN. The basic tangent space T p at each point 
consists of all multiples of the Nvectors ~ 10:)' The tan
gent space T p is a copy of R N • 

To get to 'l' P' again we have the restriction 

for cP j and ¢ g' If D is to be the usual set of differenti
able functions on RN, then it is convenient to choose a 
basis for 'l' p so that 

¢ }(~ (a» = qa}' 
With this choice I. a = 01 lax a and S €.f\ = O. 
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If ¢g == ¢ I' then normal Riemannian geometry results. 
The most general case is to specify the vectors each 
~ (a) maps into. 

¢:(~(a») ==AHL,)· 

A f is then an N x N invertible matrix (invertible be
cause the image of the ~ ~a) basis must be a basis in <f p). 

Let gall be specified. rca r is the usual result since 
S~1l == O. 

r~y ==_~gap[gpll.J +gPY,Il- g BJ,pJ, 

where from the above choice of ¢/' the comma denotes 
the usual derivative. 

The expression for the curvature tensor is the accus
tomed one as well. 

At this point one might wonder if anything new has been 
added since the usual expressions are appearing. The 
difference is in the metric. The metric defined by 
ds 2 == gaBdxadxB is not ga6 but is gaB = gl'vA~A~. This 
follows from 

g(~(a)' ~(8») = gl'v¢~(~(a»)¢g(~(ld 

= (gl'vAI),ArH~a)~t6)' 

Thus the metric gaB which defines proper time in terms 
of the dx a is not the metric gaB which appears in paral
lel propagation or in the curvature tensor. 

The last example will show that the Brans-Dicke scalar 
-tensor field equations are a special case of this geo
metry where A~ = ::I: ¢ 1/2/.i~. 

Example 3: This example deals with RN again but 
with M > N vector fields {~fll' ... , ~ (M)}' (N of these 
are to be independent.) The results are analogous to 
Example 2 with the difference that ¢ g can now be a more 
complex map, a nonlinear map. In other words, there 
may not be a matrix gl'v so that 

g(~(a)' ~(Il») = gl'v~{a) ~tB)' 

It is this generalization to increasingly complex ¢g maps 
which allows many more fields than the Brans-Dicke 
scalar field to be introduced. Their scalar-tensor 
theory is but the simplest step beyond Riemannian geo
metry. 

Example 4: This example has M < N and illustrates 
a very different kind of freedom by constructing a two
dimensional manifold which fills a three-dimensional 
space. One way to do this is to start in R3 and specify 
two independent, infinitely differentiable vector fields 
~ ell' ~ t~)· (Latin indices will run from 1 to 3, Greek 
from 1 to 2.) At each point p E R3, T p is the multiple of 
these two vectors, and <f is a copy of R2. These vector 
fIelds can be integrated to give a set of parametrized 
paths filling R 3. 

Now begin at point Po and ask what other points can be 
reached by traveling from Po along the path net. Consi
der infinitesimal translation. Certainly one can use two 
infinitesimal translations (one on a ~ (ll path and one on 
a ~ (2) path) to move infiniteSimally in any direction 
spanned by ~tl) and ~t2) atpo' Now consider the follow
ing displacements to second order. Move.6.s along a 
~(1) path,.6.s along a ~(2) path, -.6.s along a ~(1l path, 
- As along a ~ (2) path. To first order in As one has re-
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turned to the starting point. However, to second order 
the displacement from Po is 

(a~ k a~ k ) 
Axk = ~ ~tl) - ---.ill q ) As2 == ]kAs2. 

oxl ox l 2 

If one were dealing with the paths of a two-dimensional 
hyper surface in R3, then .6.xk would be in the tangent 
space spanned by ~ t1) and ~ t21' since one would stay in 
the hypersurface. In general, however,]k has a compo
nent normal to the tangent space which means that infini
tesimal translations in all directions are possible from 
Po' This guarantees that the paths cannot be separated 
into two-dimensional hypersurfaces and that the two
dimensional manifold fills a three-dimensional volume. 

To continue the construction of the manifold let ¢ Bf(~ (a») 
=A~(p) and let ¢J(~(a») = /.i~. Any differentiable unc
tion f on R3 produces a differential operator df where 

df(TJ) = f TJa = (X ~ k )TJ a• 
,a ox k (a) 

Thus f, a = of/ox k ~ ta) and S gil can be calculated. 

_ . _ .!L(oHa) I _ a~t6)\ 1 
f, a, /3 f, B, a - ox k ax l ~ (/3) ox l l (a) 

_ (!£ k \ [ (p)(a~ r:,) 1 _ a~ til) I )] 
- oxk ~(P~ ~m ax l ~<I') ax l ~(a) , 

where the inverse matrix ~ Vi? has been used. The in
verse matrix is not a full inverse since that is impos
sible for a 3 x 2 matrix. Thus af lax k must be restric
ted. For simplicity it is assumed that ;3 does not lie in 
the span of ~ t1) and ~ t2) and that D is all infinitely dif
ferentiable functions on R3 satisfying af/ax3 == 0, i.e., 
f=f(X 1,X 2)· 

In this case a unique inverse to ~ t
p

) exists satisfying 

~tp)~}p) = /.if for k = 1,2 I = 1,2,3. 

Thus ~ tp) HI') is the identity on the; 1,; 2 tangent space. 
Now one has 

SP - ~(P)(o~r:,) ~l _ a~rB) ~l ) 
a6 - m ox l (6) aX l (a)' 

Closure of D under differentiation gives the sole res
triction on the basis field {Ha)} of 

a~ta) = 0 
ax 3 

for k = 1,2. 

Now introduce an invertible 2 x 2 g a6 matrix composed 
of functions in D and the construction is finished. r~} 
can be calculated as usual as can the curvature tensor. 

It might be pointed out that if A~ E D, then all tensor 
fields in the formalism are functions of x 1 and x 2 alone. 
The tensor structure then reduces to that of a two
dimensional manifold of the type in Example 2. However, 
A~, which is a differentiable tensor field in its own 
right, is under no such restrictions. 

Example 5: (Brans-Dicke scalar-tensor theory): 
A special case of Example 2 leads to familiar results 
when field equ~tions are sought. Let A ~ == ::I: ¢+ II 2/.i ~ 
so that gaB == gaB/¢' 
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If one calculates the scalar curvature R, one finds 

where R and Ei = ,a; a are calculated as if if all were the 
metric. Now make R a scalar density by multiplying by 
...j - g. (If one multiplied by ,j - g, the variational equa
tions for cp and gall are dependent which gives an under
determined system.) The result is a Lagrangian density 
equal to that of Brans-Dicke with their constant w = 
- 9/2 plus one term - 3 [5 cp,j - g. 

£ = J (CPR +; CPo "cp/gaB - 3Eicp ),j-gd4X. 

However, [5 cp,j - g = (CP' a,j - g), a and is a simple 
divergence which drops out of the variational equations. 
Vary cp and gaB to get the usual Brans-Dicke field 
equations. 

The advantage of this approach is that the scalar field cp 
is not introduced ad hoc, but is a natural part of the 
generalized geometry. 

A similar result was discovered by Sen and Dunn 5 who 
worked with a Lyra manifold where the displacement 
vector from xJ.l to xJ.l + dxJ.l was ~J.I = xOdxJ.l. This is 
reminiscent of the map ~ a = cp 1/ 2 ~ a from cp f to cP g' 

Again the problem with the Lyra manifold is that it does 
not seem to be a natural extension of Riemannian geo
metry. 

As with Sen and Dunn, w~ile the field equations for if aB 
are the same as those of Brans-Dicke, the geodesics 
~re different. This comes in our case from gall (not 
gall) giving the Christoffel symbols. Thus a full com
parison of this theory with that of Brans-Dicke would be 
rather more involved. 

Perhaps it might be pointed out again that the scalar 
transformation used in this section is but the Simplest 
possibility beyond a usual Riemannian manifold. Many 
other fields will appear as the transform is made more 
general. Another point is that the Brans-Dicke field 
equations for any value of w can be gotten by multiplying 
the above Lagrangian density by an appropriate power of 
cpo 
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XII. CONCLUSIONS 

The coordinates have been removed from Riemannian 
geometry and replaced by a path net. In addition, the 
metric and derivative operators were allowed to induce 
different linearities on the tangent space. By doing this, 
considerable generalization has emerged without losing 
any of the basic Riemannian formalism such as Christof
fel symbols, curvature tensor, or Bianchi identities. 

The derivation of the generalized manifold was present
ed in a hopefully natural seeming way by building in 
those properties considered useful and seeing what 
structure emerged. The Brans-Dicke field equations 
were shown to be the next simplest step beyond Rieman
nian manifolds. 

In this process some potentially interesting questions 
were bypassed. Topological questions were not consi
dered in the derivation for two reasons. First, unlike 
with the usual coordinate-patch presentation of Rieman
nian geometry, topology seemed to be of secondary im
portance and was not necessary to introduce the theory. 
In addition, a consideration of topology looked like a com
plex enough subject for a paper of its own. Since it is 
possible to construct a two-dimensional manifold filling 
a three-dimensional space (or four, or five, ... ), the 
topological characterization would seem likely to be 
peculiar. 

The exact role of the coordinate system has also been 
sidestepped. Although coordinates are not presented as 
fundamental, in all the examples thus far studied, a co
ordinate system has been used to provide a matrix for 
the reference-path net. Until an example without co
ordinates is constructed, or proved not to exist, the role 
of the coordinates will remain open. 

'Several other generalizations of Riemannian geometry can be found in 
H. Weyl, Space, Time, and Matter (Dover, New York, 1922), M. 
Tonnelat, Einstein s Theory 0/ Unified Fields (Gordon and Breach, 
New York, 1966), G. Lyra, Math. Z. 54, 52 (1951). 

'C. Brans and R. Dicke, Phys. Rev. 124.925 (1961). 
3 As an exmaple of this S matrix in Reimannian geomerry (although 

with different notation) see H. Flanders, Differential Forms 
(Academic, New York, 1963), p. 129. 

4R. Adler, M. Bazin, and M. Schiffer, Introduction to General 
Relativity (McGraw Hill, New York, 1965), p. 142. 

5D. Sen and K. Dunn, J. Math. Phys. 12, 569 (1971). 
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We study a model of quantum field theory with "Yukawa-Iike" interaction .\. f <l>b+(x)<I>;-(x)<I>.(x)dx 
between nucleons (b) and mesons (a). It is a version of Nelson's model with relativistic kinematics 
and has been renormalized by J. P. Eckmann. The infinite mass renormalization is a power series in 
.\.2, chosen in such a way as to confer on the renormalized Hamiltonian ii the correct relativistic 
single particle spectrum. Physical one nucleon states are given by a modified Friedrichs one-particle 
expansion constructed by Eckmann. The Heisenberg picture'S creation-annihilation operator for 
dressed nucleons and mesons are studied in detail, as a preparation for the construction of the 
correspondent asymptotic fields, carried through, in this paper, for the mesons fields in general and 
for the nucleon fields on particular states (the general case is treated in the second paper of this 
series). Analytic properties of the interacting fields in .\. are proved and commutation relations of the 
asymptotic fields are established". Moreover, strong asymptotic states are constructed as well as 
isometric wave operators. Finally some reduction formulas for the meson-nucleon scattering are 
derived. 

1. INTRODUCTION 

The mathematical formulation of 'the physical descrip
tion of scattering processes of multiparticle quantum 
mechanical systems can be separated into two steps. 
The first consists in solving the existence problem for 
the basic asymptotic quantities of scattering theory (e.g. 
wave operators, asymptotic fields,S matrix). The second 
step includes the proof of some important general pro
perties (like unitarity and asymptotic completeness). 
In nonrelativistic problems with 2-body potentials of 
short range, step one is rather well under control. In 
step 2, however, difficulties are met for systems with 
N ~ 3 particles (see, e.g., Ref. 1 and the references 
given there). 

The situation is of course even much more complicated 
in quantum field theory. Here even the fir st step gives 
troubles. 2 In general we may roughly say that once a 
solution of the "one-body problem,,3 is given, then the 
asymptotiC quantities can be constructed, provided the 
interaction has some "locality properties." This is the 
case, e.g., in the framework of a local, relativistic Wight
man's theory4 where under correspondent assumptions 
on the spectrum of the energy-momentum operator 
asymptotic states can be constructed as strong limits, 
for t -7 ± <Xl, by applying suitable time-dependent "one
par.ticle excitation operators," the existence of which is 
postulated, to the vacuum. 5 

The convergence of the "interacting" fields to asympto
tic free fields 6 ,7 has also been proved in this framework 
on a set of states.8 ,9 However, despite recent impressive 
progress, especially in two-dimensional models,lO the 
justification in a constructive way of the different as
sumptions underlying such theories is still not complet
ed. Somehow, between the two mentioned "extreme" 
cases of models for nonrelativistic N particle systems 
and local relativistic interacting quantum fields, there 
is a set of "intermediate models" in which existence of 
asymptotic fields and/or states has been studied from a 
mathematical point of view. These models retain only 
one or another subset of the features and difficulties of 
local relativistic quantum field theory with interesting 
scattering. Among these let us mention for our purposes 
two main classes of models with infinitely many de
grees of freedom ll : 

(a) models which have a spatially cut-off local relativ
istic invariant interaction (these models have vacuum 
problems, but no one-particle problems)12; 
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(b) "persistent models" which have one-particle prob
lems and number of particle divergences, but no vacuum 
problems.13 

"Vacuum" (resp. "one particle problems") refer to the 
difficulties connected with the construction of the phy
sical vacuum (resp. the physical one particle) states. 

The models which we shall study in this paper are of the 
class (b). A first example of a model of this class is 
Nelson's model of nonrelativistic nucleons coupled 
linearly with a boson field. 

It describes scalar relativistic mesons and nonrelativ
istic nucleons with a Yukawa-like interaction. The for
mal Hamiltonian of the model is H f = H 0 + .\. V f' where 
H 0 is the second quantization operator for the total 
kinetic energy in the Fock space of the nucleons and 
mesons and, using lI1b (x) for the second quantized nu
cleon field, <I> a (x) for the meson field, V, = J lI1!(x) <I> a (x) 
lI1b (x)dx,.\. being a real number (the "coupling constant"). 

This model, which has a logarithmic divergence (in 4-
dimensional space-time), has been renomalized by 
Nelson,14 so to obtain a dynamics given by a lower 
bounded, self-adjOint Hamiltonian (in any sector with 
finitely many nucleons, the number of nucleons being 
conserved). Cannon15 has shown that, at least for small 
total momenta and small coupling constant, the vacuum 
is an isolated point of the spectrum of the Hamiltonian 
and an isolated physical one-nucleon state (eigenstate 
of the HamiltOnian in the center of mass system) can 
be constructed by analytic perturbation theory. How
ever, the energy of this state and its detailed dependence 
on mass and momentum are left open by this investiga
tion.1 6 

H~egh-Krohn has shown the existen<;e of asymptotic 
(bare == dressed) meson fields. 17 We shall see from the 
related Eckmann's models we shall study in detail that 
the asymptotic limit of nucleon fields is much more 
complicated.1 8 These models are versions of Nelson's 
model with relativistic kinematics, describing scalar 
mesons and nucleons in (2,3 or) 4 space-time dimen
sions with a "polarization free" Yukawa interaction. 

The formal Hamiltonian is 

(1.1) 

where H 0 is the total kinetic energy in the Fock space 
of nucleons and mesons and 
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(1.2) 

~b(X) resp. ~b(X) being the creation resp. annihilation 
part of the nucleon field and ~ a (x) being the meson field, 
A a real number (the coupling constant). In 4 (and 3) 
space-time dimensions renormalization is a necessity 
already in order to get a well-defined Hamiltonian.19 
The general procedure is to introduce an ultraviolet 
cut off a < 00 in the interaction and an additive mass re
normalization 'J1to in such a way that H 0 + A V 0 + 'J1to(A) 
is self-adjoint, bounded from below on states with finite
ly many nucleons and gives in a suitable limit for a ---700 

a Hamiltonian with the same properties. It is easily 
seen that this leaves a great deal of ambiguity in the 
definition of 'J1to ' 

In particular, different choices of 'J1to give in general 
different dependence of the one nucleon energy E A(q) on 
the momentum q. In this paper we shall concentrate on 
a choice Mo of 'J1to which makes E A(q) = (m ~ + q2)1/2 
and thus yield the correct r~lativistic one particle spec
trum. The construction of Mo has been carried out with 
high skill by Eckmann,20 who was able to show that, at 
least for bounded nucleon momenta and suitably small 
coupling constant,Mo can be given in the form of a 
power series in A2., with operator coefficients. The term 
proportional to A2 diverges as a ---700 (infinite mass re
normalization), whereas the terms of higher order re
main bounded. The Hamiltonian fi a = H 0 + AVo + Mo is 
self-adjoint and bounded from below. The one nucleon 
(improper) eigenstates of fi a are obtained by applying a 
suitable dressing transformation (given by a Friedrichs
type expansion) to the bare one nucleon states. Formal
ly, such an eigenstate (which we call an "unnormalized 
dressed or physical one nucleon state") is given by an 
expression of the following kind: 

(1. 3) 

and ~atisfies, by construction,formally fi b*(q)no = 
w(q)b*(q)no' where no is the vacuum,b*(q) the creation 
operator for a bare nucleon of momentum q and b!(q) 
have the operator form b*(a*)l (with certain kernels) 
[a* being the creation operator for mesons and (a*)l 
standing for the product of l such operators]. To get 
normalized one nucleon physical states (of Fock space 
norm 1, when smeared with suitable functions) one has 
still to perform an amplitude renormalization (see Ref. 
20) and,for the corresponding situation in Lee models, 
K. Hepp, Ref. 21, Ch. m). In this paper we first define 
(Sec.1), without actually using any specific form of Mo' 
the Heisenberg picture adjusted22 meson creation and 
ann!hilation operators llff,t(h) := eitHoe-itHoa#(h)eitHo ~ 
e -itHo, where h is a square integrable function and a#(h) 
stands for the creation operator a*(h) or the annihila
tion operator a(h). We then show that the strong limits 
as t ---7 ± 00 of these operators exist and have the usual 
commutation relations of asymptotic fields,23 between 
themselves and with the Hamiltonian. These results 
hold for different choices of Mo,in particular for the one 
of Ref. 20b and the one we shall study further in the 
following sections. In Sec. 3 we introduce,for a speCific 
choice of lii'l.' the correspondent creation and annihilation 
operators b'ff for "dressed nucleons",24 which act on 
the vacuum in the way given formally by (1. 3). More
over, a field strength renormalization has to be introduced 
in addition to the dressing. Due to the highly unbounded 
character of the dressed nucleon fields [because of the 
presence of the "meson cloud" acting as L) b!(q)no on 
no] some care must be taken to show that the fields are 
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actually defined in every subspace with finitely many 
nucleons. We study the properties of these dressed 
fields as well as of the meson fields in the Heisenberg 
picture given by fi o. We prove then the strong asympto
tic convergence of time dependent states constructed 
with these fields, containing finitely many dressed nuc
leons and infinitely (or finitely) many mesons. We also 
show strong asymptotic convergence of certain operators 
to partial isometric "wave operators," which have all 
the properties one expects for wave operators from our 
knowledge of N-body systems.25 

The results are extended to the case without any cutoff. 

The study of the asymptotic convergence of the adjusted 
Heisenberg picture dressed nucleon fields is more com
plicated,and will be tackled in part II of this work.26 
This study will be based on the domain properties and 
on estimates on the dressed nucleon fields we estab
lish in 3A of this paper. So it may be useful for a bet
ter understanding of this section to give, already at 
this point, a motivation for the procedure which shall be 
used in part n for constructing asymptotic physical 
nucleon fields. 

The general procedure27 in the method of asymptotic 
fields 23 for a system described by an Hamiltonian H 
which is, in a suitable sense, the sum of H 0 and a per
turbation W, is to get sufficient decay in t of a norm of 
the form I == IIKte-itHlJIll, where lJI is in a suitable dElUse 
set of vectors in the relevant Fock space and K t is a 
certain commutator [essentially of Wand C# (efitflh), 
where C#(e'fitflh) are the adjusted creation-annihilation 
oper ator s for the field under study, h a test function 
and 0, the relevant one particle energy]. 

In the case of space cutoff models, C#(·) can be taken 
to be a "bare field" and therefore K t is equal to a bound
ed operator after multiplication by suitable inverse 
powers of the number operator (and/or Ho)' Then,using 
so called "higher order estimates"28 and decay proper
ties of smooth solutions of the Klein-Gordon equation,29 
the wanted estimate on I follows. 

However,in the model we study in this series of papers, 
without space cutoff, C#(·) cannot be taken to be a bare 
field. 30 In part n we generalize the method of asympto
tic fields by taking C#(·) as a "dressed field" , in our 
case a dressed nucleon field. Then K t is a sum of in
finitely many terms Kfll, l == 0,1, ... of the above 
form, but control on the sum can still be obtained on a 
suitable dense set of states. For this procedure the 
results of 3A of the present paper are essential. 

In the subsequent Sec. 3B we introduce the S matrix and 
establish some relations between asymptotic states and 
fields. 

Finally in 3C we derive some reduction formulas for 
the meson-nucleon scattering. 

In part II we shall continue the investigation by con
structing, as mentioned above, strong asymptotic phys
ical nucleon fields, studying their properties, in par
ticular establishing their commutation relations with 
the asymptotic meson fields constructed in this paper. 
Also other results on the S matrix and the meson
nucleon scattering will be given. 

We would like to mention that the methods used in this 
series of papers can be applied, with due modifications, 
to a class of other models (including Nelson'S model, 
Eckmann's and Nelson'S models with Fermi statistics 
for nucleons and/or some internal group). 

Finally, we would like to point out that J. Frohlich, 16 
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working independently with other methods, has obtained 
a lot of interesting results in a class of models with 
persistent vacuum, which are partly complementary 
to ours. 

Notations 

As mentioned in the Introduction, the model describes 
two types of particles, which are called "nucleons" or 
"b particles" and "mesons" or "a particles". A label 
a resp.b attached to a quantity will always denote that 
this quantity is used for mesons resp. nucleons. We 
shall assume that the number of space dimensions in 
which the particles move and interact is three. All 
results hold, however, with suitable adaptations, also for 
s = 2,1. 31 Later on we shall need the distinction be
tween the so called "bare" and "physical" (or "dressed") 
nucleons. We make the general convention of understand
ing simply under nucleons always the bare ones, unless 
the qualification "physical" is added. 

Let 3' a' 3' b denote the Fock spaces for the mesons alone 
resp. the nucleons alone. We shall assume that both the 
mesons and nucleons in the model have Bose-Einstein 
statistics (although most of the results can be extended 
to the case where the nucleons are fermions and/or 
some internal group is present). Thus, in our present 
case, 3' a' 3'b are both isomorphic (~) to the well-known 
symmetric Fock space for bosons 

00 
3' = EB 5' (v) , 

v=o 

EB denoting direct sum and 3' (v) being the Hilbert space 
L~S)(R3.v) of symmeric square integrable functions over 
the 3' v-dimensional Euclidean space R 3.v. Due to the 
fact that the interaction we are going to study conserves 
the number of nucleons,32 we shall mostly make all 
considerations in a fixed subspace ("sector") 

:Ie(n) = 3'~) <81 3' a' n = 0,1,2, ••• (1.4) 

of :Ie, consisting of all vectors with the fixed number n of 
( 

(n) ~ s 3n (n) 00 (n • m) 
nucleons 3'b = LiJR ». One has :Ie = EJ)m=O:Ie , 
where :Ie(n.m) is the "subspace with n nucleons and m 
mesons" (subspace of L 2(R3(m+n» consisting of func
tions which are separately symmetric in all nucleons 
and mesons arguments). We shall always consider L 2 -

functions in momentum space. We write (.) resp.11 II 
for the scalar product resp. the norm in JC as well as in 
the L 2 - spaces we might consider, whenever no confusion 
is to be feared. We shall call N a resp.N b the number 
operators for mesons resp. nucleons and set N = N a + 
N b for the total number operator. The creation-annihila
tion operator for mesons (a#(h» and nucleons (b#(h» are 
defined in the usual waY,for all hE L 2 (R3). (If C,C* is 
any pair of operators we shall use C# as a short way to 
include both in a statement: Thus C# stands for "C* or 
C".) The normalization is such that [a(h),a*(g)] = (h,g), 
where we used the notation [A,B1 == AB - BA for any 
two operatorsA,B. We shall call a#(k),b#(k),(k E JR3) 
the formal operators associated in the usual way with 
the operators a#(h),b#(h). 

The free Hamiltonian Ho,describing "bare nUCleons," 
each with mass m b > 0, and mesons, each with mass 
ma > 0, is given by 

Ho = H~a) + H~b), 

H~a) = J lJ.(k) a*(k) a(k) dk, 

H~b) = J w(k) b*(k) b(k) dk, 
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where lJ.(k) == (m~ + IkI 2)1/2,w(k) == (m~ + IkI 2)1/2 are 
the kinetic energy of a meson resp.nucleon of momen
tum k (Ikl being the Euclidean norm). Ho is a positive, 
self-adjOint operator on its natural domain of definition 
Dl == D(Ho) in JC. 

Let us now describe the interaction. Formally it is 
given by (1.2), where 

q,~(x) = (211')-3 J dklJ.(k)-1/2 e±ikxa#(k) , 

q,~(x) = (211')-3 J dkw(kt1/ 2e±ikxb#(k), 

(1.6) 

(1. 7) 

+ going with a*, b*, - with a, band q, a(x) = q,~(x) + q,~(x), 
q, b (x) = q,i, (x) + q,b (x) being the free meson fields resp. 
free "bare" nucleon fields at point x. If we rewrite 
(1. 2) explicitly in terms of the operators a#(k), b#(k) in 
momentum space, we obtain 

v = vc + va, (1.8) 

with 

vc = J w(k 1t 1/ 2 w(k 2)-1/21J.(k3)-1/2o(k1 - k2 + k3) 

X b*(k1)b(k2)a*(k3) dk1 dk2dk3 (1. 9) 

Va = J w(k 1)-1/2 w(k 2)-1/21J.(k3)-1/2 O(kl - k2 - k3) 

X b*(k1)b(k2)a(k3) dk 1dk 2dk3, (1.10) 

It is easy to see that any nonzero vector in :Ie (n), n > 0 
with finite number of mesons, is not in the domain of V. 
One will get control on the operator after introduction 
of a momentum cutoff, as we are going to see in Secs. 
2 and 3. First,however,let us make a general remark 
on the terminology. In the following we shall have to 
ask the question whether a given Hamiltonian H' (ob
tained by addition to H 0 + A V of some suitable mass 
renormalization) has the relativistic spectrum of nuc
leons respectively mesons energies. Let us explain 
this concept using a decompOSition of the Fock space 
and all operators described, e.g., in Refs. 15, 16, and 20. 
Since H 0 and V conserve the total momentum P, also 
H' will of course conserve P. Hence H' will be reduced 
in the decomposition of the Fock space :Ie and of each 
sector JC (n) into a direct integral of Hilbert spaces :Ie p 

resp. JC~) corresponding to given P. Call H~ the res
triction of H' to JC p • We say that H' has the "(physical) 
relativistic spectrum of nucleon energies" when there 
exists a vector cp E JC~ll such that H'pcp = w(P)cp. cp is 
then called a physical (or dressed) one nucleon state 
[with energy W(P) 1 and we speak of cp as being a state of 
a physical nucleon. We say also that cp is an (improper) 
eigenstate of H' to the correct relativistic energy for 
the physical nucleon. Correspondingly,H' is said to 
have the (physical) relativistic spectrum of meson ener
gies when there exists a vector >It E JC ~O) such that H'p >It 
= IJ.(P)>It, >It being then called a physical one meson state 
[with energy J.L(P)]. >It is also called an (improper) eigen
state of H' to the correct energy of the mesons. If one 
replaces everywhere in above definition H~ by Hoi pone 
has the so called bare one nucleon resp. one meson 
states. Thus, in short, bare particles are associated with 
the free Hamiltonian Ho' physical particles with the total 
Hamiltonian H'. Due to the properties of the interaction 
all H' we shall consider will always have the property 
H' = H 0 on :Ie (0), which implies that all physical meson 
states coincide with bare meson states (any >It as above 
also satisfies Ho I pV = J.L(P)V and belongs to the bare 
meson-no nucleons subspace :Ie(O,ll. Thus, in the models 
we shall consider, there is no difference between bare 
and physical mesons. This is not so for the nucleons; 
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physical nucleons states will not belong to Je(!l..O). Of 
course a state iP in JeW will be called physical (or 
dressed) when its reduction to Je~1.) is a physical one 
nucleon state. 

Linear combinations, closed linear hulls, and tensor 
products of such states will have the adjectiv'e "dressed" 
attached to them, as well as any other associated quantity, 
like, e.g., the fields we shall construct in Sec. 3.33 An 
operator H' will be said to have the relativistic one 
particle spectrum if it has the relativistic spectrum of 
both nucleons and mesons energies. 

2. SOME SIMPLE ESTIMATES. THE MESON FIELDS 
AND THE CORRESPONDENT ASYMPTOTIC FIELDS 

Consider the interaction V as given by (1. 8), (1. 9), (1.10). 
Let CJ ~ 0 and let us call V (1' V~, V~ the operators we ob
tain from these expressions for V, VC, Va replacing the 
functions w( k)-1/2, Jl( k)-1/2 in the integrands by the cutoff 
functions wa(k)-1/2 == Xo(k)w(k)-1 /2, /lo(k)-1/2 == X(1(k) X 

fl(kt 1/2 , where ~o(') is a cutoff function over R3 defined 
by: Xa( k) = X ( I k I - a), where X (.) is a infinitely differ
entiable (Coo) function on the real line R which is 0 in the 
interval [0,(0), 1 in the interval (- 00, -1), and satisfies, 
for all U E R, 0:5 x(u):5 1. 

We call CJ the ultraviolet cutoff. We assume always CJ < 
<Xl, unless stated otherwise. 

Let Ma be an operator in Je of the form 

M(1 = f m(1(A,k)b*(k)b(k)dk, (2.1) 

where maCA, k) is, for" any a < <Xl, a bounded continuous 
function of k. Then M(1 is a bounded operator in each 
sector Je (n). Later on, a particular form of m(1 will be 
assumed. 

Set, for a < <Xl, 

(2.2) 

where A is the coupling constant. 

In this and the subsequent sections we shall often res
trict operators A, defined in Je, to the subspace Je (n) and 
denote their restrictions by A I n (or sometimes A I x(n»)' 

Since the number of nucleons is conserved by the inter
action, such restrictions are quite natural. 

Lemma 2. 1: For any 0 :5 a < <Xl and all real A, the 
following estimate holds for any W E D(H a) n Je (n): 

IIAVawlI:5 2n1AIL(1II(Na + 1)1/2>1t11:5 e:IIHa>lt1l + C(e:)II>ltIl, 
(2.3) 

for any e: > 0, where 

La == (s~p J w-,}(p + q)w-,,1(P) Jl-;'l(q)dQ) 1/2 < <Xl (2.4) 

andC(e:) ==mae: + (mae:tl(2nIAILa)2 <<Xl. 

Moreover, setting V' == A V + M , a (1 a 

IIv~>ltIl:$ 2nlAILall(Na + 1)1/2>1t1l + IIMalnllll.v11 

:$ e:IIHawll + C'(e:)llwll, (2.5) 

for any e: > 0, where 11M I II is the norm of the bounded 
operator Min and one ha~ 11M I II = n' £1, L1 < <Xl being pan Q 0 

a constant Independent of n. Furthermore, 
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In particular, AVa I n are relatively small perturbations 
of Hal n with relative bound less than 1 (in the termiIlo
logy of Ref. 34, p.190). 

The following "first order estimates" will also be used: 

(2.6) 

and 

(2.7) 

for any W E D(H 9) n Je (n) and some finite constantsK 1 (a), 

K 2 (a), K 3 (a), K4ta) (independent of >It). 

Proof: This is essentially Lemma 3 in Ref. 20b and 
easily proved using the definition of Va' the trivial esti
mate IIN~/2cpll :5 (1/ma)IIH6a)1/2cpll for any cp ED(Haa)1/2), 
together with the simple fact that if A is a self-adjOint 
operator,then IIAcpll:5 e:IIA2cpli + (l/e:)llcpli for any e: > 0, 
cp E D(A2). • 

From this lemma one has (Ref.20b): 

Theorem 2. 1: In each sector 1C (n), for any 0 :5 a < <Xl 
and all A, the cutoff Hamiltonian Hal n defined by 

A I A 

Ha n =Haln +Avoln +Maln =Haln +v~ln' (2.8) 

on D(H a) n Je (n), is self -adjoint and lower bounded. 

The perturbations A Val n' Ma In' V~ I n are symmetric 
operators defined on domains which contain D(Ha In)' 
Define if a in Je as the operator tne restriction of which 
to Je (n) is precisely if a In' if a is self -adjoint on the do
main D(H a) and is bounded below on every Je (n) (and 
thus in all subspaces with a finite number of nucleons) •• 

In Ref. 20, Eckmann has shown that there exist choices of 
the function m such that suitable limits of Ii I for a -? a A a n 
<Xl exist and define self-adjoint operators HI, which 
are lower bounded in each sector .'fC(n); e.g.'onr the choice 
maCA, k) = A2 w a (k)-1 J Jla(q)-lWa(q - k)-l[/l(q) + 
w(q - k)r1 dq, the norm limit R (z) of (z - Ii I )-1 
exists for all A, with any choice 'Of z such thatRez < -
o(A,n), where o(>",n) > 0 is independent of a. 

Moreover,z -R (Z)-l ==·Ii I is then independent of z 
00 00 n 

and is self-adjoint on the range of R (z) and lower 
~unded in .'fC (n). In a simple way one

oo 
can then define 

Hoo a~ the self-adjOint operator which has the restric
tion H 00 I n in .'fC (n). 

By a well-known theorem of Trotter one has that e itH a 

t 1 · t itil converges s rong y In .'fC 0 e 00, as a -? <Xl. 

This choice of m a gives what we may call the "simpli
fied model." This model has, however, the disadvantage 
of not having the correct relativistic spectrum of the 
physical one nucleon energies. 35 In Sec. 3 we shall 
study the "full model" in which another choice of m is 
made, in order to get the correct physical spectrum~ 

For the rest of this section we shall simply assume that 

h · C f . d' h h i til I a c Olce 0 m a IS rna e In sue.. a way t at eon con-
itH I A 

verges strongly as a -? <Xl to e 00 n , where H I is self-
adjoint. Let:D == :D(R3) == CO'(R3) be Schwart~'sntest 
function space of infinitely continuously differentiable 
functions of compact support in momentum space R 3. 
Define :D(o) == L 2 (iR 3 ) for a < <Xl,:D(00) ==:D. The usual 
notation (T)* for the adjoint of an operator T will be 
used. 

We can now state the following two theorems: 
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TJ!eorem 2.2: Let n 2: 0 be a fixed integer and let 
Ho,Ho,a#(h) be the restrictions to JC(n) of the kinetic 
energy resp. the Hamiltonian resp. the meson creation
annihilation operators defined in Sec. 1 and (2.8). As
sume the above choice C for m is made.36 Set, for any 
hEL2(R3),asoo: a 

A# (h) - ila -ilHo #(h) ilHo -itH a Ci•t = e "e a e e o. (2.9) 

We call aff,tCh) the "adjusted" meson creation and an~hi
lation operators in the Heisenberg picture given by H o' 

Then for all h E ~(o)' the following holds: 

1. tiff t (h) has the same domain of definition D(a#(h» 
as a#(h) and for any 'If E D (H6/2 ) one has fff.! ~h) 'If -
a#(h) 'If = a~(h,t) 'If, where a~(h, t) == i>.. 10 e'un O~(~(h±u) 

-iuH odd #(h ) == -iuHo #(h) iuHo h == f iJl Ih h e u an a ±u e a e , ±u e , + 

going with a* ,h_.witha. Moreover ,m# (h±u) =n-limm#o(h±u)' 
00 0--+00 

m~(h±u) being the bounded extension of [V o,a#(h±u)] to 
all JCCn). a~(h;t) for all a sOCIis a bounded operator, 
uniformly bounded in t, which converges in norm as t -7 

± co to the bpunded operators at(h,± 00) = i>.. 10±00 e iuHo 

m~(h±u) e -iuH a du (all integrals should be understood in 
the strong sense). 

2. As t -7 ± oo,aHt(e) converges strongly for all a S 00, 

on D(H~/2),to the iimits a#±(h) and one has a#±(h) = 
a#(h) + a~(h; ±co). The lin~ar operators aff.±(h) map 

D(a!±(h» /\ JCCn.m) into JCCn.m±D,m + 1 going with a*, 
m -1 with a. 
Moreover,for all t, 'If E D(a*(h» /\ JC(D>: 

a:.±(h) 'If = s-lima:.s(h)'If = a:.t(h) >l1 = a*(h) >l1 (2.10) 
S-+±oo 

and 

ao.±(h)Oo = s-limao.s(h)Oo = ao.t(h)Oo = a(h)Oo = O. 
S"'±oo (2.11) 

Equations (2.10) and (2.11) hold (also in the case a = co) 
for all hE L 2 (R3). 

Theorem 2.3: 

1. The asymptotic meson creation and annihilation 
operator aU.± (h) of Theorem 2.2 can be extended, under 
the same assumption h E ~(o), a S 00, to have the same 
domain of definition as the original meson creation and 
annihilation operators a#(h). We denote the extended, 
closed operators by the same symbo!s aH.±(h). Then_one 
has that a:.±(h) is the adjoint of (lo.±Sh) [denoting by h the 
function "complex conjugate" to h: h(q) == h(q)] and one 
has 

D(a~.±(h» = D(ao.±(h» = D(a*(h» = D(a(h». 

2. e ilHo and a!±(h) satisfy the same commutation re

lations as do eitHo and a#(h): 

-itH 0 A* (h) ita a _ A* ( -it ll
h ) e ao.± e - ao.± e , 

-itn a A (h) itH a _ A (it llh ) e a o .± e -ao .± e . 
(2.12) 

For a < 00 we have the stronger statements 

(Ho,a:.±(h)] = a~.±(Jlh), 
(Ho,ao.±(h)] = - ao.±(Jlh) on D(Ho)' 

(2.12') 

for all h such that Jlh E L 2(R3). 
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3a. The asymptotic annihilation and, creation operators 
aff .• (h) satisfy on a dense subset37 .&~) of JCCn) the same 
commutation relations as the original annihilation and 
creation operators: 

[ao.±(Ji),a: .• (g)] = (h,g), 

[ao.± (h), a o.± (g)] = [a: .• (h), a:.± (g)] = 0, 
(2.13) 

0',_ 
for any g,h E ~(o). For a < 00, ~~):::) D(Ho)' 

3b. For any g, h E :D(o) and 4>, >l1 E D(a#(h» n D(a#(g» 
the asymptotic annihilation and creation operators 
aH.±(h) satisfy the weak commutation relations 

«a!,± (h»* >l1, a!,±(g)4» - «a!.±(g»*'If, a!,±(ii)4» = 0, 
(2.14) 

where the four symbols a# stand either all for a* or all 
for a,and 

Remark 2.1: In the case a < 00 one has the following 
bound, uniform in t and norm continuous in the test 
functions hE L 2 (R3): 

Ilatt(h)>l111 S constl/hill/(Ho + const)>l1II, (2. 16) 

for all 'If E D(Ho), which is the basis for the stronger 
results for a < 00. 

Proof of the Theorems 2.2,2.3: The proof is very 
similar to the one of the analogous propositions for the 
meson fields in Nelson's model given by R. H~gh-Krohn 
(Ref. 17). 

First the relation 

d ( A# (h» .( itH [V' #( )] -ita ) dt 4>,a o.t >l1 = l 4>, e a o,a hit e 0>l1 (2.17) 

is easily proven, for any (] < co, h E ~(o)' 4>, >l1 E Dl == 
D(H 0)' using 

II a#(g) 'If II S const 1/ gill/ (H 0 + const)>l1I/. (2.18) 

Then the following lemma is established: 

Lemma 2.2: Set for any a < co and h E ~(o) 

\}!~#(hu) == [V~, a#(h± t)]. 

Then: 

(1) For all a < 00, 111'!(hu ) has a dense domain of de
firution containing, e.g.,D1 • On DIone has 

m~#(h± t) = >"[V 0' a#(h± t)]· 

m~#(h. t) is bounded on this domain (as an operator from 
Dl n JCCn)into JCCn» and can therefore be uniquely ex
tended in a continuous way to a bounded operatorm~(h±t) 
from JC Cn) into JC Cn) . 

(2) For given h and t, m~(h± t) is norm convergent on 
JCCn), as a -7 + 00. 

Define m!Jh±t) == n-lim \}(~(h.t) for a -7 co. 

(3) For all a S 00, m~(h± t) is strongly continuous in t. 

(4) I/m~(h±t)11 S C(1)(1 + 1 t It3 / 2 for all t,where the 
constant C (1) is independent of t. 

Proof: (1) For a < 00, both v~a#(h±t) and a#(h±t)V~ 
are defined on D 1 , as seen by the estimates of Lemma 
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2.1 and (2.16). Since 111 0 commutes with a#(h H ) on Dl' 
we have ~~#(h±t) = A(Vo,a#(ku )] on D 1 • 

From this we can easily compute,for ~ E D 1 , 

(2.19) 

where q stands for the set (q l' ..• , qn) of nucleon vari
abIes (we do not write the meson variables since they 
play just the role of parameters in the entire proof) 
and 

<I>r,m)(q) == Jdkgo.H{k - qj)nr,m)(k,q1"" ,qJ"" ,qn), 
(2.20) 

go,±t(k') == xo(k')J.L(k't1/2k(±k')efill(k')t, (2.21) 

nr,m)(k,Q1"" ,qJ"" ,qn) 

== Xo(k)w(ktl/2v<n,m)(k,q1"" ,(fj"" ,q,,), (2.22) 

where the hat "- on a momentum variable means omission 
of this variable. We use the fact that <I>r,m) is a con
volution and take its Fourier transform with respect 
to the relevant variable qj' 

We have the estimate 

(2.23) 

where II i O,± til 00 == es~up Ii 0,0, t(X) I is the Loo -norm of 

i o.± t(x) == (21T)-3/2 J dqX 0(q)J.L(q)-1/2h(±q)eiqnill(q)t. 

From this (1), (2), (3) follow using the compactness of 
the support of h and Lebesgue's dominated convergence 
theorem. (4) follows from (2.23) and the well-known 
estimates on smooth solutions of the Klein-Gordon 
equation. 29 • 

From this lemma point 1 of Theorem 2.2 follows im
mediately. Moreover, point 2 follows also,for (] < <:0 and 
all h E~. The result extends then to all k E L 2 (1R3 ) by 
using (2.16). 

The rest of the proof of Theorems 2. 2,2. 3 follows then 
as in Ref. 17 ,using the norm convergence of ~(~(k± t) as 
(] --7 + <:0. Point 3 of Theorem 2.3 is discussed,for the 
case a = <:0, in the Appendix. • 

Remark 2.2: The above theorems give in particular 
the asymptotic meson fields and their commutation re
lations for the "simplified model" of Eckmann discussed 
in Ref. 20b,for both the ultraviolet cut-off case and the 
case without any cut-offs. It also gives the same re
sults for tlie choice of mass renormalization of next 
section ("full model"). 

Remark f. 3: Since fio = Ho on ,'JC(o>,for any a < <:0, 

itH itH ( ) "-
we have ~ 0 = ~ 0 on ~ 0 and from the choice of M", 

. itH itH itH ( ) A • 

s-lim e 0 == e 00 = e 0 on,'JC o. Hence H = Ho m 
a~~ ~ 

,'JC(O). In particular, no E D(fi ) and fi no = O. Hence 
00 "- 00 

the vacuum is an eigenvector of H a for a :=; <:0 to the 
eigenvalue 0 ("persistence of the vacuum"). 

In ,'JC(O) there areno other eigenvalues of fi ; the spec
trum of fio' in ,'JC(o>, being equal to that of H~a), consists 
of the simple isolated eigenvalue 0 and the pure abso
lutely continu~us part [ma,<:o). In all ,'JC<n),n > 0 the 
spectrum of Ha is purely continuous (due to translation 
invariance). 
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3. THE SCATTERING QUANTITIES FOR THE 
HAMILTONIAN WITH THE CORRECT 
RELATIVISTIC MESON AND NUCLEON SPECTRUM 

A. The asymptotic states and fields 
The Hamiltonian and the dressed fields 

We shall study at the same time the model with an ultra
violet cut-off 0 :=; a < <:0 and the model without any cut
off (a = <:0). Whereas the complete mass renormaliza
tion will be infinite for a == <:0, finite for a < <:0, the ampU
tude renormalization will be finite in all cases. For all 
cases 0 :=; a :=; <:0 the renormalizations are necessary, as 
we shall see, in order to obtain the correct asymptotic 
states and fields, with the correct normalization.38 The 
"one-body problem" of constructing one-nucleon dressed 
states has been solved by Eckmann (Ref.2Da). 

We shall present its solution in a way convenient for 
later use. We have to introduce some notations and op
erators,first as formal quantities, whose domain of 
definition will be speCified later. It will be convenient 
to use ordered pairs of labels (a, (]'), where 0 :=; a :=; <:0 

is an "ultraviolet cut-off in all variables" and can take 
any value in [0, <:0] for a < <Xl and at = R is an arbitrarily 
given, nonnegative, finite constant. The label a' will cor
respond to an ultraviolet cut-off entering only in the 
variables appearing in some nucleon annihilation 
operator. 

Let 

W{i) == J xa(q;P1,· •• ,p;}tv(;)(q;P1"" ,pi)b*(q - L:) 

x (Ii a*(P)\b(q)dqdP1' •• dPi' (3.1) 
j=l 'J 

for i = 1,2, .•• , where the "numerical kernel" w (0 is 
s~mefunction of q,p 1 , ••• ,Pi and Xo(q,P1" 'P i) == , 
n Xa(PJ Xa(q)xo,(q),the cut-off function Xo(') being as 

k=l i 

in Sec. 2. L: stands for 2: Pi' 
j=l 

Then the Friedrichs operation rw(i) is defined by 

rw(;) = J xa(q;P 1 ,·.· ,Pi)w'(;)(q;Pl>'" ,Pi) 
i 

X b*(q - L:) n a*(pj)b(q)dqdP1" .dP i , (3.2) 
)=1 

whrre w'(i)(q;P p ... ,Pi) == W(i)(q;P1' ••. ,Pi)(W{q - L:) +. 
2:)=1 J.L(Pj)_W~q»-l. Formally,therefore,r acts on We,) 
as the inverse operation to ad Ho' It is convenient to 
describe the action of ad Ho resp. r on W(i) by saying 
that the kernel of ad Ho(W(i» resp. rW(i) is the same as 
the one of W(i) multiplied by the "difference of the ener
gies created by the creation operators minus the sum of 
the energies destroyed by the annihilation operators 
contained in We;) resp. the inverse of that sum." Define 
W(O) by 

W(O) = J Xo(q)Xa,(q)w(O)(q)b*(q)b(q)dq. (3.3) 

The Wei) are particular "Wick monomials" we shall con
Sider often below.39 We are going to introduce special 
symbols for those "contractions" between Wick mono
mials which we shall meet in the course of our considera
tions. So we define 

W(O)'l W(1) == J Xo(q')xa,(q,')O(q' - q + L:)Xo(q;pv ••• ,Pi) 

x w(i)(q;pv'" ,P;)b*(q'{&l a*(pj~ b(q)dq'dqdP1' •• dPi' 
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W(O) '-.J W(O is the expression obtained from the product 
1 

of Wick monomials W(Q)W(;) by "contracting the b an-
nihilators in W(O) with the b*-creator in W(;)" [in gener
al, contraction of an annihilation operator c(p) == a(p) or 
b(P) with its correspondent creation operator c*(p') == 
a*(p') or b*(p') means replacing c(p)c*(p') by o(p -
p'). ] 

In a similar way we define 

V~ y W(i) == J Wo(k1)-1/2wo(k2)-1/2/J.o(k1 - k 2)-1/2 

X O(k2 - q + E)xo(q;P1"" ,Pi) 

x w{i)(q;P1"" ,Pt)b*(kl )( ~ a*(Pj)\b(q)a(kl - k 2) 
)=1 ~ 

X dk 1dk 2dqdP 1" ·dPt• 

Thus V~ '-.J W(O is the term in the Wick ordered expan-
1 

sion of V~'W(j) (given by the Wick theorem) which is ob-
tained by contracting in the product V~'W(;) the b annihi
lator in V~ with the b* creator in W(i) (and then Wick 
ordering). 

We define also 

V~ '-.J W(i) 

2 t 

== ~ J wo(kltl/2w o(k2)-1/2/J. o(kl - k2t1/2o(k3 - PI) 
1=1 

x o(k2 - q + E)Xo(q;pv'" ,pi )w(i}(q;Pl" •• ,Pi) 

x b*(k1)( A a*(pj~b(q)dkldk2dqdP1' .. dPi' 
j= 1J"'1 ~ 

This is the sum of all terms in the Wick ordered expan
sion of va ·W(;) involving two contractions, i.e., all terms 
obtained by contracting in V~'W(i) the a annihilator in 
V~ with any of the i creators a* in W(O and then con
tracting the b annihilator in V~ with the b* creator in 
W(i}. 

We are going to define quantities which depend on the 
ordered pairs of labels (a, a'). We make everywhere the 
convention of omitting to write the label a' if a < 00, a' == 
00. Define,for integer, nonnegative /I, i: 

Sol,i(O"') == 0, i == 0,2,3,4,"', 

SOIl,i(a') == 0, i > /I or i == 0, 

Sol.l(a') == - XV~(a'), 

where 

(3.4) 

V~(a') == J W(k1t1i2w(k2tl/2/J.(k3)-1/20(kl - k z + k3) 

x Xo(k1)Xo(k2)xo(k3)xo,(k2)b *(k1)b (k2)a*(ka)dk1 dkzdk3• 

Then, recursively, we define 

M 02k(a') == - XV~yrS 02k-1,l (a'), k = 1,2, • . . • (3.5) 

Remark that in above quantities the first index (/I resp. 
2k) denotes the order in the coupling constant X (order 
/I means term proportional to XV), the second index (i) the 
the number of meson creators. 

Note also that all quantities Sov.t(a'),M 02k(a') are of 
the form (3.1) resp. (3. 3). 
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Set 

ii o(a') == Ho + XVo + Mo(a'). (3.6) 

Note that M~ (a') is a sum of terms of even order 4,6,8, 
..• in X. 

Set furthermore 
00 v 

Q o(a') == ~ ~ Sov tea') 
v=o i=O ' 

(3.7) 

and 
00 

T o(a') == : exp(r(Q o(a'))): == ~ {j 1)-1: (r(Q o(a')))):. 
)=0 (3.8) 

For the normalization of physical nucleon states we 
shall need an operator Ao(a') such that liT o(a')Ao(a')b* 
(g)noll == 1 for any g E Lz(R3), II g 11= 1, no being the 
vacuum in X. It is easily seen formally using the defini
tion of T o(a') that Ao(a') can be chosen as 

Ao(a') == (: exp{[r(Q o(a'»*r(Q o(a'»]M}: )-1/2, 

where [ JM means the sum over all" mass graphs", i.e., 
all completely contracted graphs of r(Q o(a'»* r(Q o(a'». 
Ao(a') acts on each X(n·m) as the identity on the meson 
variables and as a multiplication operator in the nuc
leon variables. More precisely, for wcn ,m) E X (n ,m): 

(A o(a')w)(n,m)(qp • • qn;P1" .Pm) = .Ii: /I o(a') 
.=1 

x (qi)-l/Zw(n,m)(ql" .qn;Pl" .Pm), (3.9) 

where /I o(a')(q) [which depends, as A o(a') and all the 
quantities (3.4)-(3.8),on XJ is the (for small X conver
gent) sum of the infinitely many kernels (of even degrees 
in X) one obtains by computing40 

(T o(a')b*(h)no' T o(a')b*(g)Oo) = J /I o(I]')(q)h(q) g(q)dq. 
(3.10) 

We shall now give domains of definition for the different 
operators we introduced (3.4)-(3.9). For this we need 
the following definition: 

Let,for a > O,Q(n): a be the dense subset of X(n) de
fined by 

Q(n):a == {w(n) = (wCn,m»j 
m = 0,1,2, ••. I lim eamllwCn·m)1I = O} 

m-oo 

and let DCn},a be the Banach space obtained from DCn);a 
by taking the clasure with respect to the norm 114>11.)11 a 
== sup eamll4>Cn ·m>II. 

m 

Remark 3.1.. The Banach spaces D (n):a have been 
introduced by Lanford in his discussion of a cut-off 
Yukawa theory.41 They form a scale in the sense DCn):a 
:> D (n):s for 0 < a < f3. An immediate consequence of 
their definition is also that 

II wI! ::; (1 - e-2Btl/zllwlls for any W E DCn);S, 0 < (3, 

1111 being as usual the Fock space norm of w (as ele
ment of X(n». Another easy consequence is that Nk is 
for any k > 0 a bounded operator from D(n);a to DCn):a1 

for any 0 < a 1 < a. Moreover, IIwll ex::; lIe aNa wll for any 
a > O. The following subsets, which we shall use late~, 
are contained in D(n1;cx for all a > O. They are dense m 
DCn):ex in the II II -topology for all a > 0 and they are 
also dense in X't.) in the Fock space topology: 
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(a) X(n) == {lJr(n) = {lJr(n,m>;m = 0,1,2,"'}E :re(n)1 ::lNo 
(>{t(n» 2: 0 such that lJr(n ,m> = 0 for all m > N o( >{t(n»,N 0 
(>{t(n»being some finite number, depending on the vector 
lJr(n)}. x(n) is thus the set of all "vectors with only finite
ly many nonvanishing meson components"; 

o 0 
(b) D(n) = subset of :re(n) consisting of all trectors lJr(n) = 
{lJr(n,m>} with lJr(n.m> E C(f(R3(n+m» in the momentum vari
ables,for allm =0,1,2,···. 

Define :ref'a\ as :rev.) for a <00, and :ret,» == :re(n)(R) for a 
== 00, where :re(n)(R) is the subspace of :re(n) consisting of 
functions which have support in each nucleon variable 
in a R3-ball of radius R. Similarly for :retS"). 

Set E~) == {(ql' q 2"" ,qn Iqi E R3; Iqil:s R,i = 1" ·n}. 
Then :re(n)(R) == {41(n) E :re(n)1 supp 41(n) c E~) in the nuc-
leon variables}. Set also :re(O)(R) = :re(Q). 

We have 

Lemma 3.1a: For any (O:s a < 00, O:s a' :s (0) there 
exists a number A(a, a') > 0 such that for all I A I :s A 
(a, a') all operators introduced above [(3.4) to (3.9)] are 
defined on D(n):a for some O! > 0 (dense in :re(n» and map 
D(n):a into some D(n):B, 0 < {3 < O!. 

In particular: 

(0 The mass renormalization Ma(a') is a bounded oper
ator from :re(n) into :re(n). The estimates (2.5), (2. 6), 
(2.7) of LemllJ.a 2.1 hold with Ma replaced byaa(a') and 
V~ by AVa + Ma(a'). 

(ii) The dressing operator T o(a') is defined on D(n):a 
for every O! > ~ In2, maps D I.n):a for O! > (1/2) In2 into 
D(n):B for any 0 < (3 < O! -! In 2. Note that T o( a') 
== 1 on :re (0). 

(iii) The field strength renormalization Aa(a') is a 
contraction from :re(n) into :re(n), with strictly positive 
norm. Ao(a') is invertible and commutes with Ho on 
D(Ho) n :re(n). Note that Aa(a') == 1 on :re(0). 

Proof: (i) follows from Ref. 20a. Note however that 
Eckmann treats from the very beginning only the case 
without cut-off (a = (0) and has consequently to restrict 
the nucleon states to the subspace :re(n)(R) of :re(n). In 
fact, the basic estimate in Lemma 9 of Ref. 20a holds, 
when a = oo,only for functions cp E :re(l,O) whose support 
is restricted to some ball I p I :S R. If, however, one has 
a finite cut-off a < 00, then automatically the operator 
ra(w(;» entering Lemma 9 (Ref. 20a) "picks up only 
momenta I p I :S a" in cp, and thus the estimate in Lemma 
9 (Ref. 20a) holds for all cp E :re(l,O), without restriction 
on the support [D(R) is replaced by D(a)]. The Lemmata 
10 through 12 in Ref. 20a hold also for all cp E :re(1,0) 
(with R "replaced by a in all the constants entering the 
estimates). Note in particular the estimate (from 
Lemma 11 in Ref. 20a and its corollary) 

II M02k (a') I JC (n) 11:s I A 12knC(a, a')2 k, (3.11) 

where C(a,a') is some constant,depending on a,a' but 
not on k, A, n. Points (ii) and (iii) are particular cases 
of the detailed statements of the following Lemma 3.1b. 

To state this lemma we need the following notations: 
Let eNaY for any number y be the operator in :re whose 
restriction to every :re (n ,m) is the operator multiplica-
t ion by em y. Let for any two Banach spaces B l' B 2 be 
£(B 1,B 2) the set of all bounded operators from B1 to 
B 2• CallilLIIBIB2 the norm of an operator L E £(B 1,B 2). 
In the case where B 1 == Dln):a,B 2 = D(n):B we shall use 
the shorter notation II LII aB == II LII D(n);a :D(n);B. 
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Lemma 3.1b: For any {(a,a')IO:s a:s 00,0:s a':s 00, 

a' = R for a = oo} there exists a number A1 (a, a') >' 0 
such that for all I A I :S A1 the following properties hold: 

(i) If Z a(a') stands for rYa(a'), Y a(a'), T a(a'), where 
Ya(a') is any of the operators Sav,i(a'),~v Sav,i(a')'~i 
Sov,i(a'),Qa(a'),Qo(a')*,then Zo(a') exp(-Na~ In 2) E 
£(:re (n); :re (n». Moreover, Z a(a') is defined on D (n):a for 
all O! > ~ In 2 and Z Ja') E £ aB' for all O! > ~ In 2,0 < 
(3 < O! - ~ In 2. As a consequence we have also Z a(a') E 
£(D (n):a; :re (n». 

(ii) Let,for a < oo,Xa be any of the operators AV~,AV~, 
M a2k'~kM a2k' ThenXary 0' (rY a)Xa and XaT a' T oXa 
are defined on D(n):a for any O! > ~ In 2. [These are, by 
the convention made above, defined as equal to the cor
responding quantities with labels (a,a') = (a,oo)]. 

(iii) For a < 00, Hory a and ry aH 0 are defined on D(n):a 
n D(H 0) for O! > ~ In 2 and [H 0' rya] == Yo on these sub
sets. HoT 0' T oHo and: QaT a: are also defined on the 
same subsets D(n):a n D(Ho), O! > ~ In 2 and [Ho, To] = 
: Q aT a: on these subsets. 

(iv) For a < 00 we have on D(n):a n D(Ho) with O! > t In 2: 

Note that V~'i (r(Q 0»2 : == v~ L (r(Q 0»2 in Friedrichs 

notation (Ref. 22). 

(v) The str~ng limit of E a(R) for a ~ 00, where E a(R) 
stands for M~(R) or r(Qa(R» or Ta(R) or Ao(R) or va(R), 
exists on D'(,i) and is equal Eoo(R). We shall denote 
Eoo(R) simply by E oo ' D'(n) == U D(n);a, O! > tIn 2. 

(vi) For a < 00 the operator H~(R) == Ho + AVa + M a2(R) 
is self-adjoint and bounded from below in each sector 
:rel.n), with domain D(H~(R» n :re(n) == D(Ho) n :re(n). 

Set fi~ (R) == H~(R) + M.~(R). The Born series expansion 
of (z -fi~(R»-l converges in norm, for a ~oo,in :re(n) 
a"rd for all Rez suitably negative, to (z - Hoot 1 , where 
Hoo is a self-adjoint lower bounded operator in each 
sector :re(n). 

A 0 
(vii) Hoo is essentially self-adjoint on the subset T!p(n) 

---0-- A 0 
of TS D(n) == :res(n)(R) where D(n) is as in Remark 3 1 00' • • 
T!, == s-lim: exp[- Ar(V~(R»]: and - means closure. On 
A oeo A A 

:res(n)(R) one has H == HF + M' ,where HF is, in each 
L co co co co 

:re~), the self-adjoint, lower bounded operator such that 
n-lim (z - HF(R»-l = (z - HFt1. 
o~oo a 00 

(viii) For every cf> E D'(n) n :re(n)(R) , T cocf> is in the do
main of Hoo 

and 

fico T cocf> == (H~ + M;)T cocf> = T coHocf> 

+:T {Ava + AvaJ(Q ) + ~Ava L:(r(Q »)2:}:cf>, co 1 co co 
where (3.13) 

va L: (r(Q co»)2 : == va'-( :(r(Q 00»)2: . 

(ix) A has the same properties as Ao in Lemma 
3.1a, (iii). 
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Proof of Lemma 3.1b: 

(i) That T o(a') is defined on D<n>:a, O! > (~) In 2 follows 
from the estimate, valid for all a < 00, I A I ::s A(a) for 
some constant A(a) > 0: 

for any >It<n.m> E JC<n.m>,where € is any number satisfying 
0< € < t, C~ a constant which depends (possibly) on a, 
A, n, € but is independent of m , i. This estimate has been 
derived by Eckmann (see the end of the proof of Theorem 
8 in Ref. 20a). Similar estimates show that Z (a') is de
fined D <n):a. Moreover, T a(a') E £ a8 follows easily from 
(3. 14),and similarlyZa(a') E £a8' 

(ii) Since we know from (i) that ry 0' To map D<n):a into 
D<n);8, (3 < O!",- (~) In 2,0! > (~) In 2,this point is trivial, 
since M 02k,Ma are bounded on JC<n) and map JC<n.m> into 
itself and v~, v~ map a dense subset of JC<n.m> into 
JC<n .m-I) resp. X<n .m+I), hence any D<n);8 into D<n);8', {3' < 
(3. 

(iii) Clearly ry jIo is defined on D<n);a n D(Ho) for any 
O! > (~) In 2. The operator [Ho' rya] acts on each JC<n.m) 
exactly as Yo' Since from (i) we know that Y is defined 
on D<n):a, we have that ry jIo and [Ho' ry 0] a~e both 
defined on D <n):a n D(H 0)' Hence also H ory a and T jI 0 

are defined on the same domain, the latter because of (i) 
and the fact that Ho conserves the number of particles. 

Moreover, [H9' : (r(Q a))1:] is in £a8' as seen from the 
estimates in ~i) [the operation ad H 0 modifies just the 
kernel of : (r(Q 0»1 : and this does not change the form of 
the estimate, since a < 00. 

Since:(r(Qa))J:cp == 0 for all cp ED(n):a,j > n, this implies 
also that [Ho' T a] is defined on D(n):a. ThiS, together with 
above observation D(T aH 0) ::::> D VI);", n D(H 0)' implies that 
HoT a is also defined on D<n);", n D(Ho)' Moreover,one 
sees that: QaT a: is defined on D<n);"" O! > ~ In 2, since, 
on cp E D<n);a, it gives a sum of n + 1 terms (j 1)-1: Q 0 

( : (r(Q a»i:) : cp, (j ::s n), which are all in D(n);cx [as seen 
by computing, for >It E JC(n.m>, 

~ S >It) (n .m+i)]. 
u au,lt 

By computing we have now HoT a = T aHO +: T aQ a: on 
D(n):cx n D(Ho)' 

(iv) We have already shown that the first two terms on 
the right hand side of (3.12) are defined on D(n):a n 
D(Ho)' The others are also defined on the same set, as 
seen similarly, by first computin~ an estimate on the 
kernel-norm of each term in the t } bracket, along the 
lines followed for estimating the kernels of r(Q a)' The 
equality (3.12) follows then by the standard Wick order
ed expression of the form A: exp B:,A,B, being Wick 
monomials (see, e.g., Lemma 1. 2, Lemma 1. 3 in K. Hepp, 
Ref. 21). 

(v) The existence of the limit and the fact that the quan
tities E are defined on D,<n) is a consequence of the 
same e~imates of Eckmann which implied (i) above (in 
particular, Ref. 20a, p. 263). 

(vi) One first shows, proceding as in the proof of The
orem 20 in Ref. 20b, that the Born series for (z - H;(R»-1 
converges in norm for suitable negative Re z to a limit 
which is the resolvent of an operator H~. which is self
adjoint and bounded below on each JC(n). [The only dif-
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ference with Theorem 20 in Ref.20b is that M a has to 
be replaced by M a2 in the definition of (V~R~Z)V~)ren'] 

Since the sum M~(R) of all renormalization tJ!rms of 
order> 2 has a norm which is uniformly bounded20a in 
a,the estimates (18),(19) in Ref.20b are still valid if 
(V~Ro(z)V~)ren is defined with M 02 + fl~(R) instead of 
M 02' Hence the Born series for (z - H~(R))-1 also con
verges in norm. One shows as in Ref. 20b, that 

n-lim (z - fi' (R»)-1 = (z - fi )-1 
o~oo 0 00 ' 

where fioo is self-adjoint and lower bounded in each X6.). 

(vii) It suffices to show that HF is essentially self-
o 00 

adjoint on TS D<n) proceding as in Theorem 19,24 of 
Ref. 20b. Asooin the same proof [or also as in (v) above], 
one proves also s-lim HFa(R)TaS(R)CP = HFTs cpo 

o~~ 00 00 

Since M~(a') is uniformly bounded in a, we have on the 
other hand 

and therefore 

s-lim Ii' (R)rs(R)CP = HFTs cP + M' rs cpo a ""00 a 0 00 00 00 00 

But 

TS cP = s-lim TS(R)CP 
00 0 -+00 a 

= s-lim (z - fi, (R))-I(Z - Ii' (R»TS(R)CP 
0""00 0 a a 

= (z - fi )-I(zTs'+' - HF Ts .+. - £1' TS .+.) 
00 00""" 00 00"'" co «:J"+' • 

Hence TS cP E D{H ) and 
00 00 

fi TS cp == fi (z - fi )-1(zTs,+, - HFTs'+' -£1' TS'+') 
00 00 co 00 00"'" 00 cJ:)'f' 00 co'+' 

= [z(z -fi )-1-1](zTscp -HFTs'+' -M' TS'+') 
00 00 00 00""" 00 00"'" 

== s-lim [z(z - fi )-1 - 1](zTS(R)cp - ii'(R)TS(R).+.) 
0""00 00 0 a a 't' 

'" '" 0, .. From this it follows H = HF + M' on TS D"'), which is 
00 00 bO 00 

what we wanted. 

(viii) One has from (3. 12),for any cP E JC<n.mJ nJC(n)(R)n 
o 

D<n), using the facts that T oCR) = T on JC<n)(R) and that 
the right hand side of (3.12) on JC(n~(R) is equal to the 
same expression with an R cut-off in all operators ex
cept Ho: 

fiaT o(R)CP = T a(R)HOcp 

+ : T a(R){AV~(R) + AV~(R>-..",r(Qo(R)) 
1 

A +"2 V~(R)~(r(Q a(R))) 2 :}cp. 

We now study the limit a -700. We claim that the right
hand side converges strongly to the right-hand side of 
the similar expression in point (viii) of Lemma 3.1b. 
This is proved using again the estimates of Ref. 20. 

Let us study as an example the term 

All expressions are well defined because of Lemma 
3.1b{i)- (v), above. To see that T a(R)V~(R)CP -7 T va(R)¢ 
strongly as a -7 oo,it suffices to use the fact thatil(T oCR) 
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- T oo(R»e-Na(1/2) In ~II ~ 0 and II(V~(R) - Va(R»</JII-t 0 as 
a -too (see Lemma 3.1b above). 

Similarly one shows T a(R)yV~(R)</J -t T oo(R)yVa(R)</J, 

which then implies: T a(R)V~(R): </J -t: T oo(R)Va(R): </J. 
In the same way one proves the convergen~e of the other 
t~rms to the corresponding limits. Since M~T a(R)C/> -t 

M'T </J, we have that s-lim H~T a(R)C/> also exists. This 
together with the norm co'fi'vergence (z - H~)-l -t (z -
HF )-1 for Re z sufficiently negative (as in Ref. 20b) 
gi;es, as in the proof of (iii) above, s-lim HFaT (R)C/> = 

0 .... 00 a 

H!,T oo</J. This concludes the proof of (viii). 

Point (ix) is proved as in Lemma 3.1a. • 
Theorem 3. 1: For every 0 ;5; a < 00 there exists a 

number "-o(a) > 0 and for a = 00 and any given number 
o ;5; R < 00 there exists a number i\~(R) > 0 such that for 
all I i\ I ;5; "-o(a) resp. I i\ I ;5; i\o(R) we have the following 
properties: 

(i) The renorm!!Jized Hamiltonian H 0' defined for a < 00 

by Ho + i\ Va + M a and for a = 00 by Lemm:;. 3.1b, (vi), 
is self -adjoint and lower bounded in JC Cn). H a ex-
tends in the natural way to a self-adjoint operator in 
JC, which is bounded from below on every subspace of JC 
with a finite number of nucleons. 42 For a < oo,H a is de
fined on the domain D(Ho) n JCCn),dense in JCCn). For 

~ Of 
a = oo,Ha has a domain containing in particular T oo(D\n) 
n JC (n)(R» • 

(ii) H a has the ~orrect relativistic one particle spec
trum. One has HaT aAa = T aAaHO on (JC(l,O) U JC~O» n 
D(Ho),Le.,for any g,h such that wg E L 2(R3),/.Lh E 
L

2
(R3): 

HaT aAab*(g)Oo = T aAaHOb*(g)Oo = T aAab*(wg)Oo, 

Haa*(h)Oo = Hoa*(h)Oo = a*(/.Lh)Oo· 

The "physical one particle states" T aAab*(g)Oo, a*(h)Oo 
are correctly normalized: 

lIa*(h)Ooll = 1, 
for 

Ilgll = 1, Ilhll = 1. 

On JC (0) n D(H 0)' H a coincides with H o. 

Corollary: For 1"-1;5; i\l(a,R),i\l as in Lemma 3.1b, 
a .... 00 itS' (R) itS 

we have s-11m e a = e 00 on JCCn). 
0"'00 

Remark 3.1: T oAo maps isometrically JC(1,O) (all 
states of a sinrle bare nucleon) onto a closed subspace 
JC (l~o)h of JC(l» h C JC(V (all states consisting of a 

alp ys a p ys 
single physical nucleon). The restriction of T aAa to 
JCW is precisely a partial isometry with initial domain 
JC(l,O) and final domain JC~~')~hYS' T aAa coincides on 
JC(l,O) with the wave operators fi~ defined below (The
orem 3.4). 

Proof of Theorem 3.1: Theorem 3.1 is an immediate 
consequence of the Lemmata 3.1a and b. The Corollary 
follows from Lemma 3. 1, (vi) and Trotter 's convergence 
theorem. • 

We proceed in the following to the construction of crea
tion-annihilation operators for physical nucleons. As in 
Sec.2 we shall usually restrict all operators to the n 
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nucleon sector JC Cn) dropping whenever not necessary 
for the understanding the label I n we used some times 
before for indicating these restrictions. Physical oper
ators will be distinguished from bare ones by a "hat" ~. 
We make the convention of denoting always by an upper 
prime' and a lower a label the function obtained from a 
given element g E L 2(R3) by multiplying it with the nor
malization function 11;1/2(.), "0 being as in (3.9), (3.10): 
thus we will write 

(3.15) 

Define 

D (n),a = D Cn);a n JC Cn) 'Cn) U D Cn),a 
(0) - (0)' D(a) = a>(1!2) In 2 (a) 

Theorem 3.2a: Let, for 0 ;5; a < 00, i\o(a) ? 0 and, for 
a = 00, i\o(R) > 0 be as in Theorem 3.1. Set A = i\o(a) 
for a < 00 and A = i\o(R) for ~ = 00. Then for all I i\ I ;5; A 
and all 0 ;5; a ;5; 00 we have: H a and r(Q 0) are defined by 
Theorem 3.1 and for all h E L 2(R3), Ilhll = 1 the follow
ing properties hold: 

(i) Set 

(3.16) 

where b* is the creator of bare nucleons defined in 
o 

Sec.1, B*(h~) is defined on the dense subset D(<::J of 
JC~':,» and belongs to £(D~)t;D(n+l);a'),for any a > ~ In 2, 
0< a' < a - ~ In 2. 

o - 0 0-
Let B(h~) be the adjoint of B*(h~). B*(h~) is defined on 
the dense subset D'(n+l) and belongs to .c(D(n( '1ha'DCn),a') 

(0) 0)" 
for any a > ~ In 2,0 < a' < a - ~ In 2. On the dense 
subset Dr:,"?),a, a > ~ In 2 of JCt)V we have: 

o - 0 --
B(h~) = (B(h~»* = b(h~) + b(h~),-,(r(Q »*. 

1 a 
(3.17) 

o 0 -
B*(h~) and B(h~) are clo~able and we shall call their 
closures B*(h~) resp.B(h~). 

These are the creation resp. annihilation operators for 
dressed nucleons. 

(ii) We have 

(3.18) 

for any hi E La(R3), Ilhill = 1,supp hi E E}P,</J E Dn(O) == 
U a>(n/z) ln2 D<O),a. 

Thus T aAa maps states in JC~\ with n bare nucleons and 
arbitrarily many (even infinitely many) mesons into 
states with n physical nucleons and arbitrarily many 
mesons. 

Proof of Theorem 3. 2a: The case a < 00 is proved as 
follows: 

(0 One has b*(h~) E .c(JCCn);JCCn+l) and in particular 
b*(h~) E £(DCn),BjD(n+l),B) for all (3 > O. r(Qa)b*(h~) and 
b*(h~) are both in .c(DCn),a;DCn+lr.a'), a > ~ In 2,0 < a' 
< a - ~ In 2, and r(Q 0) E £(DCn+l);a;DCn+1),a'), as proved 
in Lemma 3.1b, (i). 

o 
Hence r(Qa)vb*(h~) = [r(Qa),b*(h~)] andB* are also in 

1 0 
£(D Cn),a; DCn+ Il,a'). The adjoint of B* is defined on 
DCn+l);a, since those of b* and r(Q a)yb*(h~) exist on this 

set and are equal to b and [b(h~), (r(Q 0»*]' respectively 
(from Lemma 3.1b). 



                                                                                                                                    

1810 Sergio Albeverio: Scattering theory. I 

The case a = co is proven in the same way, using the 
corresponding statements in Lemma 3.1b. • 

TheoreAm 3.2b: Let 0 SAa < co, 1,\1 < '\o(a). Set btl 
(h~) == eitHaB#(e 'itwh~) e- itHa • Then: 

(i) The b~.t(h~) are closed operators belonging to 
oC(D<nha;D(,.±l);a') for any a > ~ In 2,0 < a' < a - ~ In 2. 

They are the "adjusted dressed nucleon creation and an
nihilation operators" (in short "dressed nucleon fields") 
in the Heisenberg picture. 

(ii) The following commutation relations hold for any 
j,g E L 2(R3): 

(3.19a) 

on 
D"Cn) == U DCn),a 

ex> In 2 

and for expectation values with respect to the vacuum no 

(3. 19b) 

where the primed quantities j~,g~ are obtained from j,g 
in the same way as h~ was obtained from h [see (i) above] 
and (,) is the scalar product in L 2 • 

(iii) Let A be as in Theorem 3.2a. Set,for 1,\1 S A and 
all a S co, 

b!.t(R;h~(R» == eitR~(R)B#(e·itwh~(R»e-itN~(R), 

b# t(h') == eitSooB#(efitwh' )e-itSoo . 
00. 00 00 

Then we have that D'(O) U X(l,O) is contained in the do
main of b~)h~) and 

bb,t(h~)T oAocp = na(t)b*(h)CP, 

where 
itH -itH 

na(t) == eaT aAae 0 

Moreover, 

(;* t(h')T A cP = s-limb*a t(R;h'a(R»Ta(R)Aa(R)CP 
00. 00 00 00 0 .... 00 ' 

= s-lim na(R;t)b*(h)CP, 
0 .... 00 

(3.20) 

where 
na(R;t) == eitH~(R)Ta(R)Aa(R)e-itHo. 

Note that T aAaCP = T a(R)Aa(R)CP = cP for cP E D'(O). 

In particular, for cP = no one has 

bb.t<h~)no = T aA ab*(h)no = na(t)b*(h)no' 

Furthermore, 

b a,t(h~)<p = b a,t{R; h~(R»<p = 0, 

for all <P EX(O),hence in particular for <P = no' 
(iv) For'\ and a as in (iii) set,for any g E L 2(R3),as in 
Sec.2, 

A# ( ) _ ita #( fitl1 ) -itR aa,t g = e aa e g e a 
and 

aff,t(R;g) == eitS~(R)a#(e fitl1g) e-ita~(R). 

Then Theorem 2.2 holds for aff.t (g), for all a S <Xl. 
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Moreover,for any 1Jt.E D(H~/2): a# t(h)1Jt = s-lim ao#t 
oc)' o-+coo' 

(R;h)1Jt. One has also a:.t(g)ToAaCP = na(t)a*(g)CP,for 
any cP E X(1.0). 

Note that in particular, for a < <Xl, at t (g) E oC(DCnh; 
DCn),a'),for any 0 < a' < a. On D'Vi/one has, for a < co, 

[bb)j~), aci.t (g)] = 0, 

for any j,g E L 2(R3). 

(3.21) 

(v) For a < co, the product of k nucleon operators and m 
meson operators (k,m = 0,1,2,"') 

k A m ( 
IT b#t{f'{j» IT a# (g;» 

j=l 0, 0 i=l a,t 
o 

(with IT == 1) is defined on DkCn) == U cx>(W2) In 2DCn),a (and 
hence in particular on states with a finite number of par
ticles). For a = co this is defined for all j (j) E X(l,O)(R) 
on D'(O) and on T ooA ooX(l,O). Moreover,one has,e.g.,for 
all a S <Xl, 

n A m n m 
IT b* (!'(j» IT a* (g(i»n = n (t) IT b*{f{j» IT 

j=l a,t a i=l a,t 0 a j'=1 i=l 

a*(gW)no' (3.22) 

[This is a state conSisting of n physical nucleons and m 
mesons wbich we expect to converge for t -7 ± <Xl to "scat
tering states" n~ ITj b*(j<J» ITi a*(g(t»no,Le., to states 
in the ranges of the wave operators.] 

Remark 3.2: One sees immediately from the defini
tion that 

B*(h~) = bb t=o(h~) = b*(h~) + r(Q at,..b*(h~) 
• 1 

is a sum of infinitely many terms with 0,1,2,.,. ,m,'" 
meson creators, i.e., is of the "operator form" B* = b* 
+ ~~1 b*(a*)i. This corresponds to the familiar piC
ture of the dressed nucleon as an undressed one accom
panied by a "cloud" of infinitely many mesons. 

Remark 3.3: As can be expected the commutators 
[ba.t{f~),bb.t(g~)] on general states are not c-numbers. 
We shall see that they become c-numbers in the limit 
t ~ ± co. As an example, one can easily compute, for a < 
<Xl, that on X Cn .0) 

[bo.o(f~),b~.o(g~)] = [B(f~),B*(g~)] 

= (f~,g~) + [b(f~), r(Qo),-,b*(g~)] 
1 

+ b(j~)l(r(Q a»*r(Q O>yb*(g~) (3.23) 

Prooj oj Theorem 3.2b: 
.. # .itw -itN (,.):a 

(1) We fIrst prove that B (e h~) e a maps D , 
a > ~ In 2, into DCn);a' , 0 < a' < a -~ In 2. We shall 
write the proof only for the case of B*, the other 
case being treated similarly. We need only to in-

-itw -itS 
vestigate the term r(Q o)yb*(e h~) ea. Because 

of Theorem 3. 2a, (i) this will be in oC(DCn):a;DCn+l);a'), 
o < a~ < a - (1/2) In 2 as soon as one can show that 

-itn Cn)'a / Cnha e 0 maps D ',a> (1 2) In 2, into D ' for all 0 < 
(3 < a. But this is true because of the following: 

Lemma 3.2: Let 0 S a < <Xl be given and let '\o(a) and 
V~ == ,\ V + M a be as in Theorem 3.1. Then for all 
1,\ 1 S '\ofa) the time-dependent Dyson series 
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itHo [1 + . Jt dJ -itlHoV' itlHo 
eta 1e oe 

'2 (tdt (tldt -itlHoV' i(tl-t2)HoV' it2HO + ... ] + t Ja 1 JO 2e oe oe 
(3.24) 

converges in the uniform operator topology' for bounded 
operators from pv,),a to DV,);B for any 0 < (3 < a and the 

. itH v,),a 
sum 1S equal e 0 on D • 

Hence in particular e itHo E .c(Dv,)~a;Dv,)'B) and e itHo is 
strongly differentiable on D(n),a n D(Ho) in the Dv,),B
topology. 

Proof: Because of Theorem 3.1 and the fact that V~ 
maps X(n) n D«N a + 1)1/2) into X(n) Ell X(n-1) Ell JCv,+ 1) 

one can carryover the method that Lanford used for the 
proof of the corresponding statement in the cut-off Yuka
wa theory (Ref. 41, Chap. III, Sec. 2, Proposition 3.4., 
p.74). • 

Now we come back to the proof of point (i) of Theorem 
-itw -itH 

3.2b. We have proved by now that B*(e h~) e 0 E 

.c(Dv,),ajDv,+ l)~a/),for all a > (1/2) In 2,0 < a ' S.a -
(1/2) In 2. Using again Lemma 3.2, we conclude b # t 
(h~) E .c(Dv,),ajDv,±l);a/). o. 

(ii) All commutators (3. 19a) are defined on D"(n) by the 
estimates (i) on the domain and ranges of the operators 
involved. The O-commutation relations are then imme
diate consequences of the definitions. To prove the non
O-commutation relation (3. 19b) it suffices to show that 

[B(f~),B*(g~)]Oa = (f,g). 

But on 0a the commutator reduces to (cf. Remark 3.3) 

[b(i~),b*(g~)]Oa + b(i~)yr(Qo)*r(Q~y*(g~)Oa 

+ b(f~)r(Q o\'p*(g~)Oa. 

Taking the scalar product with 0a we obtain (realizing 
that some terms vanish) 

(0 0 , [B(i~),B*(g~)]Oa) 

= (b*(i~)Oa,{l + r(Qo)*r(Qo)}b*(g~)Oa) 

= (b*(i~)Oa,A~,2b*(g~)Oo) = (b*(i>na,b*(g)Oa) 

= (f,g), 

where the fact that: [r(Qo)*r(Qo)]k:b*(g~)Oa = 0 
has been used, together with the definition of Ao' 

( ... ) F < h I itH itH 111 or a A 00 we ave on y to use that e 0 = e 0 on 
(a) -itH -itw 

X and e 0 T oAob*(h)Oa = T oAob*(e h)Oa' as 
shown using Theorem 3.1, first for h E :D and then for all 

h (using the fact that e- itHo T Ao is bounded on x(l.a». 
For a = 00 we use that on X(a~ U Xll.a) (R) one has 

itH itH' (R) itH phys 
-e 00 = s;!i;? e 0 = eO, together with the Theorem 

3.1b and Lemma 3.1b. 

(iv) Using Lemma 3.2 and the first order estimate of 
-itH 

Lemma 3.1a, we have that for a < 00, e 0 maps 
D(H~/2) n D(n);a into D(HbI2 ) n D(n)~all ,for any 0 < a" 
< a. Using then a#(g) E .call a', for any 0 < a ' < 0/", and 
again Lemma 3.2,we conclude li9.t(g) E .caa,. The re
maining part is shown obsevving that all the assump
tions used in Sec. 2 are satisfied. 

(v) This follows easily from the al}"eady proved proper
ties on domains and ranges of the b#,li# operators. This 
concludes the proof of Theorem 3. 2b. • 
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We will now give expansions of the dressed fields in 
power series in the coupling constant. 

Let 1/ be a label taking the values a (for meson) and b 
(for nucleons). Set,for any h(ij) E L 2(R3), h~ij) == (v~ij)>-1/2 
h (ij), with V(b) == v-;,1/2, v~a) == 1. 

Define then 

with 
( B#(o ) for '11 = b 

for 1/ = b l 
for 1/ = a) 

C(ij)#(.) == ~ '1 

~a#(') for1/=a' 

o (ij)( • ) == {W(. ) for 1/ = b 

J.l(.) for1/=a 

Thus c~~l# (.) are the time t Heisenberg picture's ad
justed creators and annihilators for dressed b and a 
particles. 

We have: 

Theorem 3.3.' For any 0 ::s a < 00 there exist num
bers A (ij)(a) > 0 such that for all I A I ::s A (ij)(a) the follow
ing expansions of the fields in powers of A hold for all 
<I> E nv,): 

00 

c(ij#f (Jl(ij»<I> = ~ C (l)(ij)# (fi("»<I> 
o,t a Olt a' 

l=a 

where the series on the right-hand side converges 
strongly and 

c~!l")# (Jl("» == (i) J ... J[V'(tl)' "', [V'(t 1)' 

e itHo C~")#(e~it"(ij)fi~"»e-itHO]" ']dt1' "dt l ' 

XO::st l ::s···::st1 ::st 
with 

v, ( ) == isHo V' -isHo as e ae , 

(3.25) 

(3.26) 

V~ itself is a power series in A and in (3.25) one can 
replace C~!l")# (fi~ij» by the power series one obtains 
expanding each V~(·) occurring in the definition (3.26) 
by its correspondent power series in A. Moreover, also 
C~ij)# (. ) and fi~,,) can be expanded in power series of A. 

Each of these additional expansions conserves the 
strong convergence of the series. Hence c(ij~# (lz(ij» are 
for all I A I ::s A (ij)(a), all t, holomorphic in A.a. a 

o 
Proof.' Use of D(n) c U a>aD(n),a, Lemma 3.1b, The-

orems 3. 2a, 3. 2b give expansions like the one in Lemma 
3. 2, convergent in the .c as -topology, 0 < {3 < a. Then the 
proof follows by reordering of the terms. • 

Remark 3.4: For 1/ = a (meson fields) we have the 
simple power series expansions 

00 

a9.t(f) = :6 AlI~z)(fjt), 
l=a 

(3.27) 

where the I~l)(f;t) are independent of A,I~a)(f;t) == a*(h) 

and AlI~n(f; t) for 1 = 1,2, ... is the sum of all terms of 
order 1 in A one can extract from 
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(i)l f [V~(t I), 
OStz:S .. . St1:St 

[V~(tl-l)"'" [V~(tl),a#(h)]" ']]dtl" .dtl • (3.28) 

This expansion is of the same type as those considered 
by Hoegh-Krohn in Ref. 23b. 

The wave operators. Strong asymptotic convergence 
of states 

We introduced already the operators no(t). We shall 
prove that they converge as t -7 ± 00 to wave operators. 
Such operators have been introduced in this model by 
Eckmann. 20a 

Let D~~; == D
8Cn

) for a < 00 and D~~; == D 8Cn) n XCn\R) 
for a = 00, where D8Cn) == U a>(8/2) In 2 DCn),a. 

We have: 

Theorem 3.4: For any 0 :s a < 00 there exists anum
ber Ao(a) > 0, and for a = 00 and any given 0 < R < 00 

there exists a number Ao(R) > 0 such that for all I A I :s 
A, with A = Ao(a) for a < 00 and A = Ao(R) for a = 00, 

one has: 
. itH -itH . 

(1) The operators no(t) == e aT oAoe 0 are defmed 
on the dense subset D(~) of xt» and 

n (t) E £(D Cn),a. D Cn),a') C £(D Cn)'''. X Cn» 
a (0) , (0) , 

for any 0 < CI" < CI', with relative operator norms bounded 
uniformly in time: 

(3.29) 

with constants C l' C 2 independent of t. 

(ii) The strong limits for t -7 ± 00 of no(t) with respect to 
the topology of X Cn) exist on DiJi) : 

s-lim n (t)if = n=if 
t-.;too a a ' 

(3.30) 

for all -.J! E D(<j. 
The generalized wave operators n= are defined on the 

I (n) Cn) a «n),a Cn) 
dense set D (0) of X (0) and belong to £ D (0) ; X ) for 
any CI' > tin 2. 

(iii) For all if E D~~; == Dfo\n) one has 

(3.31) 

and 

(3.32) 

(iv) (n")* are partial isometries with initial domains 
a ± ± "Cn) (n) 

the closures Ro of n~(o) in X(o) and final domains 
Cn) = "Cn) 

X . no can be ext2nded (from D (0» in a unique way to 
partial isometries n~ with initial domain JCCn) and final 

± "Cn) -± Cn) -= ± 
domains noD(o) = nox(o)' Note (no)* = (n o)*' The 
relation (3.31) is then extended to n~*n~ = 1 on JC(o) = 

(n) . ita -± -= itH 
Ell X(o) and the relatlOns (3.32) to e ana = noe 0 on 
n 
X(o)· 

Moreover, 

n±(n=)* = P (3.33) 
o a R~' 

where P R~ are the projectors on R~,R-;', respec

tively.43.44 
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Remark 3.5: On X(O) U X(l.O) one has fi,± = n± = _ a p 

no(t) = ToAo' Hence,in particular,n~ map X(l.O, (all 
bare one nucleon states) isometrically into X~!)~hYS == 
T oAo X(l.O) (all physical one nucleon states). More
over, n~ = 1 = (n~)* on X(O). 

Proof of Theorem 3.4: The proof for a = 00 parallels 
completely the one for a < 00. Let us write the details 
only for a < 00. 

(i) Using Lemma 3.2, the fact that ToE £(D(n),8jD(n):8') 
for any 0 < {3' < {3 - (t) In 2 (Lemma 3.1a) and the fact that 
A oe itHo leaves each D (n);" invariant, we have immediate
ly n (t) E £(DCn):a'D(n),o:') 0 < Cl'J < CI' - (1.) In 2 The 

o " 2· 'ta 
stated uniform bounds follow from the isometry of e' 0 

on each D(n):a, in the DCn),a-topology. 

(ii) We first remark that, due to the uniform bound on 
no(t) in £"""for all t,it is sufficient to prove (3.30) on 
some subset of D(n),a, dense in D(n),o: in the 1111 a -topology 
(any CI' > (t) In 2). 

This will be done in the following taking D = D(n),D(n) as 
in Remark 3.1. First we prove the following: 

Lemma 3.3: Let a,A be as in Theorem 3.4, 4>E D(n). 
Then n o(t)4> is strongly differentiable with respect to t 
and, in the sense of strong derivatives, 

dna . • ita Ii -t/H T (t)4> = ze A o( aT oAo - T oAoHo) e 04> 

. +itH {a a 
=ze O[:ToAVo+AV{(Qo) 

1 a .( ( »2']A -itHo +aAV02" rQ o • oe 4>. (3. 34a) 

Moreover, the strong derivative dno/dt is strongly con
tinuous in t and 

the integral being understood in the strong sense. 

itH 
Proof of Lemma 3.3: Let U(t) ;;: e 0, U o(t) == 

e- itHo
• Since (using Lemma 3.1 and the strong differen

tiabilityof U o(t) in both the X(n) and 1111 0: -topologies) 

~LIlJ e-l[U(t)T oA o{u o(t + e) - U o(t)}4>] 

= - iU(t)T oAoHoU o(t) 4>, 

for (3. 34a) it suffices to prove 

~~IlJ e-l [U(t + e)T oAoU o(t + e)4> - U(t)T oAoU o(t + e)4>] 

= U(t)fi aT oA aU 0(1)4>. (3.35) 

Using the fact that the vectors of D(n) are entire vectors 
of Ho,together with Lemma 3.1,we easily obtain (3.35). 
The strong continuity in t of (dn / dt)4> follows from the 
strong continuity of U(t) in the JC(nttopology, together with 
Lemma 3. 1, Remark 3. 1, and the strong continuity of 
AoU o(t) in the 1111 IX-topology. • 

To finish the proof of point (ii) of Theorem 3.4 it suf
fices now to estimate 

t Iidno 
I II ' fo dt' (t)4> dt, 
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for t -t ± 00, ~ in some dense subset of D(n). Using the 
representation of (dOo/dtl)(t') given by the right-hand 
side of the second equality in (3. 34a), we see that the 
bracket { } on the right-hand side is a sum of connected 
terms (in the terminology of, e.g., K. Hepp, Ref. 21, p.16) 
containing two uncontracted annihilation operators. 
Thus the terms in { } have the same "operator form" as 
the ones in K. Hepp, Ref. 21 [Theorem 3. 3,formula 
(3.39)]. 

We can carryover the arguments of Hepp; Lemma 10 of 
Ref. 20a allows us to expand the bracket [ 1 into a sum of 
terms of different order of Q a' To' Call «to a term of 
order v with i meson creators occurring in this expan
sion. 

II (0 -itH II 0 (n) 
It suffices to estimate TvA oe ° ~ 2 for all ~ E'JL , 

where :n.(n) is the following subset of D (n), consisting of 
functions with "nonoverlapping" velocities: 

1-i.(n) == {>II = {>II(n,m);m = 0,1,2, ... } E D(n)1 

x >II(n,m)(ql' .. qn ;P l ' •• Pm) such that if Pi' qj 

x E supp>ll(n ,m), then pi /.L i ,r. Pk / IL k for alii ,r. k, 

q/wj,r. q/wz for all j ,r. l,pilLi,r. q/wj 
for all i,j}. 

One has, performing two partial integrations: 

IIT~i)Aae-itHo~112:s C~i)(~)(l + t2f\ 

where C ~i) is independent of t (depends on ~ and its 
partial derivatives up to order 2). By a computation 
similar to Eckmann's one, which lead to an estimate of 
liT axil, X E D(n),a [Lemma 3.1b, (i)],one can show I)v,i 
C~O(~) < 00. This has a twofold reason. On one hand 
one can estimate the single terms C~i)(<I» by "kernel 
norms" (in the terminology of Ref. 20a), controlled in 
the same way as those of the terms of order v and with 
i meson creators out of: T o~ V~ : , : T a(~ v~yr(Q 0) : ,t: 
T a(~ v~'2': (r(Q 0» 2:):, thus obtaining C ~j) :s C 1 q(i !)-l+<, 

€ > 0 (C l ' C 2 being constants), with I)v C? < 00 (the 
smallness of I ~ I being used at this place). On the other 
hand the number of terms C~j) for given v is only super
ior to the number of terms of order v in TobY a factor 
increasing at most polynomially in v. 

But I)vI)iC~;)(~):S c~I)v vkq < 00 (for some k > 0) 
and this concludes then the proof of the strong conver
gence of 0a(t). The property (3.32) follows then from 

eitHaOa(s) = 0a(t + s)e itHo 

on D'(n}, taking the limit for s -t ± 00. The property 
(3.31) follows by computing,for >II E D"(n), cP E D'(n): 

1· ( itHoA T*T A -itHo,T.) 1m cp, e a a a ae ,.. . 
t~±oo • 

We shall now study the convergence to asymptotic fields. 
The following theorem is an immediate consequence of 
the results in Sec. 2 and the preceding theorems: 

Theorem 3.5: 

(i) For given 0 :s a < 00 or a = 00, 0 < R < 00 let ~ be 
such that aff,t(h) exists [Theorem 3. 2b, (iv)]. Then the 
conclusions of Theorem 2. 2, 2. 3 hold for all a :s 00 and 
yield the asymptotic meson fields a!,t(h). These have 
the free commutation relations among themselves and 

the same commutation relations with eitHoo as the free 
fields with eitHo • 
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OnJC(O)onehasa* (h)=a*(h)-a*(h)andonJC(O) U 
00, t a,t 

JC(l,O): a!,±(h)T ooAoo = a!,t(h)O:" = O:"a*(h). 

(ii) For given 0 :s a < 00 or a = 00,0 < R < 00 there 
exist A 2(a) > 0 resp. A 2 (R) > 0 such that for all a:s 00 and all 
IAI:s A2 and all hE L 2(R3): s-lim bb,t(h~)O~ exist on 
D '(O} U '1f)(l,O} d t·sf 

"'-(a) an sa 1 y 

s-lim t* (h' )Ot = t* (h' )Ot = O±b*(h) o.t a a a.±. 0 a a • 
t-+±oo 

In particular,t~,±(h~)OO = T aAab*(h)Oo' 

Moreover,to,±(h~)¢ = s-lim fia,t(h~)¢ = 0 for all ¢ E 
JC (0). t-H 00 

(iii) For A,h as in (ii) andf E L 2(R3) one has 

s-lim tb.t<h~)a:,t(f)no = tb,t(h~)IZ:,t(f)no 
t-+±oo 

= a:,t(f)tb,t(h~)Oo = a:,±(f)B*(h~)no' • 

Remark 3.6: The statements (ii), (iii) give partial 
information on the asymptotic nucleon fields. These 
results will be generalized to the strong convergence of 
the dressed nucleon fields on states with arbitrarily 
many nucleons and mesons in the second part of this 
series of papers.26 

B. Some connections between asymptotic states and fields. 
The S matrix 

Theorem 3.6: For any O:s CJ < 00 and,if a = oo,for 
any 0 < R < 00, there exist numbers Ao(CJ) > 0 resp. Ao 
(R) > 0 such that, for all I ~ I :s Ao: 

l(n) 
(1) for all h E L 2 (R3) and all ~ E D(a) one has 

s-limlZ* (h)O (t)<I>=a* (h)nt<I>. o,t a o.±. a 
t-.± 00 

Moreover, 

i.e., 

( ilt)*A* ilt *(h) D,(n) 
•• 0 aa,± •• a = a ,on (0)' 

(2) The product ITf;la:,t(h(i)>II is defined for all h(i) E 
3 1(0) (1,0) (1,0). 

L 2(R ) and all >II E D U JC(a)phys, where JC(o)phyS IS 
equal T oAaJC(l,O). 

One has 

s-lim ITIZ.j,t(h(i»>II = ITIZ.j,t(h(;»>II = n~ IT a*(h(i)>II. 
t-+±oo iii 

(l,O) 
(3) One has,for all >II E JC(o) , 

and both sides converge strongly to 

O~ IT b*(h U » IT a*(f(i)>II. 
j i 

1(0) (1,0) (;) 3 
(4) For all ~ ED, h E JC(a) ,f E L 2(R ): 

s-lim t* (h') IT a* (f(i)~ = t* (h') IT a* (f(;»~ 
t-+±oo o.t 0 i=l o,t a.± a i=l a.±' 

= n~b*(h) IT a*Ct<i)~. 
i 

(S) Call et\,t the closed linear span of all states of the 
form 
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for n fixed, m = 0,1,2, .•. , with convention Ilm == 1 for 

O e (n). b f '1f> (n) '1f> (n) . d b m = . (a).± IS a su space 0 "'-(0)' "'-(0) IS mappe y 

fi~ into et\.±. The scattering operator So is defined by 
A -+ -- Cn) Cn) 45 
So = (51 0 )*51 0 as a contraction from X(o) into X(a)' 

So extends trivially to a contraction in X(ol == EB~o xr;). 
(6) The amplitude for the scattering from an incoming 
state 

s-lim n [)* t(g' (jl) rr fl* t (f(i)no t...-oo j=I a. a i=I o. 

to an outgoing state 

s-lim IT [)* (g'(j» ri fl* (/(i)n 
t->+oo j=I o.t a i=I o,t 0' 

-<J) (1.0) -(0 3 
g E X(o) ,f E L 2 (1R ), is given by 

( [) * _'(j) m' ..... * _ ') 
s-lim Il a,t(g(a» n aa.t(f(' )510 , 
t->+oo j ,=1 

s-lim Il [)* (g'{j» rr fl* (f(il)n) a.t a 1 a.t 0 t-+-oo j i= 

= (51:' ~ b*(g(j» i~~ a*(J(;)nO' 

51- ~ b*(g(j» i~I a*(f(;)no) 

= (~b*(g(j» i~: a*(l(;)~o' 
So Il b*(g{j) ,rr a*(f(O)no\ 

j ,=1 1 
For n = 1 we have also 

Proof: All points are proved using essentially the 
uniform bound in t on na(t) resp. noo(t) as an operator 
from DCn):a, O! > (t) In 2 to XCn) (Theorem 3.4) as well 

. itH itH (0) 
as Theorem 3.5 and the equalIty e a = e 0 on X 

(1.0) 
U X(a)phYs' 

Remark 3.9: Above results will be generalized in 
part II of this series of papers (Ref. 26). 

Note that,of course,Sa = Ion X (0). 

• 

C. Reduction formulas for the meson-nucleon scattering 

Let us consider the scattering of one physical nucleon 
and one meson. We shall give some remarks for both 
cases (] < 00 and (] = 00, using again the notation of the 
preceding section. 

Let the asymptotic situation at t = - 00 be described by 

I h (1);f (1» _ == [)~._(h ~ (I»fl ~._ (f (1)510 

and the asymptotic situation at t = + 00 be described by 

Ih(2)'f(2» == [)* (h'(2»fl* (f(2»n o , 
, + 0,+ a 0,+ 
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h (;) '1f> (1.0) fW L (R3) . - 1 2 
E "'''(0)' E 2 , t - , • 

The S matrix element for the transition is, according to 
Theorem 3.6, 

Sa(h(1),j(I)jh(2),f(2» = ([)~.-<h~(I»fl~._ ({(1)no, 

[)~.+ (h ~ (2»fl ~.+ (f (2»51 0 ) 

= (b*(h (1)a*(f (1)510 , So b*(h(2»a*(J (2»51 0 ) (3.36) 

We shall first derive simple reduction formulas which 
are related to the well known ones of the relativistic 
formalism and shall be the starting point for our pre
liminary discussion of the meson-nucleon scattering 
in the model. 

We first observe using Theorem 3.5 

[)~,± (h ~)fl :.± (J)no = fl ~.± (f)[)b.± (h~)no 
= fl:.±(f)B*(h~)no' for any f,h E L 2(lR 3 ). 

Using furthermore (Theorems 2,3,3.5), 

fl:.±(f) = a*(J) + i Jo±oo ~, aci.t' (f)dt' 

r±oo itH -itn 
= a*(f) -t'\ i Jo e a m~(f; t)e adt, (3.37) 

where f stands for f(1} and f (2), m'6(f;t) == m'6(ft) for the 
bounded extension to XCn) of the bounded, densely de
fined operator A[Va' a*(e-itllf)] (as in Lemma 2.2),we 
have 

S a(h (1),j (l); h (2) ,f (2» = (flci.- (f (l)B*(h~ (1)51
0

, 

flci._(f(2»B*(h~(2»no) A 

+ i(fl:._(ll)B*(h~(l)no' j.~oo dt2eit2Ham:(f(2);t2) 

x e-it2ifaB*(h~(2»no). (3.38) 

Using again Theorem 3.5, the fact that the integral 
exists in the strong sense and a fortiori in the weak 

-it if * '(ll -it w ,(1) 
one, and e 2 aB (h a )510 = B*(e 2 ha )510 we have 
("reduction from the right"): 

(3 •. 39) 

Similarly, "reducing from the left," 

S a(h (ll ,f (1); h(2),! (2» 

= (h(I),h(2»(fUl,j(2» + S~I) + S~u>,with 

S~I) == i f-~oo dt 2F(I)(t 2),F(I)(t) == (a*(f(1)B*(h~(I»no, 

e itB-am:(f (2); t)B*(e -itwh~ (2»51
0

), 

..... (II) == f-+oo dt (r-oo dt eitiam*(fW·t ) So 00 2 Jo 1 0' 1 

X B*(e-it1wh~(I»no' e itjIa m:(f(2); t 2)B*(e-it2wh~ (2\51
0
), 

We can now exploit the fact that the absolute value of 
the scalar product 

(eit1Hom: (J(I); tI)B *(it1 wh ~W)no' e it2Ha m:(J(2); t 2) 

X B*(e-it2wh~2»no) 
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is,for fixed t 1 ,0(1 t 2 1-3 / 2 ) as It2 1-)oo and, for fixed 
t2,0(ltll-3/2) as It1 1-)oo,as shown using essentially 
Schwarz inequality, to conclude that 

S~ll) = 1-:' tit 2 J;<X> dt 1 F(U)(t 2' t 1)' 

with 

F(ll)(t 2' t 1) 

== (~(:U (1); t 1)B* (e- it1 Wh ~(l)00' e i(t2-t1 lHom:u (2\ t 2) 

x B*(e-it2Wh~(2»)00) 

= (m*(f (1). t )T A b *( -it1 Wh (1»0 
o '1"" e 0 

x e i(t2-t1)H "m:u (2l; t 2)T oA 0 b *(e- it2wh (2»)00), 

Let us remark that similar reduction formulas can 
also be obtained in the same way for the scattering of 
one physical nucleon and any finite number of mesons, 
using repeatedly the representation (3.37) for the 
asymptotic fields 8 ~.± • 

Finally we would like to remark that the matrix ele
ments So(h(l),j(l);h(2),f(2» (as well as the just men
tioned ones) can also be expressed in terms of time 
ordered vacuum expectation values of the dressed fields 
(Green's functions). The sufficient smoothness condi
tions in t 1 ,t2 of the functions can be established USing, 
for (J < 00, the higher order estimates we shall derive 
in part n,for (J = <X) corresponding estimates of Ref. 16. 

Note added tc Proof: Since the writing of this paper 
new investigations of perSistent models have appeared, 
concerned in particular with the solution of the one
body problem and the infrared problem. In particular: 
J. Frohlich,. "Existence of dressed one electron states 
in a class of persistent models," ETHZ (1972); L. Gross, 
J. Funct.Ana1.10, 52 (1972); and "The relativistic polar
on without cutoffs," Cornell (1972); D. Sloan, "The re
lativistic polaron without cutoffs in two space dimen
sions," Cornell (1971). 
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APPENDIX 

In this Appendix we shall prove point 3 of Theorem 
2. 3, as well as the related propositions in Theorem 
3.5. In the case (] < 00 we can proceed as in Ref. 23. 
Take,e.g.,the operators aff.t(h) of Theorems 2.2,2.3. 
We have, for any ¢,If; E D(Ho) 

(If;, [a#(h),a#(g)]¢) = (If;,[a!,t(h),8H.t(g)]¢) 

= «ao~t(h)*lf;,Ciff.t(g)¢) - «aff.t(g)*lf;,aff)h)¢). (AI) 

The right-hand side of (AI) converges to 

«aff.±(h)*lf;,aff.±(g)¢) - «aff,±(g»*lf;,aff.±(h)¢). 

If we can show that aff.±U)¢ E D(aff,±U1» for any f,f1 
E ~ then we are finished. This domain property is a 
consequence of a uniform bound in t of the form 

IICiff)f)Ciff.tU1)¢1I :s cllfllllf1 1111(i1" + bo)¢II, (A2) 

proved using (2.7), (2.16). Using (A2) one sees further
more that (aff.±U)*lf;,aff,±U1 )¢) is a bounded linear 
fu~ctional acting on If;, hence Ciff,±(1)¢ E D(aff.±(f)*), 
WhICh ends the proof of the strong commutation re
lations for the Ii ff.± (h). 
In the limit (J -) 00 a simple uniform estimate of the 
form (A2) does not hold anymore, and above argument 
gives only the commutation relations in the weak form 
3b of Theorem 2.3. This is also the form in which the 
commutation relations for the asymptotic meson fields 
in Nelson's model are given originally in Ref. 17 . How
ever, Hoegh -Krohn himself has since improved his 
result to the proof of the commutation relations in the 
strong sense. 46 His proof applies also to our case and 
goes essentially as follows: 
Set ¢t(h) == 2-1/ 2(a!(h) + Ut(h»,1T t(g) =- i2-1/ 2(a!(g)
I1 t(g»,for f,g E ~. These operators have D(8#(h»resp. 
D(a#(g» in their defin}tion domains and are self-adjOint. 
The strong limits ¢± (h) resp.1T ± (g) for t -) 00 exist be
cause of ~heorems ~. 2, 2. 3. ¢±, 1T± are self-adjoint be
cause ¢±(!!) - ¢t=o(h) and 1T±(g) - 1T t=O(g) are bounded 
and ¢t=O(h),1T t =O(g) are self-adjoint. From what we have 
shown above, ¢ ± (h), 1T ± (g) satisfy the canonical commuta
tion relations in the weak form,on vectors ¢,If; as in 
Theorem 2.3, 3b. From this it follows by known me
thods47 that ¢ ± (it), 1T ± (g). satisfy the strong commutation 
relations (2.13) on a dense set. 

·Supported by the Swiss National Foundation (Forschungsstipendium 
of the Eidgenossische Technische Hochschule, Zurich). 
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The Backlund transformation provides a mathematical tool which displays the interaction of solitons. 
Here a simple, systematic Backlund formalism is introduced which permits the explicit construction 
of these transformations for a restricted class of nonlinear wave equations. Traditionally a Backlund 
transformation has been viewed as a transformation of a solution surface of a partial differential 
equation into another surface which may not satisfy the same equation. In the present paper the 
term "restricted Backlund transformation" (hereafter abbreviated R-B) is used to refer to the case in 
which the transformed surface does satisfy the same equation. This formalism clarifies the nature of 
those transformations which have already been used to study nonlinear interactions in many physical 
problems. The formalism is introduced through a form of the linear Klein-Gordon equation. For 
this linear example a complete set of Fourier components is generated by a sequence of R-B 
transformations. This concrete example also indicates the type of results one can expect in the 
nonlinear case. For the nonlinear equation <f>Xy = F(<f», a theorem is established which states that 
R-B transformations exist if and only if the nonlinearity F( . ) satisfies F" = KF, where K is a 
constant. For such nonlinearities, the R-B transformations are explicitly constructed and are used to 
display exact nonlinear interactions. A relationship between the condition F" = KF, the existence of 
an infinite number of conservation laws, and the transformation theory is briefly discussed. 

1. INTRODUCTION 

One of the most startling phenomena in nonlinear 
physics is the existence of "solitons," remarkably stable 
pulselike solutions of certain nonlinear, dispersive wave 
equations. These solitons are so stable that they retain 
their identity after experiencing fully nonlinear inter
actions. Solitons have been observed in a wide range of 
physical phenomena (Ref. 34) in shallow water waves, 1 in 
hydromagnetic waves,2 in ion-acoustic plasma waves,3 
in magnetic flux propagation in a Josephson junction,4 in 
a nonlinear lattice.5 Solitons form the basis for a des
cription of lossless propagation of ultrashort laser 
pulses in an active medium.6 Solitons have been observed 
experimentally1.6,10 and numerically.7 Computer movies 
have been made which clarify their interactions (avail
able from Bell Telephone Laboratories).8.9 Scott10 has 
built a mechanical model which displays these solitons. 
They also arise in certain model nonlinear field 
theories.3 Surveys of all these phenomena may be found 
in references. 6,10-12,34 

Not only have these solitons been observed experi
mentally, but explicit analytical expressions which re
present them undergoing nonlinear interactions have 
been found. These expressions are exact solutions of the 
nonlinear, dispersive wave equations which model the 
physics. Such solutions have been found for the sine
Gordon equation,6,13,14 the Korteweg de-Vries equa
tion,15-17 and a nonlinear Schrodinger equation,18 

Lamb6 discovered these solutions for the sine-Gordon 
equation, 

cf>xy = sincf>, (1. 1) 

by applying the transformation theory of Backlund. 
Following the work of Seeger, Donth, and Kochendorfer, 14 
he uses this transformation theory to construct an 
analytical expreSSion for an N-soliton solution. In addi
tion, Whitham19 has shown that the Cole-Hopf transforma
tion is of Backlund type, and Loewner20 ,21 Rogers,22-24 
and Power, Rogers, and Osborne, 25 have used these 
transformations in the area of gas dynamics. 
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In view of these successes of the transformation 
theory, one immediately thinks of m3.ny questions. Can 
the Backlund theory be used as a tool to study other non
linear physical phenomena? Given a nonlinear wave 
equation, how can one construct the transformation? Can 
the transformation's relationship to solitons be clarified? 
Several nonlinear equations which are known to possess 
solitons are also known to possess an infinite number of 
conservation laws, two of which are momentum and 
energy. Is there a relationship between the Backlund 
theory and these higher conservation laws? Can the 
theory provide a geometrical interpretation of these 
conservation laws? 

We have obtained at least partial answers to all of 
these questions. This paper covers the first few. A 
second paper, now in preparation, discusses those 
questions concerning conservation laws. 

In attacking these questions, we found it necessary to 
develop a clear understantling of the Backlund theory. 
The transformations of Backlund were deSigned to trans
form solution surfaces of second order partial differen
tial equations with two independent variables into other 
surfaces. A general theory for such transformations 
was introduced by Backlund26 ,27 as early as 1876, and 
subsequently studied by Clairin,28 Goursat,29 and 
Forsyth.30 Eisenhart31 discusses these transformations 
in hi's book on classical differential geometry. Un
fortunately, this literature is difficult to understand. 
No doubt, this is partially because the language is 
currently "out of style." However, we believe a more 
fundamental source of the difficulty is the authors' in
sistence to work with such general second order equa
tions. This generality prohibits them from obtaining 
concrete results. 

Here we restrict ourselves to equations which may be 
put in the form 

cf>xy + OIcf>x + (3cf>y = F(cf», 01, (3 const. (1.2) 

where the function F(·) does not depend explicitly on x 
or y. This restriction permits a rather simple Backlund 
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formalism. The purpose of this paper is twofold: first, 
to introduce, for a restricted class of Backlund trans
formations, a view point which permits a particularly 
direct and systematic construction of these transforma
tions; and second, to use this approach in the study of 
equations of type (1. 2). 

Stated somewhat informally, our main results establish 
that a transformation of R-B type (see Sec. 2 for the 
definition of "R-B type") exists for equations of the 
form (1. 2) if and only if 

(a) F(·) is linear, or 

d2 F (b) a = {3 = 0 and -- = KF, 
dcp2 

K an arbitrary constant. 

(1. 3) 

For equations (1.2) satisfying (1.3), we explicitly con
struct the R-B transformations. These transformations 
take the form of a pair of coupled,first order partial 
differential equations. We then establish the fundamental 
step in the application of these transformations to the 
study of interacting waves: namely, that certain triples 
of solutions of this pair of equations generate fourth 
solutions. An explicit formula prescribing this fourth 
solution in terms of the other three is presented. 

It is interesting to notice that the same condition (1.3) 
has arisen in Kruskal's studies 32 as a sufficient condi
tion for the existence of an infinite number of polynomial 
conservation laws. While Kruskal has not proven (1. 3) 
necessary, he has been unable to find an infinite number 
of conservation laws for other functions F(·). Another 
intriguing feature is that,for linear F('), the R-B trans
formations generate all possible Fourier components, a 
complete set of solutions. In Sec. 4F we present some 
comments concerning relationships between R-B trans
formationl:l, conservation laws, completeness, and the 
"inverse method" of Gardner, Greene, Kruskal, and 
Muira15 and Lax.l 6 These comments form the basis of 
a second paper now in preparation. In this paper, we 
discuss the Korteweg-de Vries equation through Backlund 
techniques. Since the KdV equation is third order, an 
extension of the transformation theory is necessary. 

Underlying our entire work is a view of the Backlund 
transformation which differs from the traditional one. 
This viewpoint leads us to define the R-B transformation 
itself as the solution of a coupled pair of partial differ
ential equations. This pair may be studied with analytical 
techniques, rather than by traditional geometriC methods. 

In Sec. 2 we introduce the Backlund transformation, 
define the R-B class for Eqs. (1. 2), and obtain the 
coupled pair of equations which the R-B transformation 
satisfies. In Sec. 3 we investigate the example F(·) linear. 
This example serves as a convenient vehiCle through 
which we introduce several concepts which are important 
for more general F(·). BecaUse it is so explicit, this 
linear example is the key to understanding our Backlund 
theory. The main results concerning (1. 2) are presented 
in Sec. 4 and 5. 

2. DEFINITIONS OF THE R-8 Transformations 

Traditionally the Backlund transformation for (1.2) is 
viewed as a transformation of a solution surface ¢n-1(x,Y) 
of (1. 2) into another surface ¢ n (x , y), a surface which 
mayor may not solve (1.2). Here we demand that both 
¢n-1 and ¢n solve (1. 2). Thus, w.e view the Backlund. 
transformation as a transformatIon between the solutIon 
surfaces, ¢n -1 and ¢n' of the form 
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¢"'X = P(¢,,; ¢,,-1; ¢n-1,x;¢,,-1,y;X;Y), 

¢n,y = Q(¢n; ¢n-1; ¢n-1,x; ¢,,_1,y;X;Y). 

(2.1a) 

(2.1b) 

[The subscripts n - 1 and n indicate that we shall be 
conSidering several pairs of solutions of (2.1), indexed 
by n. Throughout this paper the functions (P, Q) are 
assumed to be sufficiently smooth to permit all required 
differentiation. ] 

Notice that if the transformations (P, Q) can be found, 
we have replaced the second order equation (1.2) for 
¢n with a pair of coupled first order partial differential 
equations for ¢". Moreover, this pair of equations de
pends explicitly on an auxiliary solution ¢ n -1. We shall 
interpret ¢n-1 as a known or "old" solution from which 
the "new" solution ¢n is generated by a Backlund trans
formation. We remark that for fixed ¢n-1 not all solu
tions of (1. 2) will solve (2.1). In fact, one of the pur
poses of this work is to understand more clearly the 
relationships of ¢n to ¢n-1' 

Since Eq. (1.2) does not depend explicitly on x or y, 
one would prefer that the transformation (P, Q) not 
depend explicitly on x and y either. With this restriction 
and the notation 

~2 == ¢n-1,x' 

~5 == ¢n-1,xx, 

~3 == ¢n-1 y' 
_ ' (2.2) 

~4 == ¢n-1,xy' ~6 = ¢n-1,yy' 

Eqs. (2.1) take the form 

¢n,x == P(T, ~1' ~2' ~3)' 

¢n,y == Q(T, ~1' ~2' ~3)' 

(2.3a) 

(2.3b) 

To define (P, Q) we first insure that ¢" satisfies (1.2). 
To this end we differentiate (2. 3a, b), use (2.2), and ob
tain two expressions for ¢n, xy' 

¢ = P aQ + ~ ~ + ~ aQ + ~ aQ. (2.4b) 
n,xy aT 2 a~1 5 a~2 4 a~3 

Equations (2.4) together with (1. 2) yield a pair of 
equations for (P,Q), 

ap ap ap ap 
Q - + ~3 - + ~4 - + ~6 - + aP + (3Q = F(T), 

OT o~1 a~2 o~3 (2.5a) 

P oQ + ~2 ~ + ~5 ~ + ~4 ~ + aP + (3Q = F(T). 
OT o~1 a~2 o~3 (2.5b) 

Before inquiring into the meaning of (2.5), let us im
pose the condition that ¢n-1 satisfy (1.2). This condition 
forces a relation between the variables (~1' ~2' ~3' ~4)' 

~4 + a~2 + (3~3 = F(~l)· (2.6) 

USing (2.6) to eliminate ~4 from (2.5), we obtain 

Q ap + ~ E + [F(~ ) _ a~ _ {3~ ] ap 
OT 3 a ~1 1 2 3 a ~2 

+ ~6 E + aP + (3Q = F(T). (2.7a) 
a~3 

P aQ + ~ ~ + ~ ~ + [F(~ ) - a~ - {3~ ] ~ 
OT 2 O~1 5 a~2 1 2 3 a~3 

+ aP + (3Q = F(T). (2.7b) 
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Notice that ~6 E and ~5 ~ are troublesome terms 
a~3 a~2 

in (2.7). Clearly if these two terms were not present, 
(2.7) could be treated as a pair of coupled partial differ
ential equations in four independent variables (T, ~l> ~2' 
~3) for the transformations P = P(T, ~1' ~2' ~3) and Q = 
Q(T, h, ~2' ~3)' For this reason we restrict the class of 
transformations (P, Q) so that P is independent of ~3 and 
Q independent of ~2' Under this restriction the differen
tial equations (2.7) reduce to 

Q ap + ~3 E + [F(~l) - a~2 - f:l~3] ~ 
aT a~l a~2 

+ aP + f:lQ = F(T), (2.8a) 

P aQ + ~2 ~ + [F(h) - a~2 - {3~3] ~ 
aT a~l a~3 

+ aP + (3Q == F(T), (2.8b) 

Thus we are led to the following definition: Any 
(sufficiently differentiable) solution (P, Q) of (2. 8) will 
be referred to as a restricted Backlund (R-B) trans
formation mapping solutions of (1.2) into solutions of 
(1.2). Any suchR-B transformation,evaluated at T == 
¢n(x,y), ~1 = ¢n-1(x,Y), ~2 = ¢n-1x, ~3 = ¢n-1,y and 
substituted into (2.3) results in the 'pair of first order 
equations 

(2.9a) 

(2.9b) 

where ¢n-1 is any solution surface of (1. 2). By the 
definition of (P, Q), any solution ¢n of this pair also 
satisfies (1.2). 

Before continuing we remark that a significant simpli
fication occurs if one further restricts (P, Q) to be in
dependent of T (Le., ¢n)' Firstly, Eqs. (2. 8) which define 
the transformations are linear under this restriction. 
Secondly, if (P, Q) exist under this additional restriction, 
then Eqs. (2. 9) express ¢n x and ¢" y completely in 
terms of known functions ;p n -1' ¢" -1' x' ¢ n -1 y' Viewed 
in this manner, Forsyth's choice to testrict his study 
primarily to this case takes advantage of these Simplifi
cations. Unfortunately,as will become clear in Secs. 3 
and 4, this is not sufficiently general for our purposes. 

Finally, it should be noted that this class of R-B trans
formations is quite restrictive. This is particularly 
apparent from Eqs. (2. 9). Nevertheless, as far as we 
know, only transformations of this form have been 
successfully utilized in the study of nonlinear waves. 
Therefore, it seems appropriate to investigate their 
degree of generality. 

3. F{') LINEAR 

A. Transformations from the "vacuum" 

In this section we study the case F(·) linear: 

¢ xy + a¢ x + (3¢y = F(¢) = y¢ + r, 

a, {3, y, r const., y '" O. (3. 1) 

For an alternate view of linear problems, we refer the 
reader to the work of Loewner.20 ,21 

As a first step in solving (2.8) for linear F('), we 
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seek solutions (Po' Q 0) which are independent of 
(~1' ~2' ~3)' These functions must satisfy the coupled 
pair of ordinary differential equations 

(3.2a) 

(3.2b) 

As long as y '" 0, (Po,Qo) generate a new solution from 
the critical or equilibrium solution ¢o = - r/y (or 
~1 = - r/y, ~2 = ~3 = 0). We remark that for the Klein
Gordon equation, this trivial solution is zero and is 
referred to as the "vacuum solution." Transformations 
from specifiC solutions such as the vacuum solution are 
not as general as transformations from an arbitrary 
solution ¢n-U but they are more flexible. 

To solve (3.2) for (Po, Qo), we subtract (3. 2b) from 
(3.2a) and obtain 

dPo dQ o Qo-- ==Po--, dT dT 

which implies 

Qo == coPo' 

(3.3) 

(3.4) 

Here Co is a (possibly complex) constant which, at this 
point, is arbitrary. Together Eqs. (2. 3) and (3.4) show 
that a solution generated from the "vacuum" will be a 
progressive (generalized traveling) wave of the form 

(3.5) 

Inserting (3.4) into (3.2) and solving for (Po,Qo),we 
find the particular solution 

(3.6a) 

(3.6b) 

where ko and Co are related by the dispersion equation 

(3.7) 

and lo is specified in terms of ko by the equation 

(3.8) 

The dispersion equation (3.7) is naturally associated 
with the linear partial differential equation (3.1). 
Collecting these results we find 

Po = kO(T + r/y), 

Qo = COkO(T + r/y), 

where Co and ko are related by (3.7). 

(3.6a') 

(3.6'b) 

Assuming y '" 0, we denote as ¢1 a solution generated 
from the vacuum by the R -B transformation (Po,Qo)' 
Returning to (2. 9), we write the .first order partial 
differential equations for ¢1 as 

¢l,x = kO(¢l + r/y), 

¢l,y = COkO(¢l + r/y), 

from which we obtain 

¢l(x,y) = - r/y + Aoeko<x+coY) 

(3.9a) 

(3.9b) 

(3.10) 
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Thus an R-B transformation from the vacuum gener
ates an elementary progressive wave solution or 
Fourier component. The "amplitude" Ao can be chosen 
arbitrarily, but the "wave number" ko and the "velocity" 
Co must be related through the dispersion equation 
(3.7). 

Two features of the transformations (Po' Q 0) should be 
emphasized. The first is the manner in which the dis
persion equation arises in the transformation theory. 
The second is that a set of Fourier components may be 
generated which span any countable spectrum. 

B. Transformation from an arbitrary solution 

To generate cf>n from an arbitrary solution cf>n-l' it is 
sufficient for our purposes to seek transformations 
(P, Q) of the form 

peT, ~l' ~2) = k(T - ~l) + B~2' 

Q(T, ~l' ~3) = Ck(T - ~l) + D~3' 

(3.11a) 

(3. 11 b) 

Here the constants c and k are again related by the 
dispersion relation (3.7), while the constants Band D 
are to be determined. This particular ansatz has been 
motivated by the transformations (Po, Qo)' [(3. 6), (3.7), 
(3,8)], to which it reduces when cf>n-l is the ''vacuum 
solution" (~l = - rh, ~2 = 0, ~3 = 0). Substituting (3.11) 
into (2.8), we obtain the equations 

[Ck2 + k(a + cM - Y]T + [BY - Ck2 - k(a + c{:l)]h 

+ [a{:l- a{:lH2 + [k(D - 1) + (:leD - B)]~3 = r(l - B), 
(3.12a) 

[Ck2 + k(a + c(3) - y]T + [Dy - ck2 - k(a + cf3ml 

+ [ck(B - 1) + a(B - D)]~2 + [(:lD - f3D]~3 = r(l - D). 
(3.12b) 

The coefficients of the independent variables must 
vanish individually. The coefficient of T in both equa
tions is just the dispersion relation (3.7). The remain
ing terms imply 

B=D=1. (3.13) 

Collecting these results, we obtain R-B transforma
tions (P, Q), 

P = k(T - ~l) + ~2' (3.14) 

Q = Ck(T - ~l) + ~3' (3.15) 

where k and c satisfy the dispersion relation (3.7). 

~A'kr-B 
FIG.1. Lamb diagram representing (3.16). 

~A"k'~ 
~\)-'¥-

~, . 8, It' 

~B~k~ 
FIG. 2. Lamb diagram representing (3.21), (3. 22), (3. 23), and (3.24). 
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C. Relationship between R-8 transformations and 
Fourier components 

These R -B transformations (3.14), (3.15) when sub
stituted into (2.9), yield a first order equation for cf>n in 
terms of any given solution surface cf>n-H 

cf>n,x = k(cf>n - cf>n-l) + cf>n-l,x' 

cf>n,y = ck(cf>n - cf>n-l) + cf>n-l,y' 

(3. 16a) 

(3. 16b) 

Clearly a particular solution cf>C of this pair of equa
tions is given by 

cf>C = cf>n-l' (3.17) 

and the general solution by 

cf>n(x,y) = cf>n-l(x,y) + Aet(x+cy). (3.18) 

Here A is arbitrary, while c and k satisfy the diSper
sion equation (3.7). 

Thus, the R-B transformation creates an arbitrary 
Fourier component, and adds it to cf>n-l' Assume for the 
moment, that boundary conditions have imposed a dis
crete spectrum. Further, think of cf>n-l as having been 
created by a succession of (n - 1) R-B transformations 
starting from the vacuum cf>o = - r/y. Then cf>,,-l is 
given by 

(3.19) 

where each k. is a (distinct) member of the spectrum 
with the corr~sponding c j defined by the disperSion rela
tion. Clearly, when the spectrum is countable, one may 
get arbitrarily close to any solution by a sequence of 
R-B transformations beginning from the vacuum. Con
versely, given any solution cf>, it may be represented as a 
series of Fourier components, 

00 

cfJ = - r + "l]Ajekj{x+cJY) 
y j~l 

(3.20) 

and one may use a R-B transformation to annihiliate the 
lth component ()f cf> by selecting k = k I and A = - A I in 
(3.16) and (3.18). Bya sequence of such annihilations, 
one may get arbitrarily close to the vacuum solution 
from any given solution cf>. 

D. Lamb diagrams 

Here we diSCUSS, through this linear example, a 
schematic means to depict the R-B transformation. Con
sider the R-B transformation (3.14), (3.16), and (3 18) as 
a mapping of cf>n-l into cf>n' Clearly, it may be pictured by 
the diagram in Fig. 1, with the constants A and k ex
plicitly shown. Diagrams such as Fig. 1 were introduced 
by Lamb13 in his study of sine-Gordon equation; hence, 
the "Lamb diagram." These diagrams are convenient 
for recording and representing a series of R-B trans
formations, and they become particularly useful when 
studying the interaction of waves. 

For this linear system wave interactions are trivial; 
but it is convenient to use this example to introduce an 
important method which employs Lamb diagrams to 
study interactions. Consider the Lamb diagram shown in 
Fig.2. This diagram represents the following four pairs 
of equations and amplitudes (integration constants): 

cf>n,x = k(cf>n- cf>n-l) + cfJn-1,x' 

cf> .. ,y = ck(cf>n - cf>n-l) + cf>n-l,y, amplitude A; 

(3.21a) 

(3.21 b) 
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cf>n'1,y == c'k'{cf>n+1 - cf>n) + cf>n,y' amplitude A'; 

1/1 .. , x == k'{1/I" - cf>,,-1) + cf>n-1,x 

amplitude B; 

(3.22a) 

(3.22b) 
(3.23a) 

(3.23b) 
(3.24a) 

1/I"'1,y == Ck(1/I,,+1 -1/1 .. ) + 1/In,y' amplitude B'. (3. 24b) 

Using (3.18) to solve for cf>"+1 and 1/1,,+1 in terms of 
cf> .. -1' we obtain 

cf>n+1 ==Aek(x+cY)+A'ek'(x+cy) + cf> .. -u 

1/I n+1 == Bek'(x+cy) + B'ek(x+cy) + cf>n-1' 

(3. 25a) 

(3.25b) 

Notice that if we choose A' == Band B' == A, cf>n+1 == 
1/1,,+1' In retrospect we have observed that the Lamb 
diagram in Fig. 3 represents a valid R-B transformation. 

Had we been given the fact, displayed in Fig. 3, that the 
Lamb diagram commutes, we could have found cf> .. +1 with
out explicitly integrating the partial differential equa
tions (3.22). Equations (3. 21a) arid (3. 22a) imply 

(3.26) 
while the Eqs. (3. 23a) and (3. 24a) imply 

1/1"+1, x == k(1/I .. +1 -1/1,,) + k'(1/I" - cf>,,-1) + cf>,,-1,X' (3.27) 

Setting 1/1 .. +1 == cf>n+1' as in Fig. 3, we obtain the alge
braic relation among cf>n-1' cf>n' 1/1", cf>,,+1' 

(3.28) 

The "b equations" yield the same result. 

Equation (3.28) gives no information if k == k'; however, 
if k "" k' , we obtain the particular solution cf> .. +1, 

(3.29) 

as we must since the interaction is linear. 

For this linear case the observation that particular 
solutions cf>,,+1 exist which permit the Lamb diagrams 
to commute (Fig. 3) was made by an examination of the 
explicit solutions cf>n+1 and 1/1,,+1,(3. 25a) and (3.25b). For 
(nonlinear) F(·) satisfying F"(') == KF(·),we will give an 
indirect proof that the Lamb diagrams commute, and then 
use this fact to study interacting solutions. 

We close this section with the reminder that when 
y == 0 (i.e.,F == r) the R-B transformation given by (3.14) 
still applies. However, the dispersion relation is now 

ck2 + (01 + (3c)k == O. (3.30) 

4. ¢xy = F(¢) 

In this section we study the equation 

cf> xy == F{cf», (4.1) 

where F(·) is an arbitrary smooth function. Since we 
have already treated the case F(·) linear, we exclude 
linear F(·) from this section. More precisely, we assume 
d2 F( cf> )/ dcf>2 does not vanish identically in any open inter-
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FIG. 3. Commuting Lamb diagram corresponding to Fig. 2. 

val under conSideration. For cf> xy == F(cf», Eqs. (2. 8), 
which define the R-B transformations, become 

Q oP + ~3 E + F(~l) E == F(T), 
aT oh a~2 

(4.2a) 

P oQ + ~ ~ + F(~ ) ~ == F(T) 
aT 2 O~l 1 o~3 ' 

(4.2b) 

P == P(T, ~1' ~2)' Q == Q(T, ~l> ~3)' 

A. Progressive waves from the "vacuum" 

We begin our investigation of (4.2) by seeking solutions 
(Po,Qo) independent of (~1' ~2' ~3)' If F(·) has a zero cf>o' 
then (Po, Q 0) may be considered as transformations 
which generate from the equilibrium or "vacuum" solu
tion cf>0{~1 == cf>o' ~2 == ~3 == 0). Equations (4.2) show that 
(Po,Qo) satisfy 

dPo Qo- ==F{T), 
dT 

dQ o PO-==F{T). 
dT 

Equations (4. 3) imply 

(4.3a) 

(4.3b) 

(4.4) 

which,from (2.9),required that cf>1{= T) be a progressive 
wave of the form 

(4.5) 

Substitution of (4.4) into (4. 3) and integration yields 

PO{T) == 2ao[t(E + G{T»]l/2 (4.6a) 

Q o{r) == (2/ ao)[i{E + G(T» ]1/2, an == 1/ co' (4.6b) 

where E is a constant of integration and 

G{T) = j'F{T')dT'. (4.7) 

Equations (4.6) and (2.9) imply that the progressive 
wave cf>1 must satisfy 

cf>1 x == 2ao[i(E + G(cf>1»]l/2, , 
cf>l,y == (2/a o)[i(E + G{cf>1)))1/2. 

Thus cf> 1 is defined by the integral 

..!... /,l[2(E + G{T))]-1/2dT == X + coY + e, ao 
e constant of integration, 

(4.8a) 

(4.8b) 

(4.9) 

Equation (4.9) yields all progressive waves of cf> xy == 
F(cf» as may be easily verified by seeking solutions of 
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(4.1) of the form </> = </>(x + coy), Co;" O. If we trans
form to "space-time" variables (z, t) defined by 
z + s t = x, z - s t = y, s > 0 const, we see that the 
transformations (Po, Qo) generate all progressive 
waves traveling at constant speed v = [(1 - co)/(1 + co)]s. 
Thus any velocity v lying between the two characteristic 
velocities :i: s may be obtained by adjusting co> 0, 

_ s < (1 - Co)s = v < s, 
1 + Co 

Co E (0,00). (4.10) 

When F(<P) = sin<p, these progressive waves have been 
studied in some detaH4,10,13 Only the cases E ~ 1, 
Ivl < s are stable. IO WhenE = 1'</>1 represents a 
single "kink" or soliton [a solution which satisfies 
lim <P(~) = 0 modulo 21T and which increases by 21T as 

t-+-<X) 
~ ~ + ooJ. For E > 1, <Po represents an infinite wave 
train of equally spaced solitons traveling at constant 
velocity. For - 1 < E < 1, I v I < 1, </>1 is periodic about 
'IT. For -1 < E < 1, IV!>I, </>1 is periodic about O. It is 
important to realize that all of these progressive wave 
forms may be generated from the "vacuum" by the 
"vacuum" transformations (Po,Qo)' 

B. Existence of R-8 transformation implies F"(if» = KF(if» 
(K constant) 

In this section we prove that F(') must satisfy F" = 
KF if R-B transformations are to exist. We state this 
result in the form of a theorem. 

Thearem 1: Let F(T) be a strictly nonlinear analy
tic function of T. Define the class of R-B transforma
tions to be those solutions of (4. 2) which are analytic in 
each argument (T, h, ~2' ~3)' Further, restrict the trans
formations (P, Q) to depend upon at least one member of 
the set (~1' ~2' ~3)' If such (P, Q) exist, then F(·) must 
satisfy F" = KF, where K is some arbitrary, nonvanish
ing constant. 

This theorem shows that the class of R-B transforma
tions associated with </> x~ = F(') is quite restrictive. In 
fact, one may transform oetween such equations with 
F" = KF by transformations of the form <p ~ dIP + e,d 
and e complex constants, together with appropriate 
limits as e ~ :i: 00. This restrictive class of F is con
sistent with a relationship of the R-B transformations 
to the existence of an infinite number of conservation 
laws. This relationship is discussed elsewhere.34.35 
We remark that the assumptions of analyticity are more 
restrictive than necessary as may be seen by examining 
the following proof. We made these assumptions only 
for convenience of "book-keeping." The remainder of 
this section is devoted to the proof of the theorem. 

Throughout the proof of this theorem we use the 
symbol = to mean "identically equal to." We assume 
R-B transformations (P, Q) exist satisfying the condi
tions imposed in the hypotheSiS. Applying a2/a~~ to 
(4.2a) yields 

a2Q ap 
-. -=0. 
a~~ aT 

(4.11) 

P is not independent of T, for if it were, Eq. (4. 2a) 
would imply F'(T) = O. Therefore, a2Qlaq = 0, which 
upon integration yields 

(4.12) 

Similarly, the application of a2/aq to (4. 2b) implies 
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(4.13) 

Thus, the ~2 dependence of P and the ~3 dependence of Q 
are at most linear. Substituting (4.12) and (4.13) into 
(4.2) yields 

( qO apo + F(~1)P - F(T») + Iqo ap)~2 + (q apo + apo) ~3 
aT \ aT aT a~l 

+ (q ap + ~)~2~3 = 0, (4.14a) 
aT 3~1 

(4. 14b) 

Notice that all ~2 and ~3 dependence is explicitly 
shown in (4.14). Equating coefficients of like powers of 
(~2' ~3) yields the following eight equations which must 
be satisfied by the functions Po,qo,p,q: 

ap 
(4. 15a) q -=0 

o aT ' 
aq 

p -= O· oaT ' (4. 15b) 

ap ap 
(4. 16a) q-+-= 0, 

aT ah 
aq aq 

(4. 16b) p-+-= 0; 
aT a~1 

apo apo 
(4. 17a) q-+-= 0, 

aT a~1 

aq aq 
p_O +~= 0; (4. 17b) 

aT a~1 
and 

apo 
qo - + F(~l)P - F(T) = 0, 

aT 
(4.18a) 

3Qo 
(4 . .l8b) Po - + F(~l)q - F(T) = O. 

aT 

Notice that q 0 cannot be identically zero, for, if q 0 = 0, 
Eqs. (4.18) yieldp = F(T)fF(~1) and q = F(T)/F(~l)' But 
then (4.16a) implies F'(T) = F'(~l)' which is a contradic
tion since F(·) is not linear. Siqce q 0 is not identically 
zero, (4. 15a) demands 

ap 
-=0. 
aT 

Equation (4. 16a) then demands 

ap 
-=0. 
a~1 

(4.19) 

(4.20) 

Equations (4.19) and (4.20) together imply p is a 
constant, 

p = p, p const, 

qo;;EO. 

(4.2la) 

(4. 21b) 

Through an analogous argument, Eqs. (4. t'5b) , (4. 16b), 
and (4.18) yield 
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q =: ij, ij const, 

Po "" o. 
(4. 22a) 

(4. 22b) 

In Appendix A we establish that P ;of ij , P ;of 0, ij ;of 0, 
aPo/aT "" 0, aqo/aT "" 0, apO/a~l ;E. 0, aqO/a~l "" O. In 
view of these facts, we define the (nonsingular) trans
formation of the independent variables 

u == T - P~l or T = (qu- pv)/(ij - p), 

v == T - ijh, ~l = (u - v)/(ij - Pl. 

In terms of variables u and v, (4.17a, b) and the 
lemma of Appendix A imply 

Po = po(v), 

qo = iio(u). 

(4.23) 

(4. 24a) 

(4. 24b) 

Thus, the problem is reduced to the pair (4.18a, b), 
which may be written as 

iioPo =: F(T) - PF(~l)' 

Pollo == F(T) - i]F(~l)' 

where T and ~l are given in (4.23). 

(4. 25a) 

(4. 25b) 

Taking a/au of Eq. (4. 25a) and equating the result to 
the a/av of Eq. (4. 25b), we obtain the condition (q + p) 
(F'(T) - F'(~l) =: O. Since F(') is not linear,q = - p. In 
terms of this constant (ij == c), (4. 25a, b) become 

ii oP 0 =: F (u ~ v) + cF ( u ~ v) , 
- -, - F ~u + v) F(u - v) pq - ---c--o 0 - 2 2c ' 

u+v T=--, 
2 

u- V 
~l =-,-. 

2c 

(4. 26a). 

(4. 26b) 

Clearly (4. 26a, b) imply Po "" 0, iio "" O. Thus, we are 
permitted to solve (4. 26a) for iio' calculate iio' and multi
ply by Po to obtain 

p (v)i]'(u) = Po(v) [F'(U + v) + F'(U- v)]. (4.27) 
o 0 2P6(v) 2' 2c 

By Eq. (4. 26b) we obtain the condition 

p_o(V) rF'(~) + F'(U - V)] 
2po(v) L 2 2c 

==(F u: V) _ CF(U2~ V). (4.28) 

Taking a/au of (4.28) and eliminating Po/2po yields 

(F'(T)2 - (F'(~1)2 + F(~l)F"(~l) - F(T)F"(T) 

+ c[F(~l)F"(T) - (1/c2)F(T)F"(~1)] == O. (4.29) 

Finally, taking a2/aTa~1 of (4.29), we find 

F"'(T) _ 1 F"'(~l) 

F'(T) = c2 F'(~l) . 
(4.30) 

In Appendix B we establish that no solution (P, Q) 
exists for F(T) = r + 'YIT + 'Y2T2,'Y2 "" O. Therefore, 
c2 = 1 and F"'(T) = KF'(T), K"" O. Integrating this equa
tion for F"('), we see that for (P, Q) to exist, 
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(4.31) 

We demonstrate in Appendix C that Kl = O. Thus the 
theorem is established. 

C. R-8 transformations for F" = KF, K '* 0 

In this section we present the transformations (P, Q) 
where F(') satisfies F" = KF, K;of O. The formulas are 
displayed in Theorem 2. 

Thearem 2: Let F(T) = Ae VT + Be-vr , J.l2 = K"" 0, 
where the (complex) constants A and B satisfy IA 12 + 
1 BI2 > O. The most general R-B transformations satis
fying the restrictions of Theorem 1 are given by 

P(T, ~l> ~2) = ~2 + 2: F[i(T + ~l)]' 

Q(T, ~l' ~3) = - ~3 + } Sinh(f (7 - ~l))' 
and 

P(T, ~l> ~2) = - ~2 +} sinh (f (T - ~l)). 

Q(T, ~l' ~3) = ~3 + ~a F[i(T + ~l)]' 

where a is an arbitrary constant. 

(4. 32a) 

(4.3ib) 

(4. 33a) 

(4. 33b) 

To prove this theorem, it is sufficient to find solu
tions (Po,ijo) of (4.26) with c = ± 1,for then theR-B 
transf ormations (P, Q) are given by 

(4. 34a) 

Q(T, ~l' ~3) = c~3 + qO(T + C~l)' C = ± 1. (4. 34b) 

Select c = - 1. With F(T) = Ae VT + Be-vr , (4. 26) takes 
the form 

iio(u)po(v) = (e vw'2 - e-uu/2)(Aevv/2 - Be-vv/2), (4. 35a) 

P6(v)ii o(u) = (evul2 + e-vu/2)(Aevv/2 + Be-vv/2), (4. 35b) 

which integrate to yield 

lJo(u)po(v) == ~(evul2 - e-vu/2)(AeV l/2 + Be-vv/2 ) + K1 , 

Kl const. (4.36) 

From (4. 35a) and (4.36), Po/po is independent of u only 
for Kl = O. Then we can write 

- 2a 1 ] Po (v) = V- F [2-(T + ~l) , (4. 37a) 

lJo(u) = } sinh (~ (T - ~l))' a"" 0, an arbitrary constant. 
(4. 37b) 

Thus, (4. 37) establishes (4.32). The proof of (4.33) 
proceeds analogously with c = + 1. This completes the 
proof of Theorem 2. 

Notice that, when viewed through the partial differen
tial equations (2.9) for CPn' (4. 32) differs from (4.33) 
only by interchange of x and y. Therefore, we restrict 
our attention to (4. 32). 

Also notice that for A"" 0, B "" 0, the function F(·) has 
zero(s) TO defined by 

2 vr I B\ i(1r+6B -6A ) F(TO) = 0 =- e 0 = A e , (4.38) 

where e A and e B are the phases of A and B, respectively. 
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Thus cf> = TO is an equilibrium solution of cf> xy = F (cf», 
and [P(T, TO' 0), Q (1', l' 0,0)] represent R -B transforma
tions from this equilibrium solution. All such transfor
mations are given by (Po, Q 0), (4. 16). In particular, 
selecting the parameter E = ..J- 4ABII) in (Po, Q 0) to be 
unity shows that [P(T,TO' 0), Q(T, TO' 0)] is a special case 
of (Po, Qo)' This establishes the claim that the vacuum 
transformations (Po, Qo) are more versatile than the 
R-B transformations (P, Q) when transforming from the 
vacuum solution. 

We now specialize to the case F(') = sin (. ). When 
transforming from the vacuum, [P(T, 0,0), Q(T, 0, 0)] 
generates a Single "kink" traveling at "speed" c = 1ja2 • 

Thus, we see that R-B transformations (4.32) generate 
"Single kink" or soliton solutions. When used to trans
form an arbitrary solution cf>, these transformations 
"add" an additional soliton to the solUtion. In prinCiple, 
R-B transformations may be used to build solutions 
from baSic soliton components. This property of R-B 
transformations is most intriguing (see Sec. 4F). 

D. Lamb diagrams 

In Sec. 3C we took the R-B transformations (3.14) for 
the linear problem, inserted them into the differential 
equation (2.9) for cf>,., and integrated to find cf> ... In this 
nonlinear case we do not integrate explicitly the 
analogous differential equations for cf> ... Nevertheless, 
by using "Lamb diagrams," we obtain an explicit solu
tion cf>n+l in terms of a certain triple of solutions. 

From Eqs. (2. 9) and (4.32), we obtain 

cf> .. ,x = cf>n-l,x + 2~ F[!(cf>,. + cf>,.-I)]' 

cf> .. ,y = - cf>n-l,y + -; sinh (i (cf>. - cf>n-l»). 

(4. 39a) 

~ =1(;"0. 

(4. 39b) 

Schematically,R-B transformations (4.39) may be 
represented by the Lamb diagram shown in Fig. 4 where 
(a,b) denotes the constant a of (4.39) and another con-

~a'b~ 
FIG. 4. Lamb diagram representing (4.39). 

~a',b;~ 
~o,b' 

0: ~ J.-.....C\ . ~ 
~a.b~~ 

FIG. 5. Lamb diagram representing (4.40), (4. 41), (4. 42) and (4.43): 

FIG. 6. Commutmg Lamb diagram corresponding to Fig. 5. 
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stant of integration b which arises upon integration of 
(4.39). 

Consider the Lamb diagram shown in Fig. 5. This 
diagram represents the follOWing four pairs of equations 
and integration constants: 

cf>,.,x = cf>n-l,x + 2: F[!(cf>n + cf>,.-I)]' (4.40a) 

cf>,.,y =- cf>n-l,y +; sinh(~(cf>n - cf>,.-I»)' (4.40b) 

integration constant b 1; 

2a' 1 
cf>n+l,x = cf>,.,x + ""iJFb-(cf>n+l + cf>n)]' (4.41a) 

cf>n+l,y = - cf>n,y + :' sinh(~ (cf>n+l - cf>n»), (4.41b) 

integration constant bi; 

2a' 1 
1¥n,x = cf>n-l,x + ""iJF[z(1/In + cf>,,-I)]' (4. 42a) 

1¥",y =- cf>n-l,y + ;, sinh(i(1/In - cf>n-l»)' (4. 42b) 

integration constant b2 ; 

1/I,.+I,x = 1/1", x + 2: F[!(1/In+l + 1/In)], (4. 43a) 

1/I,,+I,y =1/I",y +; sinh(i(1/I,.+1-1/In)), (4. 43b) 

integration constant b2. 

We now show that there exist solutions 1/In+1 and cf>n+l 
which are equal, Le., such that ·Fig. 6 is valid. We have 
the following theorem. 

Theorem 3: Consider an arbitrary solution cf>,. -1 of 
Eq. (4.1) with F(T) = Ae UT + Be-UT , I);" 0, IA 12 + 
IBI2 > 0. For any choice of constants a,a',b1 ,b2 ,de

fine cf>n and 1/1" by R-B transformations (4.40) and (4.42), 
respectively. Then there exist solutions cf>"+1 fas de
fined by (4.41)] and 1/1,,+1 [as defined by (4.43) , which 
are equal, If;n+l = cf>,.+I' 

To prove this theorem, we define a function cf> in 
terms of (cf> n' 1/1,., cf> n -1) and show this function cf> satisfies 
both (4.41) and (4.43). Equations (4.40) and (4.42) yield 

cf>n+l,x = cf>,.-I,x + 2~' F[ !(cf>,.+1 + cf>,.)] 

+ 21)a F[!(cf>,. + cf>n-l)]' (4. 44a) 

(4. 44b) 

while (4.42) and (4.43) yield 

1/1"+1, x = cf>n-l,x + :a F[!(1/In+l + 1/1,.)] 
2a' 1 ] + ""iJF[z(1/In + cf>,.-I) , (4. 45a) 

(4. 45b) 
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Clearly,if 4> .. +1 = W .. +1 = 4>, Eqs. (4.44) and (4.45) 
yield the following two consistency relations: 

a'F[i(4) + 4> .. )] + aF[-H4>n + 4>n-1)] = aF[i(4) + W .. )] 

+ a'F[i(w" + 4> .. -1)]' (4. 46a) 

a sinh(i(4> - 4>,,») - a' Sinh(f(4>n - 4>n-1») 

= a' sinh(f(4> - W,,») - a sinh(i" (W,,- 4>"-1»). 

(4. 46b) 
Using the definition of F(') and standard hyperbolic 

identities, we rewrite these consistency conditions as 

[a sinhE/+ - a' sinhE/_][Ae L + Be-L) = 0, 

[a sinh9+ - a' sinh8_] cosM_ = 0, 

where 

Thus, the consistency conditions are satisfied if 

a sinh8+ = a' sinh6_. 

(4. 47a) 

(4.47b) 

(4.48) 

We now use Eq. (4. 48) to define implicitly a function 
4> in terms of (1/.;".4>", CP,,-l)' Taking ajax of (4.48), we 
obtain 

[a cosM+ - a' cosh8_]cp, x 

= 4>", x [a' cosM _ + a cosM+ J 
+ cp,,-1,A- a' cosh8_ + a cosM+] 

+ I/I",x[- a' cosh6_ - a cosh6.J. (4.49) 

USing (4. 40a) twice and (4. 42a) once, we obtain from 
(4.49) 

[a cosh8+ - a' cosh8_]cp,x = {a cosM+ - a'coshe_} 

where E is given by 

E = - a,a cosheJF[i(wn + CP,,-1)] - F[i(4) + cp,,]} 
+ aa' cosh8_ {2F[i(4)" + 4>n-1)] - F[i(l/.;n + CP,,-l)] 
- F[i(cp + cp,,)]}. (4.51) 

E as defined by (4.51) vanishes identically as may be 
seen by using (4.48) once together with standard hyper
bolic identities. Thus cp, as defined by (4.48), satisfies 
(4. 41a). Similar arguments establish that it also satis
fies (4. 41b) and (4. 43a, b). This completes the proof of 
Theorem 3. 

Equation (4.48) defining 4> may be explicitly solved 
for cpo The result of this computation is summarized in 
the following corollary. 

Corollary: Under the hypotheSiS of Theorem 3, 
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cp =; tanh-1 [(::::) tanh (1I(4>n;W n »)J+ 4> .. -1' 

(4.52) 
Theorem (3) is particularly useful when F(') has a 

zero. For example, Lamb13 and Scott4 use a special 
case of this theorem to investigate interacting progres
sive waves (solitons) of the Sine-Gordon equation. 
Selecting 4>,,-1 = 0, the equilibrium solution, they use 
Blicklund transformations to generate two solitons, 

4>1 =4 tan- I [exp(ax + ,ja + b1 )], 

1/.;1 == 4 tan- I [exp(a'x + ,ja' + b 2 )]. 
(4.53) 

An interaction of these two solitons is then described 
by 4> of (4.52) as 

[(a + a') 
4> =4 ~an-I a _ a' 

( 
exp(ax + ,ja + b l ) - exp(a'x + ,ja' + ba) )] 

x 1 + exp(ax + ,ja + b1 ) exp(a'x + ,la' + ba) . 
(4. 54) 

This interaction was obtained by Seeger, Donth, and 
Kochendorfer 14 in 1953, and later by Perring and 
Skyrme.3 The latter authors initially observed the 
effect numerically. It can represent either a "soliton
soliton" or a "soliton-antisoliton" interaction depending 
upon the signs of a and a'. Lamb13 extends his analysis 
to study more complicated interaction processes by 
using a sequence of "interlocking" Lamb diagrams. 

It is of interest to use these Blicklund techniques to 
study interactions governed by more general F(·) than 
sin(·). F(-) = exp(') and F(') == Sinh(·) are particularly 
interesting. 

E. Vacuum transformation (Po, 00) and lamb diagrams 

It is of interest to determine whether commuting 
Lamb diagrams similar to Figs. 3 and 6 can include the 
vacuum transformation (Po,Qo) defined in (4.6). In this 
section we show that such an assumption is not valid. 
The vacuum transformations (4.6) do not commute with 
the general transformations (4.32). To see this, con
Sider the special case F = sincp, cp real. Then for 4>0 = 0 
a commuting diagram similar to Fig. 6 would represent 
the equations 

(4. 55a) 

(4. 55b) 

(4. 56a) 

(4. 56b) 

2 (<I> - 4> ) CPy = a& sin 2 1 - 4>1,y, (4. 57a) 

(4. 57b) 

If the diagram is Valid, the value of 4> obtained by 
equating the right-hand sides of (4. 56a) and (4. 56b) must 
satisfy 

cp xy = sincp. (4.58) 
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This equating yields 

M sin! + N cos! ~ R, (4.59) 
2 2 

where 

CPl 1/11 M == 2ab cos - - 2ao cos -, (4.60a) 
2 2 

N == 2ab sin CP1 - 2ao cos 1/11 
, (4.60b) 

2 2 

R == ab./2(E - cosl/l1 ) - ao./2(E - cosCPl)' (4. 60c) 

Equation (4.59) is easily solved to yield 

cP ? 
sin - == (MR ± N./ M2 + (1 - R2)N2)/(M2 + N2). (4.61) 

2 

However, (4. 61) is useful only if the value of cP it 
determines does indeed satisfy (4.58). Let us suppose 
CP1,1/I l « 1 and calculate (4.61) to first order. Then 
M R:l 2(ab - ao),N R:l (abCPl - a 01/1 1 ), and R R:l (ab - ao) 
..j2(E - 1); and (4.61) becomes 

cP 1 ..)6 - 2E 
sin - R:l ..j"2(E -1) ± (abCPl - a01/l1) • (4.62) 

2 4(ab - ao) 

For E == 1 this reduces to 

(4.63) 

and for ab » ao' cP R:l CPl as we expect. However, for 
E ;o!< 1 and CPl == 1/1 1 :;: 0, (4. 62) says 

sin! ~ ..)i(E - 1) ;>' ° 
2 

which is manifestly incorrect. 

(4. 64) 

Thus a commuting Lamb diagram cannot be used to 
find the R-B transformation for a periodic solution; 
direct integration of the general transformations (4.32) 
must be employed.t 4 

F. Comments and speculation 

One of the most interesting features of the R-B trans
formations associated with cP x, :::: F(CP) is the close 
connection between the transformations and the stable 
progressive waves (solitons). In Sec. 4D a means for 
displaying interactions between solitons was investigat
ed. Beyond leading to these explicit interactions, the 
R-B transformations offer a constructive means to add 
an additional soliton to a given solution with arbitrarily 
chosen pOSition and velocity. In principle, one should be 
able to build a rather large class of solutions by inte
gration of a sequence of first order partial differential 
equations of type (2.9). Currently we are investigating 
the size and characterization of this class of solutions. 
In particular, is it in any sense complete? 

Another intriguing feature is the necessary and suffi
cient condition F" :::: KF. We have noted that this condi
tion is sufficient to insure the existence of an infinite 
number of polynomial conservation laws for cP xy == 
F(CP).32 The relationship betweenR-B transformations 
and the existence of an infinite number of conservation 
laws will be discussed in a second paper. There we 
consider R-B transformations for the Burgers and 
Korteweg-deVries equation as well as these nonlinear 
Klein-Gordon equations. 

J. Math. Phys .• Vol. 14. No. 12, December 1973 

Finally, we note that the work of Loewner21 indicates 
a possible connection between Backlund transformations 
and the inverse method as described by Lax. 16 The 
Korteweg-deVries equation,18 and, most recently, the 
sine-Gordon equation33 have been solved by this method. 

5. THE EQUATION ¢xy + Cl' 9x + i3¢y = F(1)) 

In this last section we state a result about the equa
tion cP xy + OIcp x + f3CP y :::: F( CP), 01, f3 const, F(·) strictly 
nonlinear; namely, no R-B transformation exists unless 
01 == f3 == 0. 

Theorem 4: Let F( T) be a strictly nonlinear, analy
tic function of T. Define the class of R - B transformations 
to be those solutions /P(T, ~1' ~2)' Q(T, ~1' ~3)] of (2.8) 
which are analytic in each argument (T, ~1' ~2' ~3)' 
Further restrict the transformations (P, Q) to depend 
upon at least one member of the set (h, ~2' ~3)' If 
1011 2 + 1 f312 > 0, no such transformations (P, Q) exist. 

This theorem may be established by a proof very 
similar to the proof of Theorem I. Since the proof is 
quite lengthy, we omit it. We have not removed the 
exceptional case F(·) a fifth order polynomial through 
calculations analogous to Appendix B. 

Note added in proof: Our current understanding of the 
relationships between Backlund transformations, the 
inverse method, and conservation laws is presented in 
Refs. 34 and 35. Additional recent references on the 
Backlund transformation are in Ref. 36. 
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APPENDIX A 

Consider Eqs . (4.17a, b) and (4. 18a, b) with p == p 
(const) and q == II (const). In this appendix we establish 
the following lemma: 

Lemma Al: Under the hypothesis of Theorem 1, 
P;>' ii, apo/aT ~ 0, aqo/aT ~ 0, p;>, 0, II ;>' 0, apO/a~1 ~ 0, 
aqO/al;,1 ~ 0. 

To prove this lemma, we begin with the assumption 
that p == q in (4.17) and (4.18). Under this assumption 
we subtract (4.18b) from (4.18a) and obtain 

apo aqo 
qo- ==Po-· (AI) 

aT aT 
Neither qo or Po vanishes identically. If aqo/aT "" 

apojaT == 0, then (4.18) yields a contradiction. Therefore, 
(AI) implies 

(A2) 

Inserting (A2) into (4.17) and using (4.22), we obtain 

~A(l;, )""0 dh 1 , 

which implies A :::: A, A const. Thus, we are left with 
two equations which must be satisfied. 

(A3) 
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(A4a) 

oPo oPo 
li- +-= O. 

or o~l 
(A4b) 

H lJ = O,then oPO/a~l = aqO/il~l = O,and the solution 
(P, Q) is independent of (~1' ~2' ~3)' This is contradictory, 
and li "" O. A similar contradiction follows if ilPO/o~l = O. 
Thus, (A4b) implies Po = po(r -li~l)' Defining new 
variables r - ij~l = u, r + ij~l = v in Eq. (A4a) and taking 
o/ilv of this equation yields the contradiction F'(~l) = 
F'(r). Thus, (A4a, b) have no solution and ij "" p. 

Next we assume op%r = O. Equation (4. lSa) then 
implies F(~l)P = F(r), which cannot be. Thus op%r ~ 0; 
similarly, oq%r ~ O. 

Assume now p = O. Equation (4. 17b) then implies 
oqO/a~l = 0, qo = i'io(r). Since ij "" p, lj "" O. H Po is 
independent of ~1' Eq. (4.1Sb) is contradictory. There
fore, (4.17a) implies Po = po(r - iJ~l)' This, together 
with (4. lSa) yields 

i'io(r)Pb(r -li~l) 

= F(r) =:> po(r - lj~l) = K1 (r - li~l) + K2, (A5) 

K1 and K2 const. 

Inserting (A5) back into (4.18a) implies K1 "" 0 and 
i'io(r) = F(r)/K1 . Inserting these expressions for lio and 
Po into (4.1Sb) yields the contradiction F'(r) = F'(~l)' 
Thus P "" 0; similarly, lj "" O. 

Finally assume oPO/a~1 = O. Then Eq. (4. 17a) im
plies op%r = O. This fact, together with (4.1Sa) yields 
the contradiction F(~l)P = F(r). Thus oPo/ar ~ 0; 
similarly, ilqo/ar ~ o. This completes the proof of 
Lemma AI. 

APPENDIX B 

In this appendix we prove the following lemma: 

Lemma Bl: Consider F(r) = r + 'Y1r + 'Y2r2, 1'2"" O. 
Under the hypothesis of Theorem 1, no R - B transforma
tion (P,Q) exists. 

We begin the proof of this lemma by noticing that 
condition (4.29) yields 

2'Y~(1 - 1/ e)r2 - 2'Y~(1 - e)~~ + 21'11'2(1 - 1/ e)r 

- 21'11'2(1 - e)~l + 2'Y2r(e - l/e) = O. (B1) 

Since 1'2 "" 0, (B1) implies e = + 1. With e = + 1 and 
this quadratic F(·), (4. 26a, b) become 

i'io(u)Pb(v) = ('Y2/2)(u2 + v2 ) + 'Y1u + 2r, 

Po(v)lib(u) = Y2uV + ')'1 V. 

(B2a) 

(B2b) 

Solving (B2b) for Po(v) and calculating (il/av)po(v) 
yields 

(B3) 

But lj o(u)Po(v) is also given by (B2a) which, together 
with (B3), yields 

qo(u) (Y2/ 2)(u2 + V2) + 'Y1u + 2r 
(B4) 

qo(u) ')'2u + ')'1 
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Equation (B4) contradicts the assumption '>'2 "" O. The 
proof is complete. 

APPENDIX C 

In this appendix we establish that the constant K1 in 
(4.31) is not equal to zero. 

Integrating (4.31) once yields 

!<F'(r»2 = ~KF2(r) + K1F(r) + K2' K2 const. (C1) 

Inserting (4.31) and (C1) into (4.29), we obtain 

0= [F(r) - F(~l)](l - c), (C2) 

which implies e = + 1. 

Finally, if F(·) satisfies (4. 31), it is of the form 

F(r) =Ae VT + Be-VT - KdK, where 112 = K 

and \A\2 + \B\2 > o. (C3) 

Inserting (C3) into (4.26) and using the fact e = + 1, 
we obtain 

qo(u)Po(v) 

= 2 COSh(IIV/2)(Ae(v/2)u + Be-(v/2)u) - 2KdK, (C4a) 

Po(v)i'ib(u) = 2 sinh(lIv/2)(Ae(v/2)u - Be-(v/2)u), (C4b) 

which integrate to yield 

qo(u)Po(v) = (4/11) sinh(lIv/2)(Ae(v/2)u + Be-(1I/2)u) 

2K1 
- 7v + K3(U), (C5a) 

qo(u)po(v) = (4/v) sinh(lIv/2)(Ae(v/2)u + Be-(v/2)u) 

+ K4(V), (C5b) 

where "constants" of integration clearly must be related 
by K4 = K3 - (2KdK)v, K3 const. Equation (C4b) implies 
po(O) = 0, which together with (C5b) implies K3 = O. 
Solving (C4a) for qo(u), mUltiplying by Po(v), and equating 
to (C5a) yields 

[Po(v)/Pb(0)](Ae(v/2)u + Be-(v/2)u - KdK) 

= (2/v) sinh(vv/2)(Ae(II/2)u + Be-(1I/2)u) - (2Kd K)v. 

(C6) 

Calculating a/au of (C6), we find 

po(v)/PO(O) = (2/11) sinh(lIv/2), (C7) 

which, when inserted back into (C5) yields 

sinh(lIv/2)(Ae(v/2)u + Be-(v/2)u - Kd K) 

= sinh(lIv/2)(Ae(II/2)u + Be-(v/2)u) - (K1/V)V. (CS) 

Equation (CS) contradicts the assumption K1 "" O. 
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Within the framework of the first-order smoothing approximation and the long-time. Markovian 
approximation. kinetic equations are derived for the stochastic Wigner equation (the exact equation 
of evolution of the phase-space Wigner distribution function) and the stochastic Liouville equation 
(correspondence limit approximation) associated with the quantized motion of a particle described by 
a stochastic Schrodinger equation. In the limit of weak fluctuations and long times, the transport 
equation for the average probability density of the particle in momentum space which was reported 
recently by Papanicolaou is recovered. Also. on the basis of the Novikov functional formalism, it is 
established that several of the approximate kinetic equations derived in this paper are identical to the 
exact statistical equations in the special case that the potential field is a II-correlated (in time). 
homogeneous. wide-sense stationary. Gaussian process. 

1. INTRODUCTION 

Consider a particle whose wave function evolves accord
ing to the stochastic SchrOdinger equation: 

i1l~l/I(x,t;OI) =Ho i!,_ mi...,t;OI\ l/I(!,t;OI), 
at - p\..: a~ J t 2: 0, 

(! E R3, (1. 1a) 

(1. 1b) 

Here, '\72 denotes the Laplacian in R 3 and Hop is a self
adjoint, stochastic operator depending on a parameter 
01 E <1, <1 being a probability measure space. In addition, 
I/I(!, t; (1), the complex random wave function, is an ele
ment of an infinitely dimensional vector space JC, Ii is 
Planck's constant divided by 2TT, m is the mass of the 
particle, and V is the potential field which is assumed to 
be a real, space- and time-dependent random function. 
Equation (1. 1) is rendered closed by specifying Cauchy 
initial data, viz., l/I(~, 0; (1) = t¥o(~; (1). 

It is our intent in this paper to derive kinetic or trans
port equations for the average phase-space "probability" 
density of a quantized particle whose motion is des
cribed by the stochastic Schrodinger Eq. (1. 1). Know
ledge of this quantity enables one to obtain such physi
cally important averaged entities as the probability 
density in configuration and momentum space, the pro
bability current density, the angular momentum, as well 
as the centroid and width of a wave packet. In this re
spect, we extend the work of previous workers 1 who 
have considered the stochastic motion of a particle in 
the classical or correspondence limit (Ii -7 0) apprOXi
mation, either abstractly or in connection with physical 
applications, such as acceleration of cosmic rays, heat
ing of thermonuclear plasma, turbulence of interstellar 
plasma, etc. The random quantum-mechanical harmonic 
oscillator problem has also been treated by several 
workers.2 

In Sec. 2, stochastic equations describing the evolution 
of the phase-space Wigner distribution function associ
ated with (1. 1) are given in various useful representa
tions. In order for the discussion to be self-contained, 
a brief exposition is provided in Sec. 3 of the first-
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order smoothing approximation and the long-time, 
Markovian approximation which constitute the basis for 
the statistical analysis in this paper. In Sec. 4, a kinetic 
equation corresponding to the stochastic Wigner equa
tion is derived within the range of applicability of the 
first-order smoothing approximation. In the long-time 
Markovian approximation, we obtain a novel transport 
equation for the ensemble-averaged Wigner distribution 
function which has the classical form of a radiation 
transport equation, or a Boltzmann equation for waves 
(quasiparticles in phase space). Integration of this equa
tion over (!-space gives a transport equation for the 
average probability density of the particle in momentum 
space, which coincides with the result reported recently 
by Papanicolaou.3 Four special cases of the kinetic 
equation are derived in Sec. 5 and relationships with 
radiation transport equations are discussed. In Sec. 6 
we consider the kinetic theory of the stochastic Liou
ville equation and derive Fokker-Planck equations 
which are of importance in practical applications of the 
theory. Finally, in the Appendix it is shown by means of 
the Novikov functional formalism (cf. Ref. 4) that for a 
G-correlated (in time), homogeneous, wide-sense station
ary, Gaussian process, one can derive exact transport 
equations for both the stochastic Wigner equation and 
the stochastic Liouville equation. It is interesting to 
note that these exact kinetic equations are identical with 
the corresponding ones derived in Secs. 5 and 6 on the 
basis of the first-order smoothing approximation, with
out, however, the restriction that the random process be 
Gaussian. 

2. THE WIGNER DISTRIBUTION FUNCTION 

In the following we shall be concerned with the time 
evolution of a" measurable" quantity. In this respect, 
the wave function t¥ (!, t; (1) has little phYSical meaning. 
We may, however, consider the total wave energy and the 
total wave action (probability) which are given in terms 
of the wave function t¥ and the operator Hop by the 
integrals 

E = I
R

3 t¥*Hopl/ld~, 

A = IR3l/1*t¥~. 

(2.1) 

(2.2) 

The total wave energy is not conserved since the poten-
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tial is taken to be time-dependent. On the other hand, 
the total wave action is conserved by virtue of the self
adjointness of Hop. The integrands in (2.1) and (2.2) are 
respectively the space wave energy density function and 
the space wave action density function (probability den
sity function in configuration space). 

The equal-time, two-point density function for a pure 
state is introduced next as follows in terms of the wave 
function: 

P(,h'-!l' t; a)::;:: l/I*(-!2' t; a)l/I(!l, tj a). (2.3) 

It obeys the von Neumann equation 

iii :t P(-!2'-!1' t; a) 

::;:: (- li2 \7; + li2 \7] + V(-!l' t; a) - V(~2' tj a~ 
2m -12m -2 'J 

(2.4) 

The phase-space analog of the density function is pro
vided by the Wigner distribution function which is de
fined as follows: 5 

f(x,p,tja)::;:: (21rlit3f3dyeip.~/1I pC! + h,~ - h,t;a). 
- - R - - - (2.5) 

This quantity is real, but not necessarily positive every
where. The total wave energy and wave action can be 
written in terms of the Wigner distribution function as 
follows: 

E::;:: fR3dJS.iR3dPH(JS.,P, t; a)f(z,p, tj a), 

A::;:: ~d~fR3dEf(z.,p,t;a). 

(2.6a) 

(2.6b) 

Here,H(~,p,t; a) is the Weyl transform of the operator 

Hop and is given explicitly as 

H(;z.,p,t;a) =-21 p2+ V(!,t;a), p::;:: Ipl. (2.7) 
- m 

Examining (2.6) reveals thatH(z.,p,t;a)f{JS.,p,tja) can 
be interpreted as the phase-space energy density. Its 
integral over p-space provides the space energy denSity. 
Similarly,f{JS.,-P, tj a) can be thought of as the phase
space"probahllity" denSity. Its integral over p-space 
is the correct probability density in configuration space. 
Also, its integral over Z.-space is the correct probability 
density in momentum space. Finally, the integral of 
(p/m)f(z.,p, t; a) over p-space is recognized as the con
vEmtionaCexpression for the probability current density 
in configuration space. 

Using the definition of f{JS.,P, t; a) given in (2.5) in con
junction with the von Neumann equation (2.4), it is found 
that the Wigner distribution function evolves according 
to the equation 

!....f(x,P, t; a) = £f(x,P, t; a), (2.8a) 
at - - - -

£f(z.,P, t; a) ::;:: _1 p .!.... f(-!, p, t; a) + 6f(;z.,p, t; a). (2.8b) 
- m- a~ -

On the basis of the work of Wigner (cf. Ref. 5), Groene
wold,6 Moyal,7 Irving and Zwanzig,8 and the recent 
findings of Leaf,9 the following representations of the 
potential-dependent term on the right-hand side of 
(2.8b) are possible: 
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(i) 

(ii) 

6f(~,p,t;a)::;:: J;.3dP'K(~,P - p',tja)f(:I£,p',tja), 

K(z.,p,t;a)::;:: (iJi)-1(21flit3J~dleip'YI1i 
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x [V(! - tl, t; a) - V(! + tl, tj an; 

61(!,p, t; a) = (ili)-1(21f1i)-3 f~dleip.y/1l 

(2.9a) 

x p(~ + i,Y,~ - i,Y,t;a) 

x [V(! - b, t; a) - V(! + .. b, t; a)1, (2.9b) 

(iii) el(x,p,t;a)-::;:: vex,t;a)! Si:(!!(a. a ))f(-!,p,t;a). 
- - - Ii 2 ax ap -

- - (2.9c) 
These different forms will prove useful in our sub
sequent work. We shall refer to the exact equation of 
evolution of f(!,P, t; a) [cf. Eq. (2.8)], with ef(~,p, t; a) 
given by any of the representations (2.9), as th-e stoch
astic Wigner equation. 

It is seen from (2.9c) that in the correspondence limit 
(Ii ~ 0), 

e.f(x,p, t,· a) ::;:: !.... Vex, t,' a)'~ l(x,P, ti a) + O(Ji2). (2.10) 
'J - - a! - ap --

In the framework of this approximation, we shall refer to 
(2.8) as the stochastic Liouville equation satisfied by the 
Wigner distribution function. 

3. GENERAL EQUATIONS FOR THE MEAN WIGNER 
DISTRIBUTION FUNCTION 

We shall consider in this section a statistical analysis 
of the abstract equation (2.8). 

The Wigner distribution function and the operator £ are 
separated into mean and fluctuating parts: 

f(z.,p, ti a) = 8fj(z.,p, t; an + 6f(;z.,p, t; a), 

£ = 8{£} + 6£. 

(3.la) 

(3.1b) 

Using only the first-order smoothing approximation (cf., 
e.g., Refs. 10, 11, 12) one obtains a kinetic equation for 
the ensemble average of the Wigner distribution function: 

(:t - 8{£}) 8fj(~,P, ti an 
= fot dr8{6£(t) exp[ r8{£}] 6£(t - r)}8fj(z.,p,t - r; a)}. (3.2) 

In deriving (3. 2) it has been assumed that the fluctuating 
part of the initial Wigner distribution function is zero 
and that 8{£} does not depend on time. By analogy to a 
similar equation in quantum electrodynamics, (3.2) is 
called the Dyson-Schwinger equation with 

fotdr8{6£(t)exp[r8{£}]6£(t-r)}8{'} the mass operator. 

This kinetic equation is uniformly valid in time, and 
applies for a potential field with inhomogeneous deter
ministic background. The right-hand side of (3.2) con
tains generalized operators (nonlocal, with memory) in 
phase-space. 
By imposing additional restrictions, various levels of 
Simplification may be obtained. The long-time, Marko
vian approximation (cf., e.g., Refs. 13, 14) yields the 
Simpler equation 

( !.... - 8{£}\ 8fj{JS.,P, t; a)} 
at iJ -

::;:: [to dr8{6£(t) exp[r8{£}]6£(t -'r)~ 8fj{JS.,p. t; a)}. 
o 1 (3.3) 
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The boldface square brackets on the right-hand side 
signify that 8{j(x,P, t; a)} lies outside the influence of 
the operator exp(i"8{£}]. 

Having established an expression for the mean Wigner 
distribution function by solving either of the above 
kinetic equations and assuming that the total action 
(probability) is normalized to unity, the following physi
cally meaningful averaged quantities can be determined 
by straightforward integration: (i) probability density in 
configuration space: 8{p(~,~, t; an = f dP8{j(~,p, t; a)}; 
(ii) probability density in momentum space: 
8{p(p,p, t; a)} = f d~8{j(~,p, t; a)}, where p(P,P, t; a) is 
the momentum representatIon of the density Junction; 
(iii) probability current density in configuration space: 
8{l} = f dp(p/m)8{j(x,p, t; a)}; (iv) centroid of a wave 
packet: ~ c:: } d~ f dP; 8 {f(:&., p, t; a)}; (v) spread of a wave 
packet: (1/2)a2 = j'd! f dP(~ ~ !c)28{j(~,P, t; a)}; (vi) 
angp.lar momentum about a point~: 8{&} 
= J d~f dP[(~ -!!) x P]8{j(~,p, t; an. 
4. KINETIC THEORY FOR THE STOCHASTIC 
WIGNER EQUATION 

We shall specialize here the results of the previous 
section to the stochastic Wigner equation (2.8). It is 
convenient to use for this purpose the representation 
(2. 9a) for (Jj(~,P, t; a). 

On the basis of the first-order smoothing approximation, 
one finds, corresponding to (3.2), the kinetic equation 

(4.1a) 

(4.1b) 

In writing down (4.1) we have resorted to the simplifying 
assumption that the deterministic background potential 
field is independent of the space and time coordinates. 
By virtue of (2. 9a), l5K, the fluctuating part of K, is re
lated to the fluctuating part of the potential field. For 
the sake of simplicity, the latter is taken to be spatially 
homogeneous and wide-sense stationary, viz., 

The correlation function is even in both y and T. The 
calculations to follow are simplified if we introduce the 
space-time Fourier transforms 

l5 Vex t· a) = j dpj duei(p.,,-ut)/fl l5 V(P U' a) (4.3a) -' , R3 _ Rl - -' , , 

r(l', T) = fR3dpfRlduei(PTUT)/fi r(p,u). (4.3b) 

Because l5 V is a stationary random process, l5 V must be 
regarded as a generalized function. It follows that the 
Fourier-space analog of (4.2) may be written as 

8 {l5 V(P , u)l5V(P', u')} = l5(P + P')l5(u + u')r(p, u). (4.4) 

We note that r is real, nonnegative, and even in both 
arguments. 

The operator e may now be evaluated by a straight
forward calculation. We obtain 

68{j(:z.,P, t; an = ~ 13 dp' t dTQ (P,P', T) 
- 1i2 'R - 0 - -
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x [8~~ -~ (~+ P'),P',t - T;a)} 

- 8{j~ - :n (P + P'),P, t - T; a)}] , (4.5a) 

(4.5b) 

Introducing (4.5) into (4. la) yields the phase-space 
kinetic equation for the mean Wigner distribution func
tion within the limits of the first-order smoothing 
approximation. This kinetic equation is uniformly valid 
in time, and no assumptions have been made concerning 
the scale lengths of the potential fluctuations. The main 
assumption in the first-order smoothing approximation 
is that the potential fluctuations be sufficiently small. 

In the long-time Markovian apprOximation, the kinetic 
equation simplifies considerably. When the limiting pro
cess proceeding from (3.2) to (3.3) is applied to Eq. 
(4. 5a), we obtain the kinetic equation: 

(~ + ! p,~) 8{j(~,p, t; a)} = j 3 dP'W(P,P') at m- ax - R - --

x [8{f(~,p', t; an - 8{j(~,P, t; a)}], (4.6) 

where the transition probability W is given by 

W(P,P') = 21T rip _ P',£ _ p'2). 
- - Ii \"" - 2m 2m 

(4.7) 

Equation (4.6) has the form of a radiation transport 
equation, or a Boltzmann equation for waves (quasi
particles in phase space). As expected, the expression 
for the transition probability, Eq. (4.7), has the form 
given by the "golden rule" of quantum perturbation 
theory.15 From what was said above about r, it follows 
that W is real, nonnegative, and W(P,P') = W(P',P). The 
latter relation (principle of detailea balance) implies 
conservation of probability: fR3d~ fR3dP8{f(:z.,p, t; a)} = 
const. One must bear in mind, however, that the Wigner 
distribution functionj, as well as 8{f}, is not in general 
nonnegative so that it cannot be regarded as a probability 
density in the usual sense. 

We believe that this kinetic equation, as well as the 
method used to derive it is essentially new. It is the 
main result of this article. Unlike other derivations of 
radiation transport equations, the derivation given here 
does not require that wavelengths be small compared to 
correlation lengths. The main additional assumption in 
proceeding to the long-time Markovian approximation is 
that 8{f(~,P, t; a)} should vary slowly inJ' and t com
pared to the correlation lengths and times. But because 
of the manner in which the Wigner distribution function 
is constructed,j (and a jartiari 8{f}) varies slowly com
pared to the wavelengths and periods of the ljI-waves 
themselves. Of course, if situations arise where the 
conditions for the validity of the long-time Markovian 
approximation are not satisfied, one could use the more 
general kinetic equation given by (4.5) and (4. 1). 

If the mean Wigner distribution function is normalized 
to unity, i.e., 
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then it is well known that 

D(t) == (21T1l)3 fRSd3fRSdP[8{j(~,p,t;(l)}J2:s 1. (4.8) 

Equality holds if and only if 8{j} is a "pure" state. 
Otherwise 8{j} is said to represent a "mixed" state, 
and D (which we shall call the degree of coherence) is 
less than unity. Assume now that 8{j} evolves accord
ing to the kinetic equation (4.6). Using the principle of 
detailed balance, an easy calculation shows that 

dD = _ (21T1i)3 f 3dx J sdpJ 3dP'W(P,p') dt JR - R - R - --

x [8{j(~,P, t; a)} - 8{j(~,P', t; a)}]2 

:S O. (4.9) 

Hence the degree of coherence is a monotonically de
creasing function of time. Any equilibrium solution of 
Eq. (4.6) must satisfy dD/dt = O. From (4.9) it is seen 
that in regions where W is nonzero (so that each state 
is connected to each other state), the equilibrium solu
tion must be independent of P. In particular, if W 
nowhere vanishes, then the only equilibrium solution is 
the equipartition solution, 8{j} = const. 

This solution is not normalized, however, and can only 
be approached asymptotically in time through a sequence 
of normalized solutions. In Sec. 5, Case (ii), we shall 
show that if the fluctuations are time-independent, then 
W(P,p') is proportional to 6[(P2/2m) - (P'2/2m)]. In 
this case, the transition probability connects only states 
with equal energy and Eq. (4.9) shows that the equili
brium solutions are uniformly distributed on the energy 
surfaces p 2 /2m = const. 

A kinetic equation in momentum space, or "master" 
equation, may be derived by integrating (4.6) over~
space and recalling that 8tp(P,P, t; a)} = 
IRS d~8{t(~,P, t; an represents the mean probability 

density of a particle in momentum space. We obtain 

:t 8{{J(P,P, t; a)} = IRSdP'W(P,P') 

x [8{{J(P' ,P', t; a)} - 8{{J(P,P, t; a)}]. (4.10) 

This equation, with the transition probability W given by 
(4.7), is identical to the result recently obtained by 
Papanicolaou.2 A master equation which is uniformly 
valid in time may be derived from (4.5) and (4.1). After 
integrating over ~-space, one has 

~8{{J(P,P, t,' an = ~ f 3 dp' t drQ(p,p', r) at - - 1£ 2 R - 0 - -

x [8{{J(P' ,P', t - r; a)} - 8{{J(P,P, t - r; a)}]. (4.11) 

In the long-time Markovian approximation, Eq. (4.11) 
reduces to Papanicolaou'S result, Eq~ (4.10). 

5. KINETIC EQUATIONS IN SPECIAL CASES 

In this section, we shall derive the explicit form of the 
kinetic equation in the long-time Markovian limit for 
several special kinds of fluctuations and correlation 
functions. Analogous kinetic equations which are uni
formly valid in time may also be derived. 

Case (i): c5V has /i-function correlations in time. 

Assuming that r(1', r) = 21TliY(1')c5(r), we have r(p, u) = 
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y (P), where y(P) is the Fourier transform of y(Y), de
fined analogously to Eq. (4. 3b). The kinetic equation 
(4.6) then becomes 

- + - p' - 8v (.X P t· a) = - dp'y(P - P') (
a 1 0)1," } 21TJ A 

at m- ax -'-' , 1£ R3 - - -

. x [8{j(=,p', t; a) - 8{j('l,P ,t; a)} ]. (5.1) 

The scqttering rate (also called the extinction coefficient 
or collision frequency) is defined in general by 

(5.2) 

In this case, the scattering rate is independent of p and 
is given by -

II = 21T I dP'Y(P - P'} = 21T y(O). 
liR3 --- Ii 

(5.3) 

In the Appendix it will be shown by means of the Novikov 
functional method that for a potential field which con
stitutes a c5-correlated (in time), homogeneous, wide
sense stationary Gaussian process, the kinetic equation 
(5.1) for the mean Wigner distribution function is the 
exact statistical equation. 

Case (ii): /iV has no time dependence. 

Assuming that r(1', r) = Y(1'), we have r(p, u) = 9(P)c5(u). 
The transition probability W becomes 

W(P,P') = 21T (P _ P')c5 (p
Z 

_ P'Z) • -- n Y - - 2m 2m 
(5.4) 

Because of the /i-function in Eq. (5.4), the motion in the 
phase space takes place on the energy surfaces p2 /2m = 
const. It is therefore convenient when writing the kinetic 
equation to replace the vector p as the independent vari
able with the unit vector p and u = p 2 /2m, where p = 
p/ Ip I. Using the relation dp = m (2mu)112 dpdu, we find 
that Eq. (4.6) becomes 

[:t +(2;) 1i2p. a:]8{j(X,P,u,t;a)} 

= f dp'w(p - p',u)[8{j(x,p',u, t; a)} J(l , 

-8{j(x,p,u,t;a)}], (5.5a) 

wr- _ A, u) - m(2mu)li2 1, d (y) 
U' p, - 1£2 (27T1i)2 R3 yy 

x cos[(2mu)li2yo(j; - p'lIli], (5.5b) 

where Q denotes the range of p' over the surface of a 
unit sphere. This kinetic equation has the form of the 
classical radiation transport equation, in which the 
energy u (or frequency w = u/Ii) appears only as a 
parameter. 

If the fluctuations are isotropiC, so that y depends only 
on y = I y I , then w may be further simplified to 

W@_A, u) = ~ fOOd (y) (sin[2(Y/~) sin(6/2)]\ 
p , 21T1i 3 0 yyy sin(6/2) I ' 

(5.6) 
where 11: = l£/(2mu)li2 is the reduced Compton wave
length of the particle with energy u, and 6 is defined by 
cose = p op,. It should be noted that the assumption of 
isotropic fluctuations does not imply isotropic scatter
ing. However, when the Compton wavelenl!:th is much 
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greater than the correlation scale lengths, then the 
scattering does become isotropic since Eq. (5.6) re
duces to 

,,~ m Joo w(p - p' u) = -- dyy2y(y). 
, rrll:1i3 0 

(5.7) 

The kinetic equation (5.5) then becomes 

v(u) at ax [
_1_ ~ + p . .i..] & {j(x,p, u, t; a)} 

= K[- &{j(x,p,u,t;a)} + 1..-1 (1p'0{j(x,p',u,t;a)}l, 
4rr G IJ 

(5.8) 
where v(u) = (2u/m)lt2, and the spatial attenuation co
efficient K is given by 

4m 2 JOO K = -- dyy2y(y). 
Ii 4 0 

(5.9) 

Equation (5.8) has the usual form of the radiation trans
port equation for isotropic scattering, and many results 
(analytical and numerical) are known regarding solutions 
of this equation. 

Case (iii): IW has 15 -function correlations in space. 

Assuming that r(2', T) = (2rrli)315(2')y(T), we find that 

W(P,P') = ~ JoodTy(T) cos [T(£ - P'2)/Ii]. (5.10) 
- - 1i2 0 :m 2m 

ThuS, the scattering is isotropic, and it is again [as in 
Case (ii)] convenient to use p and u = p2 /2m as inde
pendent variables in the kinetic equation (4.10). In this 
case, it turns out that the kinetic equation is given by 

[~ + V(U)P'~J &{j(x,p,u, t;a)} at ax 

= fooo du'v(u')a(u - u') 

x [-&{j(X,P,U, t; a)}-...!...l dp' &{j(x,P', u', t; a)}l, 
4rr n - - ~ 

(5.11) 

where v(u) = (2u/m)lt2, and 

8rrm 2 00 
a(u) = --1, dTy(T) Cos(uT/n). 

Ii 2 0 
(5. 12) 

Case (iv): 15V varies slowly in space. 

First we note that if the fluctuations in 6 V are spatially 
independent, then W(p, p') is proportional to 15(p - p') and 
the collision integral [right-hand side of (4.10)]vanlshes. 
We shall, therefore, consider the case where 15V varies 
slowly and space-correlation lengths are assumed to be 
large compared to Compton wavelengths. This is the 
correspondence limit, and one expects to obtain a dif
fusion, or a Fokker-Planck equation.14 We shall follow 
the methOd used by Landau to derive the Fokker-Planck 
equation for a plasma from the Boltzmann equation. 16 

Denote the right-hand side of (4.10) by C(P): 

(5.13) 

where the other arguments of f have been suppressed for 
notational convenience. Let p' = p + ~p and expand the 
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factor within the square brackets to get 

C(P) = f~d~pW(p,p + ~p) 

x ~p.-&{j(P)} + -~p~p: - -&{j(p)} • [ 
a 1 a a J 

ap 2 Op Op 
(5.14) 

To first order in ~p, one has 

W(p, p + ~p) "" W(P - !~p, p + !~p) 
2 2 

+ !~p • .i..W(p - !~p p + !~p). 
2 ap 2' 2 

(5.15) 

Introducing (5.15) into (5.14) and rearranging terms 
gives 

C(P) = f 3 d~pW(P - !~p,p + !~p)~p.~&{j(P)} 
R 2 2 Op 

+! 13d~p~p.~W(p- !~p,p +!~p)~p.~&{j(p)}. 
2R op 2 2 Op 

(5.16) 
Since W <P' - ]-~p, p + ~ ~p) is an even function of ~p by 
virtue of the principle of detailed balance, the first term 
on the right-hand side of (5.16) vanishes. The remaining 
term represents a diffusion operator in momentum 
space, and the full kinetic equation becomes 

[~ +! P'~J&{j(X P t· a)}=.i..·D(P)·~&{j(x P t· a)} at m- ax -'-' , ap = - ap -'-" , 
- - (5.17) 

with the diffusion dyadic Q given by 

lJ(P) = i f d~P~P~PW(P - i~p,p + i~p)· (5.18) 

Using Eqs. (4. 7a) and (4. 3b), this can be written in 
terms of r as follows: 

lJ(P) = i fR3d~p~p~ph~p,~p·~P) 
= - f 3 dy JOO dT15(y -:!.. p\ ~ .i..r(v, T). 

R - 0 - m- ) 02' 02' "-
(5.19) 

In Sec. 6, we shall show that the Fokker-Planck equation 
(5.17) may also be derived by applying the method of 
smoothing to the stochastic Liouville equation. There 
the diffusion coefficient will be discussed in more detail. 

6. KINETIC THEORY FOR THE STOCHASTIC 
LIOUVILLE EQUATION 

Under the assumptions that the background potential field 
is homogeneous and stationary, one has, in the frame
work of the first-order smoothing approximation [cf. Eq. 
(3. 2)], the following kinetic equation associated with the 
stochastic Liouville equation:. 

- + - p' - &{j(!,p, t; a)} = e&{j(!,p, t; a)}, [a 1 oJ 
at m - a~ - -

(6.1a) 
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For random fluctuations which are statistically homo
geneous, wide-sense stationary, and, in addition, o-corre
lated in time, one can easily carry out the time integra
tion in (6. 1), with the result 

a a 
68{j(x,P, tj a)} == - D' -8{j(x,P, t,' a)}, - - 'Op = 'Op -- (6.2a) 

!2 == - ~lim [_.'0 ~y(y)l. 
- y-+O 'o~ a~ - J (6.2b) 

Here,y(y) is defined by r(y, T) == y(y)o(r). It is seen, 
therefore, that in this case -(6.1) becomes a Fokker
Planck equation with a dyadic diffusion coefficient which 
is independent of momentum. In the Appendix, it will be 
shown by a functional approach, that if oV(x, t; a) is a 0-
correlated (in time), homogeneous, wide-sense stationary, 
Gaussian process, then (6. 1a), with e8{j(!,p, t; an given 
in (6.2), is the exact statistical equation for the mean 
Wigner distribution function. 

In the long-time, Markovian, diffusion approximation, 
(6.1) simplifies to 

[~ +! P'~18{j(X'P' t; a)}== ~.r!2(p)·~8{j(x P t· a)}J. 
at m- a~ -- ap L~- ap -'-" ~ 

This is a Fokker-Planck equation in phase-space. 
dyadic diffusion coefficient 12 is given by 

(6.3) 
The 

Q(P) == Joo dr8{~W(!, t; a)~w(~ -:!.. p, t - r; a)} 
- - 0 '03 a~ m-

(6.4a) 

(6.4b) 

Equations (6.3) and (6. 4b) were previously derived in 
Sec. 5, Case (iv). For spatially homogeneous and iso
tropic, and wide-sense stationary random fluctuations, 
(6.4b) becomes 

D(P) == ~ j"°dy ~l- pp)! ~r(y ~ y) + pp~r (y,~y\l, 
= - P 0 r- -- y ay , P -- ay2 P JJ 

(6.5) 
where a/ay signifies that derivatives are to be taken 
With respect to only the first argument of rand P == Ip I , 
!! == !!/P. Assuming that 

~r(y ~y\ -70 aSY-70andY-7oo, 
ay 'p j 
we find that (6.5) simplifies to 

D(P) == ~ _1_(/ _ PP), 
= - P l(P) = --

-==- dy--r y,-y • 1 Joo 1 a ( m) 
l(P) 0 y ay P 

(6.6a) 

(6.6b) 

The parameter l(P) introduced by means of the integral 
(6.6b) is related to the correlation length and the corre
lation time of the random process OV{!, t; a). 

Introducing (6.6) into (6.3) one has finally the kinetic 
equation 

[~ +! P'~J 8{t(!,p, t; a)} 
at m- '03 -

m 1 ~ '0)2 == - - P x - 8{j(x,P, t; a)}. 
p3 l(P) - ap - -

(6.7) 
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The left-hand side describes convection with "group 
velOCity" p/m, whereas the right-hand side describes 
angular dilfusion iIi momentum space. 

When the Fokker-Planck equation (6.7) is considered in 
a three-dimensional space, it is often convenient to 
introduce a spherical polar coordinate system in 
momentum space: p == (P, 0, !/». Then, we use (6.7) with 

(px~)2 ==_1_ £+_1_ ~(sino~). (6.8) 
- ap sin20 a!/>2 sin 0 'Of) \; 'Of) 

In closing this section, we wish to point out that in the 
special case that OV is independent of time, and for the 
long-time, Markovian, diffusion apprOximation, the mean 
Wigner distribution function obeys, again, the kinetic 
equation (6.7), with the only difference that the para
meter 1 is now independent of momentum and is given 
explicitly as follows 13: 

1 == _ Joo dy! ~y(y). 
lOy 'oy 

APPENDIX: THE NOVIKOV FUNCTIONAL 
FORMALISM 

(6.9) 

We shall establish in the appendix that if the potential 
field is a o-correlated (in time), homogeneous, wide
sense stationary, Gaussian process, the kinetic equations 
(5.1) and (6.2) for the stochastic Wigner and Liouville 
equations are the exact statistical equations for the 
mean Wigner distribution function. Towards this goal 
we shall use a functional approach introduced first by 
Novikov (cf.Ref. 4) in the study of turbulence theory. 
More recently the same technique has been used by 
Tatarskii and Klyatskinl'r-20 who studied wave propaga
tion in a random half-space by approximating the 
scalar Helmholtz equation by a (complex) parabolic 
equation (a SchrOdinger-like equation). 

A. The stochastic Wigner equation 
We commence with the stochastic Wigner equation (2.9) 
with Of(~,P, t; a) given by the representation (2. lOb), 
viz., 

- + - p' - f(!,p, t; a) == OJ{!,p, t; a), [ a 1 'OJ 
~ m- ~ - -

(Ala) 

f)£(x p t· a) == (i/i)-1(21Tlit3 f dyei~.ylll J _'_' , R3 _ 

x pC! + ~1,% - ~1I, t; a) 

x [We! - ~y,t;a) - W(~ + h,t;a)]. 
- (A1~ 

Averaging both sides of this equation shows that one has 
to determine the quantity 8{p(! + h',~ - ~1, t; a)[W(~ -
h, t; a) - W(! + h, t; a)]} in terms of the statistical 
properties of the random process liVe!, t; a) and the 
ensemble average of the density function. Under the 
aforementioned properties of the process OV(!, t; a), viz., 

8{W(x2, t2; a)W(xlt t 1; a)} == 21Tlio (t2 - t t)y{X2 - x 1)' 
- - - - (A2) 

one has that 

8{P(!2'~lt t; a)[W(!l' t; a) - OV(!2, t; a)]} 

== iRl dt' iR3d32iR3d318{[W(!1' t; a) 

- W<="2' t; a)][W(~J., t'; a) - W(~2' t'; a)]} 

x 8{6p(!2,31' t; a)/6[W(!1' t'; a) - W(!2' t'; a)]} 

== 21Tn(i/itl[y(0) - :Y(~2 - ~l) ]8{P(!2'~ 1> t; a)}. (A3) 
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(The symbol 6(') in (A3) denotes a functional derivative.) 
This result follows readily from our knowledge of the 
equation for the density function [cf. Eq. (2.4)]. Using 
the coordinate transformations ~2 ~ ~ + iJ, ~ 1 ~ ~ -
b in (A3) and introducing the resulting expression into 
the statistically averaged equation (AI), we obtain 

[a~ +; p' :X ] S{j(~,P, t; a)} 

= - 211' _1_ J dyeiP'll1i [yeO) - yCy)] 
Pi (211'1i) 3 R3 -

X 8{p(~ + iJ,~ - iJ, t; a)}. (A4) 

Introducing next the spectrum of the spatial correlation 
coeffiCient as previously, and bearing in mind the defini
tion of the Wigner distribution function, (A4) changes to 
the Simple, convolution-type kinetic equation 

[
0 1 a 2lT ~ - + - p' - - -'V(O) 8{f(x p t· a)} at m - a~ Ii r -, -' , 

pr)8{j(~,P', tj a)}. (A5) 

It should be noted that 

2lT yeO) = 2lT 1. dpy (P) = II. n n R3 __ (AS) 

It is seen, therefore, that (A5) is identical to the kinetic 
equation obtained in Sec. 5 [ef. Eq. (5.1)J. 

B. The stochastic Liouville equation 

We begin with the stochastic Liouville equation [cf. Eqs. 
(2. B), (2.10)] and average both sides: 

[:t +; P • :~J S{j(~,P, tj a)} 

== t _0_ s{[_a_W(!,t;a)f(!,p,t;a~}. (A7) 
J~l apj ax) J 

Proceeding along the lines of Novikov, it is found that for 
the type of random fluctuations considered here, one has 

S{a!j oV(!,tj a)f(~,p, tj a)} 

= t J Idt' J 3~' 8~~W(~,t;a)-0-w(~"tl;a) 
k~l R R ~ aXj ax k 

8{6f(~,P, t; (II)} 
x -

o [(a/axDW(!' ,tf; (II») 

= t 1. dx' [_ a
2 

_ r(x _ XI] s'_ 6f(~,P, t; a) t. 
k~l R3 - axjax; - - to[(a/ax;)W(~/,tja)l\ 

(AB) 
To proceed further, we shall have to compute the func
tional derivative 6f(Ji,P, tj a)/6[(a/o,t"k)W(~/ tj a)]. To
wards this end, the unaveraged Liouville equation is inte
grated over time to obtain 
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[fo{f,P) is the initial (t = 0) value of the Wigner distri
bution function.] We introduce next the auxiliary function 

T \0, 
I/I(T) = Leo o(T')dT' = 1/2, 

1, 

T<O 
T=O 
T> O. 

(AID) 

Adding the factor I/I(t - T)O(~ - .,r") to the integrand on 
the right-hand side of (A9) changes that equation into the 
form 

10ft f(!,p,tja) - fo(~,P) + -p'- dTf{f,p,tja) 
- - m- 0:z 0 -

3 a 00 

= ~ - f dT 1. 3d~"I/I(t - T) 
j~l aPj 0 R 

x o(! - ~") o!!' W(!", Tj a)f(!",p, Tj a). (All) 
J 

We operate next on both sides of this expression with 
a/a[(a/axk)W(!', t'j a)] taking into consideration the fact 
that 6[(a/aXj'>W(!", Tj a) J!6[ (a/axk)W(!', t'; a)J == 
0jkO(!" - ~ )O(T - t'): 

af(!,p,tja) 1 a ft 6f(x,p,Tja) 
.,-----=-'-'----- + - p'- dT ::-----=-'-=-'--'----

o[(a/axj,)OV{~',t'ja)] m- a~ 0 6[(a/axk)W(~',t'ja)] 

== (a/apk)[W(t l')6(! -~/)f(~',p,t'ja)]"· 

3 a t 
+ ~ - f dT J 3d~"I/I(t - T) 

j~l aPj 0 R 

a af(x" p T' a) 
xo(x-xlf)-oV(x" T'a) - '-' , 

- - axj' -" o[(a/oxj,)W(!',t'ja)] 
(A12) 

It is noted next that changing the lower limit of integra
tion over T to t' does not alter (A12). We have, then, 

6f(~,p, tj ex) 1 , a , 
-6"[-(0-/-ax-£}5V(!',tja)] =-2o(,!-~ )ap/(Ji. ,p,tja). (A13) 

IntrodUCing (A13) into (AS) and performing the integra
tion over x' finally yields the Fokker-Planck equation 

[a 1 a] a a at + ;/. oX 8{t(~,P, tj a)} == ap . ~. ap 8{j{~,P, t; a)}, 
- - - ~14~ 

D ::::: - i lim [.i. ~r{x~ = >:-+0 a~ aJi -:1 (A14b) 

which is identical to the kinetic equation (6.2). 
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A generalized theory of bound two-magnon states in three-dimensional isotropic Heisenberg 
ferromagnets is given and the passage to the limit in which the total number of spins tends to 
infinity is handled rigorously. Powerful methods, mostly of the trace-inequality type, are developed 
for determining upper and lower bounds to the number of such bound states in the latter limit. 
These methods constitute the central contribution of this paper. In the latter we apply them to 
investigate the existence of bound two-magnon states in body-centered Heisenberg ferromagnets 
whose non vanishing exchange interactions are those of the nearest-neighbor type. In work reported 
elsewhere, we have employed these methods to study spin-wave impurity states in Heisenberg 
ferromagnets. They should be useful for determining bounds on the number of localized states in 
solids in many cases when interactions extending over several orders of neighbors are operative. 

1. INTRODUCTION 

The main purpose of this paper is to develop a new 
theoretical approach to the study of localized states in 
solids, which we shall present here in a form suitable 
to the study of two-magnon bound states in three-dimen
sional Heisenberg ferromagnets with isotropic exchange 
couplings. This isotropy has been assumed purely for 
the sake of simplicity; it is not essential to the success 
of the approach_ The latter has also been employed to 
investigate spin-wave impurity states in such ferro
magnets,! and should have an even wider range of 
applicability _ 

Bound magnon states and resonances are of interest 
for several reasons_ In the first place, as is well known, 
the Validity of many theoretical investigations of low
temperature properties of three-dimensional Heisen
berg ferromagnets depends critically on the assumption 
that no lOW-lying bound states or resonances of n mag
nons exist (n = 2,3"" ).2,3 Secondly, ferromagnetic 
bound magnon states are of increasing experimental 
interest. Silbergliti and Harris4 have proposed an in
direct method for proving their existence experimen
tally for suitable ferromagnets, namely, by detecting the 
corresponding resonances. Torrance and Tinkham5 

have actually detected such states in linear chains 
directly and Thorpe 6 has suggested a direct method for 
their detection in appropriate cases. Thirdly, currently 
available theoretical methods for evaluating the energy 
and momentum parameters of two-magnon resonances 
are particularly tedious and opaque in the absence of 
adequate knowledge concerning the corresponding two
magnon bound states, which the methods of this paper 
are capable of providing in many instances. This know
ledge would give inSight into the energy and momentum 
parameters of the resonances in question, and this is an 
added reason why the study of the above bound states is 
of interest. 

Dyson7 was the first to publish detailed theoretical 
considerations on two-magnon bound states in three
dimensional Heisenberg ferromagnets_ He concluded 
that no low-lying bound states exist for cubic ferromag
nets of this type whose magnetic ions are coupled solely 
by isotropic nearest-neighbor (NN) exchange interac
tions. As is well known, the independent calculation of 
Hanus8 and Wortis9 first established theoretically the 
existence of two-magnon bound states in this three
dimensional case. For the example of isotropic sc 
Heisenberg ferromagnets with only NN couplings, their 
calculations show that, when the total wave-number vec
tor I' of the bound magnon pair pOints along the [111] 
direction,10 these states occur at energies below the 
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two-magnon continuum, but only for values of I' fairly 
close to the zone boundary. For this same example, 
Wortis9 also investigated the situation in which the 
projection of I' of one of the crystal axes lies on the 
zone boundary. Moreover, in this last reference he 
proved that low-lying bound states exist in suitable 
three-dimensional anisotropic Heisenberg ferromag
nets. The above conclusions relative to the [111] direc
tion in the case of the indicated sc ferromagnets are in 
accord with results reached later by Boyd and Calla
waY,ll who considered two-magnon bound states and 
resonances, and by Shaw.12 For fcc Heisenberg ferro
magnets, isotropic ally coupled in the manner last stated, 
Thorpe 6 has shown that such bound states with I' = 0 
exist above the two-magnon continuum, contrary to what 
occurs for sc and bcc ferromagnets of this type and 
mode of coupling.13 

We proceed to summarize the results of the present 
paper. Our subsequent statements should be understood 
in the context of three-dimensional isotropic Heisen
berg ferromagnets. 

In Sec. 2 we construct a generalized theory of two
magnon bound states, discuss relevant spectral prob
lems in a preCise way, and state rigorous conclusions 
about these states in the limit N -) 00 (Theorem 2.1). 
This theory applies to spin lattices of the Bravais type, 
coupled by exchange interactions connecting any finite 
number of orders of nearest neighbors. In the theory 
in question, and throughout this paper, a baSic role is 
played by the properties of the pertinent Lippmann
Schwinger two-body kernel, just as in Boyd and Calla
way's theory of such bound states,ll which is genera
lized by the present investigation. 

Sec.3 is devoted to the development of procedures 
(Theorems 3.1-3. 5),mainly of the trace-inequality 
type, for determining rigorous upper and lower bounds 
to the number of two-magnon bound states in this limit. 
These procedures are based on monotonicity and con
tinuity properties of the eigenvalues of the limiting form 
of the two-body kernel for N -) 00. Our trace- inequality 
techniques are similar in spirit to methods which have 
been stated within the context of bound states of two 
nonrelati vistic particles. 

If used in conjunction with modern electronic com
puters, we believe that the methods of Sec. 3 are well 
suited to give good estimates of the regions of existence 
and nonexistence of these bound states, even when dis
tant- range interactions are present. 

In Secs. 4 and 5, the methods of Sec. 3 are applied to 
investigate the occurrence of bound states in bcc ferro-
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magnets with purely NN interactions, for vectors r of 
the pertinent Brillouin zone parallel to the [100], [110], 
and [111] directions. In these calculations, it was only 
necessary to use the earlier and less efficient exact 
eigenvalue methods for the study of magnon bound 
states in very limited ranges of the relevant energy and 
momentum parameters. All the bound states found in 
this investigation of bcc ferromagnets occurred for 
values of r in these directions lying fairly close to the 
zone boundary. While these results give one confidence 
that no low-lying bound two-magnon states exist for 
the ferromagnets studied in Sees. 4 and 5, we. are cer
tainly not claiming to have proved this. In the latter 
two sections, trace-inequality estimates of bound state 
thresholds are compared with values of those thres
holds obtained by direct eigenvalue calculations for the 
[100] and [110] directions of r. Good agreement was 
obtained between these estimates and the results of 
these eigenvalue calculations for relatively low powers 
of the matrix entering into the trace-inequality compu
tations. A curious cusp phenomenon for these bcc 
ferromagnets, which took place for a value of r along 
the [111] direction, and the possible explanation of this 
phenomenon in terms of a suitably located two-magnon 
resonance, is mentioned in Sec. 5 and deserves further 
thought. 

During the course of our calculations on the above 
NN-coupled bcc ferromagnets, we discovered that the 
degeneracies of the corresponding bound states of mag
non pairs could not be accounted for by point group 
arguments, in sharp contrast with the case of sc ferro
magnets with only NN coupling. The underlying group
theoretical explanation of this interesting fact is not 
known. 

The numerical methods used to evaluate certain 
Green's functions needed for the purposes of Sec. 5 
are summarized in the Appendix. 

2. GENERALIZED THEORY OF BOUND STATES OF 
TWO MAG NONS IN HEISENBERG FERROMAGNETS 

Let us consider a crystal with N3 magnetic ions, 
each having a total spin S. The magnetic interactions 
among these ions will be assumed to be described by 
the Hamiltonian 

H<N) (S) =! :B J. k (S • S k) + c:B S·. 
2 k¢j J J j J 

(2.1) 

Here j and k are the position vectors of the jth and 
the kth sites of the spin lattice, to which correspond the 
respective spin vector operators Sj and S k , and the 
summations in (2.1) run over all the magnetic ions. 
The crystals of interest are assumed to be of Bravais 
type, to have the familiar parallelipipedal form, and to 
be subjected to periodic boundary conditions. The 
constant C is positive and the constants ~ k .= J( 1 j - k/) 
are nonnegative. The exchange couplings described by 
the J. k will be allowed to be nonvanishing only over a 
finit~ order of neighbors. 

The equations and other statements below involving S 
are intended to apply to each S 2 ~,unless a statement 
to the contrary is made. In the considerations of this 
and of the next section, C, the ~k ,and the crystallo
graphic vectors mentioned below will be regarded as 
fixed, but arbitrary within the limitations stated in the 
present section. 

Boyd and Callawayll have introduced a formalism 
which is particularly appropriate for our investigation 
of bound states of two magnons. Unfortunately, some of 
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their basic definitions lack precision and this intro
duces difficulties in deriving certain of their basic 
conclusions, which we shall require in a generalized 
form. We proceed to eliminate this deficiency. 
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For mathematical Simplicity, it is assumed that N 
is an odd positive integer. We denote by LJ; the set 
of all position vectors of the magnetic ions of the crys
tal, a set which we shall take to consist of all the vec
tors 

1 m i 1 "'" ~ (N - 1), 

which are generated by a basis {a i }. The correspond
ing infinite lattice, Le., the set of vectors of this type 
for which the values of the integers m i are unrestricted, 
will be called L. 

Let P N be the set of all vectors 

3 n. 
217:B -.-!. bi' 1 n i 1 "'" ~(N - 1), 

i~l N 

where the n i are integers and {bi} is the reciprocal 
lattice basis corresponding to {a;}. Define Z N as the 
set of vectors of the form A + 217A('Y) , where l' E PN and 
where at every such l' the vector A('Y) is uniquely deter
mined by the following two requirements. At each 
l' E PN ,A('Y) is that vector of the reciprocal lattice 
generated by the b i such that l' + 27TA(y) lies in the 
first Brillouin zone Z pertaining to this lattice. This 
zone is understood here to be a closed polygonal region 
of R3. This choice will prove convenient in our treat
ment of the limiting case of N ~ co. For each r E Z N' 

we define Z N (r) as the set of vectors of the form 
1'1 + p(r), where 1'1 E PN and 

p(r) == 2~ R [1- cos(; r • a')}i . 

Naturally, the 1'1 could have been required to range 
over ZN' for example, rather than over PN' but no par
ticular advantage would be gained thereby in this 
paper.14 

Denoting by 10; S) (N) the state of the above ferromag
netic system of N spins in which the latter all point 
along a given direction, which we shall identify as the 
negative z direction, and setting Sa == Sa.x + i5a y for 
R E L N' as usual, we define the two- spin deViation 
states in terms of this ground state 10; 5) (N): 

IR1 ,R2 ; 5)(N) == 5i Si 10; S) (N), 
1 2 

IRI + A1 ,R2 + A2 ; 5)(N) = 1 R 1 ,R2 ;5)UJ), 
(2.2) 

when R1 , ~ E LN' Here the Ai are the vectors of the 
form 

3 

A ==N 6 lIia i , 
i~1 

the IIi being integers. 

(2.3) 

For each R = 6;3"1 mia; E L N , let LN (R) be the set 
of all vectors of the form R' + C7(R), where R' E LN and 

3 
C7(R) ==:B r( mi)ai • 

;"1 

Given any integer m,r(m) == o [r(m) ==~] when m is 
even (odd). For S > ~, we now introduce for every r 
E Z Nand R E L N the ket 
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I r ,R; S)(N) == wt 6 eir•c ~-1 (R)I C + t R, C - t R; S)(Ji) 
CELNCJU 

= Ir,- R; s)(N), 

where 

~ (Rj S) == [2S(2S - 0R.o)( 1 + 0R,O)] 1/2, R E LN' 

(2.4) 
The first definition in (2.4) also applies when S = tin 
the case of each r E Z N ,provided that R iz a nonzero 
vector of L N , this definition clearly making no sense 
for this spin value if R = 0, since ~(Ojt) = O. This dif
ficulty reflects the familiar fact that two-spin-deviation 
states with two reversed spins at a given lattice site 
vanish when S = t . 

The kets I r, Rj S)(N) just defined for S 2: t will be 
called "physical" mixed kets. To treat the cases S = t 
and S > t on an equal footing, we adjoin to these kets in 
the case S = t a "nonphysical" mixed ket I r, OJ t) (N) 

for each r E Z N' We shall require that the orthonor
mality relations 

() or' r (OR' R + 0 ... -R) (N)(r',R'jslr,RjS)N= ' , ", ,(2.5) 
(1 + 0R,O) 

which are consequences of (2.2) and (2.4) for the physi
cal mixed kets pertaining to each S 2: t for r, r' E Z N 

if R, R' E L N , also hold when one or both of the mixed 
kets involved are nonphysical. Hence (2.5) holds for 
S 2: t whenever r, r' , R, and R' fulfill each of these res
pective requirements. 

Let us extend the definitions (2.4) from LN to Lj 
that of ~(RjS) by setting ~(R + AjS) == ~(R;S) for each 
R E L N , where A is a vector of the type (2.3), and that 
of I r,Rjs)(N) by writing 

Ir,R + AjS)(N) == e-(1/2)i(r.A) Ir,RjS)(N), (2.6) 

the latter definition applying when R and A are as we 
have just specified. From these extended definitions, 
together with (2.2) and (2.4), we infer that 

IR R 'S)(N) -N-1/2 '" e-(1/2)ir·(Ri-R2) 
l' 2' - LJ 

rEzN 

I )(N) 
X ~(R1 - R2jS) r,R1 - R2jS (2.7) 

for S 2: t if R1,R2 E L. The fact that (2.7) holds for 
this range of R1 and R2, and not merely when R1, R2 E 

L N' is important in our derivation of the generalized 
Boyd-Callaway formalism. 

It is also useful to define the kets 

Ir T'S)(N) == N-1/2 6 [1 + ° 0]1/2 eiT.Rlr R'S)(N) 
, , R,' , (2 8) RELN • 

at these pairs (r, T) at which r E Z Nand T E Z N(r). 
As is the case for two kets of the type I r, Rj S) (N) 

(r E Z N' R E L N) labeled with the same S, two kets 
Ir,TjS)(N)[r E ZN,T E ZN' (r)] with the same S are 
either identical or orthogonal. We mention in passing 
that the property (N)( r, Tj sir, Tj S) (N) = 1 does not 
generally hold over the set of values on which the kets 
(2.8) were defined, but this is immaterial for our purposes. 

Let JC(N)(S) be the Hilbert space spanned by the set 
{I R11 R2j S)(N): R1, R2 E L N} of two-spin-deviation kets, 
this space also being spanned by all the physical mixed 
kets with the value of S in question, and let :fC(N) (S) be 
the Hilbert space spanned by the set {I r. Rj S)(N): 
r E Z N ,R E L N}' It can be shown that jC(N) (S) is also 
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spanned by the set { I r, Tj S)(N): r E Z N ,T E Z N (r)} • 
It is evident that JC(N)(S) = JC(N) (S) when S> t and that 
i(N)@ is the direct sum of JC(N)(t) and the subspace 
spanned by all the unphysical mixed kets with S = t . 

Because of (2.4) and (2.5), it is clear that the set 
{lr,RjS)(~: r E ZN,R E L N} constitutes an orthogonal 
basis for JC(N)(S). Here LN is a subset of LN containing 
R = 0 and exactly one of each pair R, - R of nonzero 
vectors of LN' 

It can now be rigorously shown, employing in particu
lar (2.1), (2.2), (2.4), (2. 7), (2.8) and its inverse, and 
the operator techniques of Ref. 11 that 

H(N~s)lr,R: S)(N) = - 6 
R'ELN 

J (2S - 0R,O) ~ (Rj S) 

R'O ~(R + R'jS) 

x cos(tr' R') Ir,R + R'jS)(N) - Jaol r,RjS)(N) 
(2.9) 

whenever Ir,RjS)(N) E JC(N)(S) , where here and hence
forth we simplify matters by redefining H(N)(S) by add
ing to this operator, as previously defined, a term rep
resenting a constant energy shift. 

Again to unify the treatment of the cases S = t 
and S > t, we define as follows at each S 2: t an 
auxiliary operator heN) (S), whose spectrum differs 
trivially from that of H(N) (S), when the latter opera
tor is restricted to JC (N)(S). At each spin value, 
heN) (S) is that self-adjoint operator with domain jC(N)(S) 
which yields the result shown on the right-hand side 
of (2.9), when acting on each physical or unphysical 
mixed ket with the value of S in question. From the form 
of this right-hand side, it then follows that at every S 
value h(N)(S) annihilates every unphysical mixed ket 
labeled with the same S. For S 2: t, we thus have on 
JC(N)(S) andjts orthogonal complement J('~N)(S) with 
respect to JC(N) (S) 

hCN)(S)cp = HCN)(S)cp, cp E JC(~(S), 
(2.10) 

heN) (S)cp = 0, 

We express heN) (S) as follows: 

(2.11) 

where h~NJ.(S) and V(N)(S) are self-adjoint operators with 
domain JC(N)(S). In particular, 

h~N) Ir,RjS)(N) = - 2S 6 JR,o 
II!ELN 

X cos(t r .R) R,-II! Ir,R + R'jS)(N) 
[
1 + <5 ]1/2 

1 + 0R.O (2.12) 

for any Ir,RjS)(N) E i(N)(S). The operator h~N)(S) de
scribes two free magnons and V(N)(S), to which we shall 
return below, describes their interactions within the 
present model. 

Henceforth we shall not indicate the dependence on S 
expliCitly in most cases, writing, for example,H(N), 
Ir,R)(N),and Ir, T)(N) instead of H(N)(S), Ir,R;S)(N), 
and Ir, T;S)(N), respectively. In the remainder of this 
section and in the following two sections, we shall sup
pose that S has a fixed value S 2: i, and therefore this 
omission will cause no ambiguities in these three sec
tions. Adequate logical safeguards have been set up 
to prevent any ambiguities from ariSing elsewhere in 
this paper because of this omission. 



                                                                                                                                    

1840 A. W. saenz and W. W. Zachary: Two·magnon bound states 

Notice that eir.Rlr,R)(N)[r E ZN' T E ZN(r),R E L] 
has the periodicity of L, as can be proved by uSing, in 
particular, (2. 6). Combining this periodicity property 
with (2.8) and its inverse and with (2.12), we conclude 
that 

h(N)lr,T)(N) = E(N)(r,T)lr,T)(N) o 

for each I r, T)(N) E :k(N), where 
n 

E(N)(r, T) = - 48 L) Jl cos(~r - R) COS(T -R l ). 
l=l 

(2.13) 

(2.14) 

The vectors R l,- Rl (I = 1, .•• ,n) are the nonzero 
position vectors of the 2n magnetic ions of the crystal 
which are connected with the magnetic ion at the origin 
Ro = 0 by nonvanishing exchange coupling constants 
J l = J a o' Without loss of generality, we suppose that 

I 

all the R (Il = 0,1, ... ,n) are in the set LN defined in 
the secorid paragraph after the one containing (2. 8). 

Using (2.14), it is seen that, for a given r E Z N' the 
interval 

(2.15) 

contains all the eigenvalues e:(N) (r, T) of h~N) labeled 
by this r, where 

min ' 

l E~");~(r») ~"'EZN(r)'l n 1 (= -45 max ~ Jl cosC"2:r-Rl)coS(T-Rl ). 
E~1~(r») rezN(r)., l~l (2.16) 

Taking (2.5) and (2.9)-(2.12) into account one arrives 
at the following conclusions. First, h~N) and heN) have 
nonzero matrix elements between a pair of kets I r, R)(N) 
and I I'~ R')(N) of :keN) only if r' - r, and the only non
vanishing matrix elements of V(N) between two such 
kets are those of the form 

(r,Rj.llv(N)lr,R) = vj.lv(r), 1l,II=O,l, ••• ,n, 
(2.17) 

if R,R' E LN [Here and henceforth we suppress the 
superscript(N) occurring in the bras and kets in mat
rix elements.] Second, one finds that 

vOj(r) = vjo(r) = .f2 Tlrl; cos(~ r· R j ), 

Vi; (r) = - J/)ii' i,j = 1, ..• , n, 

voo(I') = 0, 

where 

[ ( . 1) 1/2J 1]=2S 1- 1-
2S 

. 

(2.18) 

(2.19) 

In the absence of an explicit or obvious implicit indi
cation to the contrary, the symbol r appearing in (2.18) 
and in what follows will stand for a "real" vector (one 
with all its components real), arbitrarily selected, and 
not merely for a vector in Z N' This will be convenient 
in the case N ~ <lO. In future, lower case Greek and 
Latin subscripts should be understood to always run 
over the same ranges as in (2.17) and (2.18), respec
tively, unless explicitly stated otherwise. 

An important fact is that the interaction specified 
by the operator V(N) has both attractive and repulsive 
portions. More preCisely, the (n + I)-dimensional 
matrix 

vcr) = II vj.lv(r)lI, (2.20) 
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has n negative and 1 nonnegative eigenvalues for each 
real r. 

To establish this signature property of v(r), let the 
quantities ~,,(Il = 0, I, ... ,n) be arbitrary real numbers. 
Employing (2.18), we infer that 

j.I ~;o vj.lv(r) ~j.I~v = 21]2 (~ cos2(~ r-R i ») ~'2 - t1 J;~i 2, 
, (2.21) 

where 

~o = ~o, 
~i = - {2 cos(~r -R;) ~o + ~i' 

(2.22) 

Since the linear transformation (2.22) is nonsingular 
and since the diagonal quadratic form on the right hand 
of (2.21) has n n~ative coefficients,-J;, and one non
negative one, 2712 2.,;i':1 COS2(~ I'-R;), the asserted signa
ture property has .. Ateen proved. 

Let JC(N)(r) be the subspace of JC(N) spanned by all 
the physical mixed kets II', R)(N) of given I' E ZN' 

Since H(N) has only vanishing matrix elements between 
two subspaces JC (N) (r) and JC (N) (r') with r "" r',.we 
only consider the two-magnon spectrum of H(N) when 
this operator is restricted to each of the subspaces 
JC(N)(r)(I' E ZN)' 

At any desired 1'0 E ZN,H(N) has the spectral proper
ties stated in (1) and (2) below. In the statement of these 
properties and throughout this paper the follOWing defi
nitions obtain. Eigenvalues will always be counted 
according to their multipliCities. In accordance with our 
earlier remarks, the preCise meaning of the limit N ~ <lO 

is that N tends to infinity through odd positive integral 
values, with all the a.(j = 1,2,3) and Jk(k = 1, ... ,n) 
being kept fixed. J 

(1) The number of eigenvalues of H<N) lying in any 
interval El :s E:s E2 differs by at most 2n + 3 from 
the number of eigenvalues of ho(N) lying in that inter
val. when both of these operators are restricted to 
JC(N)(ro)' Any two consecutive eigenvalue? of ~he. res
triction of H(N) to this latter subspace whzch he zn the 
interval E~~(ro):S E:s Ema ... (ro) differ by a(llN) as 
N ~ <Xl. The latter a symbol holds in terms of a constant 
which is independent of I' 0 and of the pair of such con
secutive eigenvalues which are considered. l5 

(2) The operator H(N), restricted to JC(N)(r 0)' has at 
most n eigenvalues (1 efgenvalue) in the interval E < 
E~1~(ro)[E > E<:.J ... (I'o)]· 

Property (2) gives upper bounds on the number of two
magnon "bound" states. In the spirit of the usual solid
state terminology, we shall call a state of the subspace 
JC(N) (I' 0) labeled by a given roE Z Na "bound" two
magnon state of total wave-number 1'0 and energy Eo if 
this state is an eigenstate of H(N) which, when acted upon 
by this operator, yield the eigenvalue Eo obeying one of 
the inequalitiesEo < Emin(I'O) orEo> Ema ... (r o)' 

We now outline a proof of (1) and will prove (2) later 
on in this section. The first assertion (1) can be estab
lished by using two facts. One of these is that this first 
assertion holds if H(N),JC(N)(r ),and 2n + 3 are re
placed by heN], .1C(N )(r 0)' and 2fn + 1), respec!ively. 
The symbol JC(N)(r) denotes the subspace of JC(N) 
spanned by all the physical and unphysical kets II',R)<N) 
of given r E Z N' One readily sees that, at each such r, 
the set {lr,R)(N): R E LN} of liets constitutes an ortho
normal basis for the subspace JC(N)(r) labeled by the I' 
considered. That the first assertion (1) holds in this 
modified sense emerges by applying Ledermann's 
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theoremI6 to the (N + 1)/2 x (N + 1)/2 matrices 
II (r 0' R' I h~N) + vtN ) I r 0' R) II (R and R' range over L~), 
which are symmetric in R and R', keeping in mind the 
first property of v (N) mentioned after (2. 16). The other 
fact is that, for each r of interest every_ eigenvalue of 
the restriction of heN) to the subspace X(N)(I') labeled 
by this 1', with the possible exception of the zero eigen
value, is an eigenvalue of the restriction of H(N) to the 
subspace X(N) (r) labeled by the same 1'. One infers 
this with the aid of (2.10). The second assertion (1) 
follows from the first assertion (1) and the elementary 
fact that any two consecutive eigenvalues of the restric
tion of hbN) to each x(N)(r) have precisely the same 
order property for N ~ <Xl which we have asserted to 
hold for H(N) in (1). 

Consider a real energy Eo lying outside of the inter
val (2.15) labeled by 1':;::: 1'0 E ZN' A necessary and 
sufficient condition for a two-magnon state of total 
wavenumber vector I' 0 and energy Eo to exist is that 
Eo be an eigenvalue of the restriction of h(N) to x(N)(r 0)' 
This should be clear from the above definition of such 
states, the remark in the antepenultimate sentence of 
the previous paragraph and of the inequality Eo ;" 0, 
this inequality resulting from the fact that the point 
E:::: 0 is contained in the interval (2.15) labeled by any 
r E Z N' But as one knows from familiar reasoning, Eo 
is an eigenvalue of the said restric~on of heN) if and 
only if there exists a nonzero qJ E X(N) (I' 0) such that 

(2. 23) 

obtainS, where X(N) (E) is the Lippmann-Schwinger ker
nel operator 

(2.24) 

From (2.24), to&ether with the fact that the set 
{I r, R) (N): R E LJ.d with a specified value of r E Z N 

constitutes an orthonormal basis for the subspace 
labeled by this value and with the first property of v(N) 

mentioned in the paragraph after (2.16), one readily 
concludes that (2.23) holds in the stated sense if and 
only if 

(2.25) 

where I is the (n + 1) x (n + 1) unit matrix and 

K(N)(E,r) == lI(r,R,,1 X(N)(E)lr,R)II, (2.26) 

this definition being effective, in particular, at each pair 
(E, r) which is such that r E Z N and which does not 
obey (2.15) 

A special case of the criterion (2.25) has been em
ployed by Boyd and Callawayll to determine two- mag
non states and resonances. This criterion is equivalent 
to a generalized form of a determinantal condition of 
Wortis.9 This generalization will be given later [Eq. 
(3.8)J in the limiting situation N ~ <Xl. 

Combining (2.24) and (2.26) with the properties of 
{lr,R)(N),R E L N} and V(N) just referred to, and with 
(2.8), the inverse of this last equation, (2.13), (2.14), 
(2. 17), (2. 20), and the above definition of Z N (r), we infer 
that 

K(N)(E,I'):;::: - 2~J II [(1 + O::;:1(t~rlu,o)Jl/21Iv(r) 
(2.27) 
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at each of the pairs (E, r) last mentioned. The arguments 
E and t in (2.27) are related by the equation 

t :;::: - E/4SJ. (2.28) 

Equation (2. 28) should be understood to hold in all 
succeeding equations in which both E and t appear ex
plicitly. We define 

J == ~ J I1 8 1 == Jl/J, (2.29) 
(I) 

Here LJ(t) denotes a summation over a subset of the 
set of magnetic ions located at RI , .•• ,Rn, this summa
tion selecting exactly one magnetic ion from each of 
the orders of neighbors of R :;::: 0 which occur in this 
set. The G~~) (t, I') in (2.27) are the following reduced 
Green's functions: 

cos(r 0 RI!) COS(T 0 Ru) 

(t - l~ ai(r) COS(T· R l ») 
(2.30) 

where 

a 1(1') == a I cos! (1' °Rl ). (2.31) 

We shall regard (2.30), as well as the definitions 
(2.16) for E ~~(I') and E ~~(I'), as holding for all real 
1', where Z N (1') is understood to be speCified at every 
such l' by the same definition given previously. We now 
can, and shall, extend the above definition of K(N) (E, 1') 
to each (E, 1') such that l' is any real vector and that 
(2.15) is not fulfilled by requiring (2.27) to hold at 
each (E,1') of this type. 

From (2.30) together with (2.16), (2.29), (2. 31), and 
an elementary argument, one can show that [I G~~) (t, r) II 
is a positive (negative) definite matrix at those t and r 
at which t < - E max(1')/4SJ [t > - E min (1')/4SJ). From 
this result, the previously determined signature of the 
self-adjoint matrix vcr), (2.30), and a known theorem 
concerning the Signature of a product of two self-adjoint 
matrices, one of which is definite, we conclude that 
K(N)(E,1') has n positive (negative) eigenvalues and 1 
nonpositive (1 nonnegative) eigenvalue when E and rare 
such that E < E~1:(I') [E > E i~~(r»). At any E and l' 
fulfilling one of these two inequalities, the unique eigen
value of this matrix which is nonpositive and nonnega
tive, respectively, in the cited cases, will be denoted by 
k~N)(E, 1') and the remaining n eigenvalues by k~N)(E, r) 
(i,= 1, ... ,n). 

The upper bounds stated in (2) follow from these Sign 
properties of the k':) (E, 1') and the fact that, if (2.15) is 
not fulfilled by a real E :::: Eo when I' :::: 1'0 E Z N' a 
bound state of total wavenumber vec,:tor 1'0 and energy 
Eo exists if and only if K(N)(E o, l' 0) has a unit eigenvalue. 
This fact is obvious from the necessary and sufficient 
condition (2.25). 

Henceforth, we shall concentrate on the case of great
est physical interest, that when N ~ <Xl. 

At any real 1', we define E min (1')[ E max (1'») by the 
same Eq. (2. 16) obtaining for E ~1~(r) [E },,~~(r)], but 
with the maximum (minimum) taken over the paralleliped 
I(T obi)! :s 1T(i :::: 1,2,3) (or over any region equivalent 
to it in the usual periodicity sense), rather than over 
ZN(1'). One can show that the limit of E~!,(1')[Em<u(r)] 
asN ~ <Xl is Emin(1')[Emax(1')]. One can also prove that 
the interval 

E min (1') :s E :s E max (I') (2.32) 
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contains, for eachN, the interval (2.15) pertaining to 
the same r. 

Let 

K(E, r) = - 2;J II (1 + o~:;~:' :\lv.o)]1/211 v(l') 

=ilK"y(E,r)lI, (2.33) 

where 

n 

t - 2:; al(r) COS(T' R l ) 
i~ ~.3~ 

with 

Pi = (T • at) (i = 1,2,3). (2.35) 

For a given r = r 0 and all/L and 11, it is trivially true 
that G JlV (t, l' 0) exists as a finite number for t < t min (1' 0) 
and t .> t ma:< (ro), where 

t. (r)==_Emax(r) t (r)=_Emin(r) (2.36) 
m,n 4SJ 'max 4SJ ' 

and thus that I K"y (E, r 0) 1 < 00 for every /L, 11 when E < 
E min (r 0) or E > E max (1' 0)' However, the denominator 
of (2.34) has zeros in the pertinent domain of integra
tion for r = r 0 if and only if t = t min (1' 0) or t = tmax{r 0)' 
and those zeros are well known to lead to divergent re
sults in some cases. It is elementary that 1 Gpu(t, 1'0) 1<00 
for all/L and 11 at t = t min (1'0) or t = tmax (1' oj if and 
only if IGoo(t, 1'0) I < 00 at these respective values of t. 

1 
K(E,r) =-

2S 

-1J[tG oo (t,r) - 1] 

where, as usual, i,j = 1, ... ,no This formula, which 
applies whenever E and r have the property E!S Emin(l') 
or E 2 Emax(r) and the additional one that IGoo(t,r)l<oo 
at the corresponding value (2.28) of t, is a direct conse
quence of (2.18), (2.20), (2.29), (2.31), (2.33), and the 
sum rule 

n 

L) a.(r)G"j(t,r)=tG,.o(t,r)-o".o 
j=l J 

(2.39) 

entailed by (2.34) at the values of E and l' just specified. 

As expected,K(E,l') has n positive (n negative) eigen
values and 1 nonpositive (1 nonnegative) eigenvalue at 
each pair (E, 1') which fulfills the condition E !S E min (1') 
[E 2 Emax(r)] and is also such that all the Kjj/J (E, 1') are 
finite at this pair. Naturally, these sign properties can 
be proved in a way parallel to that .employed to establish 
the signs of the eigenvalues of K(N}(E,r). At each (E,r) 
not fulfilling (2.32), the unique eigenvalue of K(E,r) 
which is nonpositive and nonnegative in the respective 
stated cases will be designated by ko(E,r) and the other 
n eigenvalues of this matrix by k,(E, 1') (i = 1, ... , n). 
Moreover, at any such (E, 1'), each of the kll (E, r) will be 
selected to be a continuous function of E. That this 
selection is possible can be inferred with the aid of 
(2.33) and the fact, easily deducible from (2.34), that 
the Gil" (t, 1') have a similar continuity property with re
spect to t. 

The positive kJ.l(E, 1') have monotonicity properties 
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It should be clear that when this property of Goo(t,ro) 
holds at t = tmin(rO)[t = tmax(ro)},eachKl'v(E,ro) is 

max 
finite for E 2 Emax(ro)[E!S Emin(rO)]' 

Employing, in particular, Eqs. (2.27), (2. 30), (2. 33), 
(2.34), (2.35), and the generalized definition of Z N(r) 
in the second paragraph after (2.30), one finds 

G"y(t,r) = lim G~~)(t,r), 
N-<>o 

(2.37) 
K,./J(E,r)= lim K~:)(E, 1'), 

N~"" 

the first of (2.37) obtaining at pairs (t,r) such that t < 
t min (1') or t> t max (1'), and the second at pairs (E,r) not 
satisfying (2.32). 

Equations of the type (2.37) expressing elementary 
and well-known replacements of sums by integrals in 
the indicated limit, provide only a purely heuristic basis 
for replacing, say,K(N)(E,r) by K(E,r) in the theory of 
bound two-magnon states of large enough crystals, as 
well as for making similar substitutions in the case of 
other localized states in solids. Theorem 2.1, stated 
near the end of this section, constitutes a sound mathe
matical foundation for approximating the energy eigen
values of such magnon states in the limit N ~ 00 (within 
the periodic-boundary-conditions framework) by those 
values of E outside of the relevant intervals (2.32) at 
whichK(E,r) has a unit eigenvalue for the pertinent 
vectors r. Undoubtedly, similar theorems could be 
proved for a variety of localized states in crystals. 

The following explicit formula for the latter matrix 
will prove useful in this paper: 

(2.38 

which will playa central role in this investigation and 
which are of the same type as those pointed out by ROll
nik17 and Weinberg18 for analogous eigenvalues occurr
ing in the usual two-body problems of nonrelativistic 
quantum mechanics. [Properties of the same kind are 
possessed, of course, by. the positive eigenvalues 
f/ N ) (E, 1') if these are appropriately labeled.] We pro
c~ed to indicate how these properties of the kl' (E,r) in 
question arise. 

Consider a fixed, but arbitrary, subinterval of the in
terval E !S E min (1') of E 2 E max (1') for a given value of 
r. Then, at each,(E, 1') such that l' has the latter value 
and E is in the subinterval in question, every k,,(E, 1') is 
differentiable v,rith respect to E and obeys the equation 

akll(E,r) 
aE = pp.(E,r)kll(E,r), 

where 

( ) _( .. S=--:(:..--E.=-, r---'.)_-l_o.=.-S(:..--E.=-, r---'.)~/a_E--=S=--:(E_,:..--r---'.)-_l~)" 
P E,r =-

" <S(E, 1')-1)" 
(2.40) 

Here S(E,r) == IIG"v(E,r)/[(l + 0" 0)(1 + 0v Q)]1/211, 
as(E,r)/aE =11 aSllv(E,r)/oEII, and {A(E,r»1l = 1/I:(E, 
r)A(E,r) 1/1 (E,r) where 1/I1I(E,r) is a column vector 
satisfying the eigenvalue equation K(E, 1') = kll(E, r)1/I1l(E, 
1') and whose components are suitably differentiable 
with respect to E, and where + denotes the hermitian ad
joint. We derived (2.40) by a rigorous version of Wein
berg's differentiation argument.18. 19 
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Every p (E, r) is finite and positive (finite and nega
tive) at eich (E, r) such that E < E min (r)[E> E max (r)]. 
One can prove this by invoking, in particular, the easily 
proved positive definiteness of 09 (E, r)/oE at those 
pairs (E, r) not obeying (2.32) and the definiteness 
properties of S(E,r) at each (E,r) of this type. 

One can now conclude the following about the eigen
values of K(E, r) which are nonnegative on the pertinent 
energy intervals, in view of the above continuity property 
of the k (E, r) with respect to E, the circumstance that 
(2.40) Jhtains within the stated possible exceptions on 
each subinterval of the indicated type, and the properties 
of the PI!(E, r) just mentioned. At any chosen r = r 0' 

each k i (E, r 0) is a strictly increasing function of E at 
all those E :5 E min(r 0) at which all the K~u(E, r 0) are 
finite, and ko(E, r 0) is either strictly decreasing in E 
or vanishes at all those E 2': E ma x (r 0) at which this 
finiteness condition obtains for each p, and v. 

Before stating Theorem 2.1, some definitions are in 
order. The k(N)(E, r) referred to in this theorem should 
be understood to have been chosen as jOintly continuous 
in E and all the (r' ak)(k = 1,2,3) at each (E, r) at 
which (2.32) does not hold. An argument analogous to 
one outlined previously shows that this choice is possi
ble. In addition, the k~N)(E, r) are assumed to have been 
selected in such a way that for each p, the limit of 
k(N) (E, r) for N ~ 00 exists at every (E, r) of the type 
j~st mentioned. It is readily shown that these two re
quirements can be fulfilled simultaneously. The kf(E, r) 
of Theorem 2. 1 are defined as follows in terms 0 a 
given set of eigenvalues k~N) (E, r) satisfying both of 
these conditions: 

k~(E,r) = lim k~N)(E,r). 
N~<X) 

(2.41) 

One can show that the definition (2.41), which is very 
natural in the context of the said theorem, is consistent 
with our previous definition of the k~ (E, r). 

Theorem 2.1: Consider a fixed p, = 0,1, ... n and a 
fixed E > O. Denote by Sf the set of all pairs (E, r) for 
which r E Z qnd either E :5 E min(r) - E or E 2': E max 
(r) + E. Let r be a vector in Z at which the eql«ltion 

k~(E,f) = 1 

has the (unique) solution E such that (E, r) E Se At each 
odd positive integer N, let r N' be a vector in Z N' these 
vectors converging to r: 

lim I r - r N I = O. 
N~oo 

At each such N and every real r, denote by E,v([') the 
solution IJAnique if it exists) of 

k~N)(E,r) = 1, 

such that EN(r) lies outside of the interval (2.25) per
taining to the r in question. Then E N(r N) exists at each 
N 2': No of this type, whe;re No = N o(E) is a positive in
teger independent of N, r,and the set of vectors rN con
sidered, and 

lim EN(rN) = E, 
N~oo 

this limit being attained uniformly with respect to r. 
Our proof of this theorem will be omitted because of 

its length.~.o Notice that a set of such vectors r N exists 
for every r E Z and that the uniqueness properties in 

J. Math. Phys., Vol. 14, No. 12, December 1973 

1843 

the theorem are trivial consequences of the pertinent 
monotonicity properties of the kJl and kff). 

There is a clear heuristic reason for introducing the 
arbitrarily small positive E, which remains fixed as 
N ~ 00. Indeed, one cannot expect that the standard re
placement of sums by integrals will be accurate, even 
for large N, unless the energy eigenvalues of the bound 
states of interest lie at distances from the edges of the 
relevant band (2.32) which are large compared with the 
spacing of the pertinent eigenvalues E(N)(r, r). 

3. RIGOROUS UPPER AND LOWER BOUNDS ON THE 
NUMBER OF BOUND STATES 

Having laid the foundations in Sec. 2, we are now pre
pared to discuss our techniques, mainly of the trace
inequality type, for the study of two- magnon bound states 
in Heisenberg ferromagnets in the limiting case N ~ 00, 

the only case which will be considered henceforth. 

In dealing with the case E = Emin(r) [E = Emax(r)], 
we shall always suppose from now on that r is such that 
I Goo(t, r) 1< 00 at t = t max ([')[t = t min(IjJ. This finite
ness condition will make all of our subsequent trace 
eql«llities and inequalities meaningful in these two cases. 
The first, less restrictive, of the two definitions of the 
k,,(E, r) given in Sec. 2 applies in all of our subsequent 
discussions. 

Whenever we speak in future of the existence or non
existence of bound states with energies E in a specified 
range and with (or at) given values of r E Z, or use 
obviously equivalent terms, we shall naturally mean, in 
the spirit of Theorem 2.1, that the appropriate matrix 
K(E, r) has a unit eigenvalue or no unit eigenvalue, re
spectively, at the values of E and r not obeying (2.32) 
which are considered. 

For each roE Z we denote by N 1 (Eo,ro)[N2(Eo,ro)] 
the total number of times that the n + 1 eigenvalues 
~ (E, r 0) attain the value unity in any given interval 
E< Eo:5 Emin(ro)[E>Eo 2': Emax(rO)]' 

The following two theorems, the first of which is ana
logous to a result obtained by Schwinger21 in a two-body 
nonrelativistic context, provide upper bounds on the 
number of bound states. In the statement of these and 
the other four theorems, r 0 will denote an arbitrary 
fixed vector in Z. 

Theorem 3. 1: One has 

(3.1) 

for all m= 1,2, ... whenEo:5 Emin(rO) and Eo 2': Emax 
(r 0)' respectively. 

Proof: Because of the stated monotonicity and con
tinuity of the kJl(E, r 0) as functions of E, one infers that 
N1(Eo,ro) andN2(E o,ro) are equal to the total number 
of kJl (E 0' r 0) which are larger than unity when Eo :5 

Emin(rO) and Eo 2': Emax(ro), respectively. Hence, when 
Eo and r 0 obey these respective inequalities, 

N 1.2(E O,ro)< I; k~(Eo,ro), (3.2) 
ex 

for any nonnegative integer r, a running over all the 
positive eigenvaluesk,,(Eo,ro) ofK(Eo,ro)' Therefore, 

n 

N1.2 (Eo, ro) < 2:; k~(Eo, ro) = TrK2m(Eo, ro) 
V"O 

in these two respective cases for any positive integer 
m. 
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Theorem 3.2: Let p and q be positive integers 
such that p is odd and q is even, and let Eo :s Emin (r 0)' 
Then 

N1(E O,ro) < Apq(Eo,ro) 

== TrKP(Eo,ro) + [TrKq(Eo,ro))P/q. (3.3a) 

Moreover if P and q possess these properties and are 
such that p > q, then 

in the respective intervals Eo :s E min (r 0) and Eo ~ 
Emax(ro)· 

(3.3b) 

Proof: Let Eo, r o,p, and q be selected to satisfy 
the conditions of the first sentence of the theorem. 
From the inequalities ko(Eo,ro):S 0 and ki(Eo,ro) > 0 
which then hold, and from the assumed properties of p 
and q, one finds 

n 

Apq(EO,ro) = 6 kf(Eo,ro) 
F1 

+[(kg(Eo,ro) + t1 k'f(Eo,ro)r/q-'kg(Eo,ro)~. 

Noticing that the quantity inside the square brackets 
in this equation is positive for such a choice of para
meters and invoking (3.2), one concludes that (3.3a) 
obtains under the stated circumstances. 

To prove the remaining portion of the theorem, we 
proceed as follows. If Eo, r o,p, and q are chosen in 
accordance with the third sentence of the theorem, so 
that, in particular,p > q, we infer with the aid of Jensen's 
inequality22 that 

[TrKq(Eo,ro)]Plq = (to k:(Eo,ro~P/q ~ to kll(Eo,ro)l. 

Whence 
71 

Apq(Eo,ro) :> 6 
11=0 

n 

kt(Eo, r 0) + 6 I kt(Eo, r 0) I 
1,=0 

= 2 6 k~(Eo,ro) 
ex 

for this selection, and thus, recalling (3.2), we see that 
the desired inequality (3. 3b) holds under the conditions 
of interest. 

For the sake of convenient reference in subsequent 
discussions, we state Theorems 3.3 and 3.4, which are 
immediate consequences of Theorems 3. 1 and 3. 2 res
pectively. 

Theorem 3.3: When Eo:S E min(r 0) [Eo ~ Emax (ro)), 
no bound states with r = r 0 and E < Eo :s E min (r 0) 

[ E > E 0 ~ E ma x (r 0)] exis t if 

(3.4) 

for some m = 1,2,···. 

Theorem 3.4: No bound states with r = ro and 
E < Eo :s E min (r 0) exist if there is a pair of positive 
integers p and q, odd and even, respectively, and such 
that 

(3.5a) 

Moreover, a SUfficient condition for the nonexistence 
of bound states with r = r 0 and either E < Eo:S Emi n (r 0) 
or E > Eo ~ E max (r 0) is that· there exist two positive 
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integers p and q with these properties and the added one 
p> q, such that 

(3.5b) 

While the simple trace inequality (3.4) evidently fails 
in every case when Eo:S Emin(rO) and Eo ~ Emax(ro) 
if one of the negative eigenvalues k (Eo, r 0) is larger 
than unity in absolute value, the tra~e inequalities (3. 5a) 
and (3. 5b) are obeyed in certain cases of this kind, some 
of which will be dealt with in Sec. 5 of this paper. Indeed, 
it can be shown that if there are no bound states with 
r = r 0 in the energy region E < Eo :s E min (r 0)' there 
exist positive integers p and q < p, odd and even respec
tively, such that A pq (E 0' r 0) is smaller than any pre
aSSigned positive number. 

Let us now turn to a criterion for the existence of 
bound states. 

Theorem 3.5: For Eo:S Em;n(ro)[Eo~Emax(rO)]' 
a sufficient condition for the existence of at least one 
bound state with r = r 0 and E < Eo(E> Eo) is that there 
be an odd positive integer p and an even positive integer 
q < p such that 

(3.6) 

Proof: Let Eo:S Emin(rO) or Eo ~ Emax(ro),and 
let Eo, r o,p and q satisfy the conditions asserted to be 
sufficient in the theorem. Denoting by 66 a summation 
over all the nonpositive eigenvalues ks (Eo, r 0) of 
K(Eo' r 0)' we then find 

0< TrKP(Eo,r o) - TrKq(Eo,ro) 

= 6 k't, (Eo,ro)[k~q(Eo,rci) - 1] 
ex 

- 6 k~ (Eo, ro)[lkg/q(Eo, ro) I + 1] 
6 

:s 6k~(Eo,ro)[k~q(Eo,ro) -1]. 
a 

This result entails, since p > q in the present case, 
that some positive eigenvalue k ex (Eo, r 0) is greater than 
unity. We thus conclude that N 1.2 (E 0' r 0) ~ 1 in the 
respective cases Eo:S Emin(rO) and Eo ~Emax(rO) 
when (3.6) holds in the cases in question. 

Theorems 3.3,3.4 and 3.5 have been found to be 
particularly useful in the investigation of the existence 
of bound states at energtes below E min (r), for various 
ranges of r considered in the detailed calculations of 
Secs.4 and 5. The next theorem has proved to be valu
able in showing that no bound states occur at energies 
above E max (r) for ranges of this vector dealt with in 
those calculations. 

Theorem 3.6: Let E1 and ro be such that E1 ~ 
Emax(ro) and that 

(1If1;a.:-
n 

9i )(t1 f3~(ro)/8S)1 Goo(tl>ro) l:s 1, (3.7) 

where t1 == - Ed4SJ and J3;(r) == cos i (r oR;). Then 
there are no bound states with r = r 0 in the energy 
range E> E1 ~ E max (r 0)' 

Proof: In this proof we shall use the fact that a 
necessary and sufficient condition that K(E, r) have at 
least one unit eigenvalue at a prescribed pair (E, r) 
such that E :s E min (r) or E ~ E max (r) is that 

detM(- E/4SJ,r) = 0 (3.8) 
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at this (E, r), where M (t ,r) is the n x n matrix with 
elements 

Mij (t, r) == - Gij(t, r) + GiO(t, r) J3j (r) + 25 0i j 3;1. 
. (3.9) 

This fact can be easily derived, via simple algebraic 
manipulations, from (2.38), (2. 39), and the circumstance 
that K (E, r) has this eigenvalue property at the (E, r) 
in question if and only if 

det [K(E, r) - I] = 0 

at this pair. In the derivation of (3. 8) just alluded to it 
is assumed that E '" 0, a condition automatically satis
fied at all values of E and r obeying the finiteness con
dition stated earlier in this section 

Let (t l , r 0) be a pair satisfying the conditions of the 
theorem, and let t? == - E 2 /4SJ, with E2 > El:2: Emax(ro). 
Then I GOO(t2, r 0) I < I GOO(t l , r 0) I, as follows from 
(2.34) by means of elementary considerations. Since 
(3.7) has been assumed to hold at (tl,rO)' we thus con
clude that 

(/!\a:n 3i)(Pl J3~(ro)/85)IGoO(t2,ro)l< 1. (3.10) 

To prove the theorem, we shall show that (3.10) entails 
that the symmetric part of the real matrix M (t2 , r 0)' in 
the unique decomposition of M(t2 , r 0) into symmetric 
and anti symmetric matrices, is positive definite. This 
property of the latter symmetric part implies23 that the 
real parts of all the eigenvalues of M(t2 , r 0) are posi
tive, and hence that (3.8) cannot hold at E = E2 when 
r = r 0, from which the theorem obviously follows. 

Denote by 'JIl (t, r) the n x n matrix with elements 

1 JU J" JU ~i·(t,r) == --
J (2rr)3 -1[ -u -u 

[cos(r-Ri) - ~J3i(r)HcoS(T·Rj) - tJ3j (r)] d 
IL dPl dP2 P:3. 

t - I; al (r) COS(T· R l ) 
l~l (3. 11) 

An argument parallel to one alluded to earlier shows 
that 'JIl(t2' r 0) is positive definite. 

From (3.10) and (3.11), the symmetric part of M(t, r) 
is 

Ms(t, r) = ~(t, r) + 'JL(t, r), (3.12) 

where 

(3.13) 

Here J3(r) and & are the n x n diagonal matrices 
[J3 i(r)o i'] and [8i 0ij]' respectively, JI being obviously 
poSitivJ definite, and '.t is the positive semidefinite mat
rix all of whose elements are equal to unity. As we shall 
prove shortly,'JL(t2,ro) is positive definite. Combining 
this fact with (3.12) and the positive definiteness of 
'JIl(t2, r 0), the promised result that Ms (t2' r 0) has this 
same property follows. 

A particularly suggestive notation with which to prove 
the positive definiteness of 'JL (t 2 , r 0) is the inner pro
duct notation (ip, 1/1) == I;/~l ip.l/lj, where ip = [ip;] and 
:/J = [I/I;](i = 1, ... ,n) are coiumn vectors withn real 
components. Using in particular (3.13) the familiar 
inequality 

(ip, eip) ~ Y(ip, ip), 
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y, 
FIG 1. One eighth of the Brillouin zone of the bec structure, showing 
the pertinent points and lines of symmetry. 

where e is an n x n symmetric matrix and y is its maxi
mum eigenvalue, the fact that the maximum eigenvalue 
of J3(r 0) '.tJ3 (r 0) is equal to 6t~ 1 J3~ (r 0)' the inequality 
Goo (til , r 0) < 0, easily obtainable from (2.34), and 
(3.10) we readily conclude that 

(ip,'JL(t2,rO) ip) 

= 25(ip, JI-lip) - tlGoo (t2,rO) I (ip,J3(ro)'.tJ3(ro)ip) I 

:2: [25 (l/max .1> - t I GOO (t2 , r 0) I t J32 (ro)l (ip, ip) > 0, 
l:Si:5n ~ i:::l t J 

if (ip, ip) > 0, i.e., that 'JL(t2,rO) is positive definite. 
Hence we have completed proving the theorem. 

4. BCC STRUCTURE WITH NN INTERACTIONS: r IN 
THE [100] DIRECTION 

Henceforth we shall be mainly interested in illustrat
ing the techniques of Sec. 3 for the example when the 
magnetic ions constitute a bcc lattice and are only 
coupled by NN interactions. An eighth of the first 
Brillouin zone Zbcc of the bcc structure, including a 
complete set of inequivalent special points and special 
lines of this zone, is shown in Fig. 1 for future refer
ence.l 0 In this figure, the arrows refer to the respec
tive directions of three mutually perpendicular unit 
vectors ip(P = 1,2,3), each such ip pOinting of course 
along one of the cubic axes, and y p == (r • ip) for each 
of these unit vectors. 

Before studying the case when r is a vector of Zbcc 
parallel to the [100] direction, we give some formulas 
which will prove useful in the sequel. 

The basis vectors ap(p = 1,2,3) of a bcc lattice and 
the vectors R z (I = 1,2,3,4) connecting a given site of 
such a lattice to half of its nearest-neighbor sites will 
be chosen as specified by the equations below: 

ap = (a/2){- ip + iq + i r ), 

Rl = a l (I = 1,2,3), R4 = a l + a2 + a 3 , 

(4.1) 

where p, q, r are a cyclic permutation of 1,2,3 and a is 
the length of the edge of the elementary cube of the bcc 
lattice. We shall use units of length such that a is unity. 

When NN coupling alone is present, the following 
equation holds at each r for the sc and the bcc struc
tures: 
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TABLE I. Formulas for ", and (for a complete set of inequivalent 
special points and special lines of the first Brillouin zone 
of the bcc structure for the case of purely NN interactions. 

Special Points 
r and 

Special Lines 

r: y= ° 
(y,O,O) H: y= 211, 

fl.: 0< Y < 211 

(y,y, y) P: y= 11, 

j\: ° < y < 11 

(y,y,O) L: 0< y < 11 

(1I,1I,y) D: ° < y < 11 

(211 - y, y, y) F: ° < y < 11 

(211- y,y,O) N: y= 11, 

G: 0< y < 11 

(a = 1) 

", 

",= cos(y/4) = ", 
1= 1,2,3,4 

Ci 1 = 02= 0'3 

= cos(y/4), 

"4 = cos(3y/4) 

"1 = "2 = 1, 

G'3=-o4= 

cos(y/2) 

"1 = "2 = 
cos(y/4), 

"3=-"4= 
sin(y/4) 

"1 = sin(3y/4), 

"2="3=-"4 
= sin(y/4) 

7 

4" 

4"1 
if ° < y';; Yc; Q 

8" 1 (1 - ,,~)3/2 

(3 - 4"i)1/2 

if Yc < y';; 11 

2 

8"2(1- ,,~)3/2 

(3 - 4,,~)l/2 

"1 = "2 = sin(y/2) 2" 1 

"3 = "4 = ° 
Q Yc is the unique solution of cos(yr4) = .J2l3 in the interval ° < y < 11. 

E min(r) = - Emax(r). 

From this equation, (2.28), and (2.36), we may write 

(4.2) 

Until further notice, we shall concentrate exclusively 
on bcc ferromagnets with solely NN coupling. Table I 
gives the values of r corresponding to the points and 
lines of symmetry of Zbcc exhibited in Fig. 1, as well 
as formulas for t{r) and (IIz(I') (f = 1,2,3,4) appropriate 
to the values in question. 

In this table and in what follows, a vector r = ~:~1 Ypip 
is denoted by (YlI Y2'Y3)' 

From Eqs. (2. 34), (2.35), and (4.1), we arrive at the 
integral representation below in the case of ferromag
nets of the latter structure and coupling: 

1 J" J" J" G"v(t,r) =--
.. (21T)3 -" -" -" 

cosp" cosPvtip1 dP2dP3 
4 

f - ~ (II1(r) COSPI 
10 1 

(4.3) 

In accordance with our earlier convention and the fact 
that n = 4 for the ferromagnets being considered, the 
indices /J, v range from 0 to 4 in (4.3) and elsewhere in 
this and the succeeding section, and the indices i,j range 
from 1 to 4 in these two sections. 

With the aid of (4.3), one concludes that 

Goo{- t,r) = - Goo(f, r), 

GiO(- f,r) = GiO{t,r), 

G ij (- f, r) = - G ij (f, r), 
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at those real I and r which are such that both I I I ::s i(r) 
and IGoo(l,r)l< exl. 

For the bcc example under discussion, we are in
terested primarily in the question of whether bound 
states exist at all at energies below E min(r) or above 
Emax(r), although we feel that much more than this 
could be obtained in many cases by a sagacious applica
tion of suitable theorems of Sec. 3. Because of (4.2), 
(4.4), and the fact that in the relevant equations [for 
example in (2.33] I and E are related by (2.28), we may 
limit ourselves, as far as this existence question is con
cerl!..ed, to the evaluation of the fun~tions G "V (t, r) at 
1= t(r) when r is such that I Goo(/(r), r)1 < exl. 

Let us turn to the situation when r is a vector of ZbCC 
of the form (y, 0, 0), with O::s Y ::s 21T. 

W~ begin by c_alculating the pertinent quantities 
G!LV (f, r) = G "V (t(r), r) at such values of r. The calcu
lations are greatly simplified by the fact, exhibited in 
Table I, that all the (liz (r) in (4.3) are equal to the same 
number (II (r) at each of these r. If r coincides with the 
central point r of Zbcc or is a point of the special line 
A, then 0 < (II(r)::s 1; and if it is coincident with the 
special point H on the zone boundary, then (II(r) = o. 

We shall denote the line segment consisting of the 
point r and of the points of A by the symbol A'. 

From (4.3) and the vanishing of (II(r) when r is at H, 
it is seen that at this value of r 

G"O(/, r) = (III) 15,,0' 

G"j(/,r) = (1/2f)15"j' 
(4.5) 

Because of the Singular behavior of the G" v (I, r) in 
(4.5) as t --) 0, it will prove convenient to handle this 
trivial subcase separately. From the property (II(r) "" 0 
holding when rEA' and by the application of familiar 
transformation procedures t~ the integrals (4.3), we see 
that at every such r the G"v(t,r) are finite and that 
each of them can be expressed as a linear combination 
of the following r-independent integrals: 

10= ~ J" 1" J" dudvdw 

1T3 000 1 - cosu cosv cosw 

11 =-.!... J" J" J" 
dudvdw cos2u 

1T3 000 1 - cosu cosv cosw 

1 1"1"]" dxdydz cos2u cos2v 
12 =-

1T3 000 1- cosu cosv cosw 

Explicitly, we have at each of the latter r: 

where 

S 00 = 10 , 

S Oi = S iO = 10 - 1, 

Sji = 4(10 - 1) + 3(11 - 212), 

Sij =Sji =212 -11,i""j. 

(4.6) 

(4.7) 

The following closed-form expressions for 10 , Iv and 
12 in terms of the complete elliptic integral K of the in
dicated modulus hold: 
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(4.8) 

As is well known, Watson24 derived a closed form 
result for 10 equivalent to the one shown in (4.8). The 
analytical expressions for 11 and 12 in (4.8) were proved 
recently by Joyce.25 

After these preparations, let us investigate the occur
rence of bound states for ferromagnets of bcc structure 
with only NN interactions when r is at r or on A' . 

At any such r, no bound states with energies in the 
range E > E max (r) exist for such ferro magnets at any 
S 2: t.2 6 At the unique vector r of this type at which 
0' (r) = 0, this assertion follows trivially by direct cal
culation or by applying Theorem 3.6 at those E1 that 
are greater than the pertinent energy E max(r), keeping 
in mind that fli(r) = 0 at this unique vector for the latter 
ferromagnets. For any such ferromagnet with a given 
S 2: t , we conclude that no bound states with energies 
above E max (r) are possible at any of the other vectors 
r of the type to which we have just alluded, Le., when r 
coincides with r or lies on A, provided that the inequality 

(4.9) 

is satisfied at the value of S considered. This conclusion 
follows by applying Theorem 3.6 for E1 equal to the 
relevant values of E max (r), using the facts that 
0< fl,(r):::: 1 for the ferromagnets under discussion 
when r is at r or on A and that n = 4 for these ferro
magnets, and by employing (2.36), (4. 2), (4.4), and (4.7). 
That (4.9) obtains for S 2: t is obvious from (4.8). 

For the pertinent ferromagnets, we proceed to estab
lish rigorously a threshold for the appearance of bound 
states with energies E < E min (r) for the range of r of 
interest, by employing exact expressions for the eigen
values of K (E, r) at E = E min (r). We shall then compare 
this exact threshold formula with rigorous upper and 
lower bounds to the threshold in question obtained by 
three of the trace-inequality methods of Sec. 3. 

When speCialized to the bcc structure with NN coup
ling only, (2. 38) leads to the results below if r is at 
r or at A', as is inferred by employing (4.7) and the 
facts that 0' j (r) = 0' (r) and that :J i = 1 for the situation 
under consideration: 

Koo(E,r) = -'/j[tGoo(t,r) - 1], 

K Oi (E, r) = (1/.f2)[G01 (t, [') - '/j0' ([')Goo(t, [')], 

KiO(E,[') ==-{21jtG01 (t,['), (4.10) 

K ii (E, [') == Gll (t, [') - 1)0' ([')G01 (t, ['), 

Kij (E,[') == G12 (t,[') -'/j0'([')G 01 (t,['), i '" j. 

From (4.3), it follows that all the eigenvalues ki(E, [') 
of the matrix K(E, [') which is specified by (4.10) are 
equal at each t '" 0 when [' is at H, their common value 
then being 1/4St. Whence one concludes in the case of 
the present ferromagnets that when r coincides with 
this special point there is a quadruply degenerate bound 
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state energy eigenvalue lying below E min (r), this eigen
value being equal to - J< O. 

When rEA' and E lies either below E min (r) or above 
E max (['), three of the eigenvalues of this last matrix 
K(E, [') 'ire equal and the others are nondegenerate. 
Letting k i ([') == ki(E min(r), r) in the specific case when 
(4.10) holds, one finds over the latter range of [' that 

~ ~ ~ 10 + 11 - 212 - 1 
k 1 (r) = k2([') = k3([') = , 

2SO' (r) 

k4 (r) = Qo - 1~ ~_1 ___ 21) + ~(_1 __ 21))2 + ~J1/2t. 
4S ~O'(r) II O'(r) 10 - 1 f 

(4.11) 

For the NN-coupled bcc ferromagnets being dealt 
with, the values of O'{r) at which bound states occur at 
appropriate values of E < Emin(r) when r roams~ over 
A' a~e now easily obtained from the inequalities k1(r» 1 
and k 4 (r) > 1. From (4.11) and the second of these in
equalities, one finds for these ferromagnets at a given 
S 2: t and rEA' that a nondegenerate bound state eigen
value exists below E min ([') if and only if 

O'(r) < (10 - 1)/(2S + 10 - 1) (4. 12a) 

at the Sand r conSidered, and that the remaining type of 
bound state eigenvalues, the triply degenerate ones, 
exist in this energy range if and only if 

0'([') < (/0 + 11 - 212 - 1)/2S (4. 12b) 

at this Sand ['. 

Notice that the right-hand sides of (4. 12a) and (4. 12b) 
are positive, so that these bound state conditions are not 
empty, and that the first right-hand side is larger than 
the second. Hence the right-hand side of (4. 12a) is the 
least upper bound of the values of 0' ([') over those vec
tors [' E t:J.' at which a bound state with an energy below 
E min(r) exists in the case (4.10) of present interest.27 
In other words, when [' is confined to A' the first such 
states to emerge from the continuum in this case as 
Cl' ([') dec reases through this least upper bound (thres
hold value) are those pertaining to nondegenerate energy 
eigenvalues. 

We now compare these exact results with rigorous 
trace-inequality bounds derived by the use of Theorems 
3.3 and 3.5. In this comparison and henceforth, we 
shall employ the abbreviation K([,) == K(E min(r), ['). 

In the case under diSCUSSion, we estimated the range 
of values assumed by 0' ([') over those [' E A' at which 
no bound states with energies in the interval E < Emin([') 
occur by applying the conditions Tr K2 ([') < 1 and 
TrK4([') < 1. When (4.10) obtains, these conditions hold 
at a given [' E A' and a prescribed S 2: t if and only if 
the respective inequalities 

do. At each such S, 0' 1 (S) and 0'2 (S) are positive and 
clearly constitute upper bounds of the exact threshold 
value of Cl'(r) furnished by (4. 12a). It can be shown that 
these two bounds share an essential property of this 
exact value, namely, that they both tend to zero as S --> 00. 

We investigated the values assumed by O'(r) at the 
vectors [' E A' at which bound states with energies 
E < E min ([') occur for the ferromagnets under study by 
means of the conditions TrK4(r) > TrK3(I') and 
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TABLE ll_ Comparison of exact results with trace-inequality results 
for bound state thresholds, for bcc structures with NN 
interactions alone: r parallel to [1001 • 

Right-hand 
5 "1(5) "2(5) "3(5) "4(5) Side of (4. 12a) 

1 0.4983 0.2944 0.2178 0.2598 0.2822 , 
0.1969 0.1671 0.1364 O. 1580 0.1643 

1- 0.1370 0.1175 0.0963 0.1120 0.1159 2 

TrK5(r) > TrK4(r). When (4.10) holds, these inequal
ities are satisfied at a specified r on this line and a 
chosen S ~ i if and only if 

respectively, at this rand S. At each S in this range, 
the quantities O! 3 (S) and O! 4 (S) are less than unity. Since 
it is obvious that O! 3 (S) and O! 4 (S) are lower bounds of 
the relevant exact threshold for every S ~ i, their posi
tivity for each such S and the fact that they tend to zero 
as S ~ ex) follow trivially from previous remarks. 

The values of the O! i (S)(i = 1, 2, 3, 4) are given in 
Table II for S = i, 1, t. It is seen from this table that 
0!2(S) is very close to the exact threshold result for 
these three spin values. This cannot be said for 0!1 (S) 
when S = i, but for S = 1,!, 0!1 (S) is reasonably close 
to the corresponding exact values, particularly in view 
of the fact that O! 1 (S) is obtained by using the lowest 
power of m stated in Theorem 3.3. Similarly, since 
0!3(S) results by using the lowest powers of p and q 
permitted by Theorem 3.5, we feel that 0!3(S) is reason
ably near to the pertinent exact values for S = i, 1, t. 
One also sees that O! 4 (S) is quite close to the corres
ponding exact value for these three choices of S. 

We now return to our earlier results on the degene
racy of the eigenvalues of K(E, r) in the case (4.10) at 
those pairs (E, r) such that r coincides with H or is 
a point of ~', and which do not fulfill (2.32). These re
sults are not explainable on the sole basis of the point 
group of r, which is the full cubic group Ok for the 
special points rand Hand one of its subgroups, C4v , for the 
special line ~.28 This is in sharp contrast with the 
corresponding situation for the NN-coupled sc structure, 
where, for pairs (E, r) such that r is a special point of 
the pertinent Brillouin zone or is a point of one of its 
special lines, and which do not obey (2.32), the degener
acies of the eigenvalues of this matrix can be accounted 
for by point-group arguments alone. 

The spin- space groups discussed by Brinkman and 
Elliott29 could well prove useful in ameliorating, or 
even in removing, the deficiencies of the point groups 
in these and other degeneracy problems encountered 
in the study of bound magnon states. Some symmetry 
properties of two-magnon states have been considered 
from this point of view, 30 but it is not known whether 
the problem of explaining bound state degeneracies is 
soluble by such means. 

5. BCC STRUCTURE WITH NN INTERACTIONS: 
(111) AND (110) DIRECTIONS OF r 

The methods of Sec. 3, whose effectiveness for these 
directions of r is illustrated in this section for the case 
of bcc ferromagnets with nonvanishing interactions be
tween NN ions alone, have also been fruitfully applied 
to this case for the respective situations when r was 
on the special lines D and F on the boundary of Zbcc' 
All further remarks on bound states and other matters 
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For the respective cases when r E Zbcc was parallel 
to the [111] direction (line A and point P) and the [110] 
direction (line ~~), we computed the basic sets of Green's 
functions Gjlll(t, r) mentioned in the Appendix by means 
of the techniques outlined therein. The elements of 
the pertinent matrix K (E, r) were readily calculated 
at the desired values of E and r from a knowledge of 
the values of these basic Green's functions. The latter 
were evaluated to within an accuracy of at least 
0.5 x 10-6 at the values of the parameter y of Table I 
which were considered, except for values of y pertaining 
to vectors r on ~ which were extremely close to the 
point N(1f - y:S 1O-4 1f), where the accuracy in question 
is judged to be about 10-5 • The adjacent values of the 
set of values of y at which the above numerical integra
tions were performed for the [111] and [110] cases 
differed by amounts which varied from 2 x 10-2 1f to 
10-4 1f. The differences between these adjacent eigen
values were carefully chosen small enough to enable 
us, in particular, to safely reach the conclusions of this 
section relative to the respective ranges of validity of 
various trace inequalities employed to investigate the 
existence of bound states at energies E < E min(r) in 
the stated ranges of r, and to reliably arrive at the 
exact bound state result (5.3). The negative conclusion 
mentioned below concerning bound states with energies 
E > E max (r) at the specified r vectors was independent 
of any such choice. 

Purely for the sake of completeness, we mention that 
only qualitative arguments are required to establish 
that, for the ferromagnets being investigated, bound 
states exist for each S ~ i at some E < E min(r) for 
points r of ~,D, and F which are sufficiently close to 
the point N on the zone boundary. (Arguments of the 
same type are effective in establishing analogous quali
tative results for the [100] case dealt with in Sec. 4 and 
also when r is any point of line G or coincides with 
point N , but they are of little interest in these three 
cases, since then the two-magnon bound state problem 
can be solved exactly in Simple closed form31). Indeed, 
if r is a special point of Zbcc different from H or is a 
point of any special line of this zone, it can be proved 
with the aid of (2.38), (4. 3), and Table I that K(r) has 
the (finite) positive eigenvalue 

for every S ~ i when only NN interactions are opera
tive. Employing (2.28), (2. 36), (4.2), (4.3), and Table I, 
one concludes that k(r) ~ <Xl as r tends to point N along 
~ or D or to point H along F. From this and the mono
toniCity and continuity properties of the kiE, r), the 
above statement relative to the existence of bound states 
for suitable points r of ~,D, and F follows. 

We now turn to the study of the bound state problem 
of interest for the points r of A' , which we define as the 
line consisting of the points of A and of the point P. We 
shall then deal with the corresponding problem for line 
~. 

Line A' 

In the case of the ferromagnets under discussion, we 
shall prove that whenever r is on this line no bound 
states exist for any S ~ i when E > E max (r), and shall 
summarize the numerical trace-inequality results 
which exclude bound states from the range E < E min (r) 
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at all such [' for a set of values of S which presumably 
include all those of practical interest. 

For these ferromagnets, a sufficient condition for 
the nonexistence of a bound state at an energy above 
E ",ax ([') for a given S ~ t and a prescribed [' E A' is 
that the inequality 

(5.1) 

be satisfied at the Sand [', as follows from considera
tions similar to ones used to establish the analogous 
condition (4.9). We proceed to show that (5.1) obtains 
at the desired parameter values by means of an argu
ment whose only appeal to numerical work is in the 
evaluation of Goo(f, [') at a single v~lue of ['. It can be 
shown purely analytically that Goo(t, [') is bounded at 
all [' E A' and thaUt attains its maximum over all such 
[' at the unique value [' = [' c == h/c'yc'yc)'yc being the 
only root of 

cos(y/4) = ../2/3 

in the interval 0 < I' < u. Numerical computation yields: 

Goo(t, [') = 0.950819 at [' = [' c' 

Therefore (5.1) holds for all S ~ t when [' E A'. 

Preliminary to discussing the existence of bound 
states at energies E < E min ([') for vectors [' of this 
last type, we mention a phenomenon pertaining to the 
unique nonpositive eigenvalue ko([') ofK([')==K(Emin (['), 

['). Our trace calculations revealed that I k 0 ([') I> 1 
when S = t , in particular when [' was located in certain 
segments of A' and ~,these segments being relatively 
sizeable. Hence Theorem 3.3 proves unsatisfactory for 
the investigation of the regions of nonexistence of bound 
states at energies E < E min ([') in such cases. On the 
other hand, Theorem 3. 4 was found to be a very efficient 
tool in excluding these states at such energy values over 
substantial ran~es of [' in the examples alluded to below, 
even when S == "2. When applied to the present type of 
ferromagnets, Theorem 3.3 yielded good results in the 
cases S > ~ which were examined. 

Our investigation of the existence of bound states at 
energies below E min ([') for [' E A', based on the last 
two mentioned theorems, led to the following conclusions. 
In the case S == t, the inequality 

held for p and q as small as 3 and 4, respectively, over 
the latter range of [', where A p~ ([') == A pq (E min (['), [') 
[Apq(E,[') was defined in (3.3a)]. The inequality 

TrK2([') < 1 

was amply satisfied at all the [' just alluded to when 
10:; So:; 5. We therefore conclude that the ferromagnets 
we are now dealing with have no bound states at any 
such [' in the energy range E < E min([') when to:; S 0:; 5. 

For r == (1',1',1') E A', the GIlV(i:[') exhibit a sharp up
ward cusp as functions of the real variable 1', the tip of 
this cusp being located at I' == Yc' This behavior is 
responsible for the fact that, in particular at each S in 
the last cited range, the largest eigenvalue of K([,) for 
the latter ferromagnets attains a sharp maximum at 
['C as [' varies along A'. When S == t, this maximum 
value is not too far from unity, being then equal to 
0.8318. Hence it is natural to conjecture that these 
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ferromagnets possess a two-magnon resonance at a 
(complex) value of E "near" Emin(['c) for the latter spin 
value. The truth or falsity of this conjecture remains 
to be determined. 

Line ~ 

The use of Theorems 3. 3 and 3.4 eliminated the pos
sibility of bound states with energies E < E min([') for 
[' E ~,except at values of [' on this line extremely close 
to the zone boundary. For example, the application of 
the inequality 

Apq([')::::; 2 

with P == 5, q == 4 for S == t, of this same inequality with 
p = 3, q = 2 for S == 1, and even of the inequality (3.4) 
with m == 1 for t 0:; S 0:; 5, showed that no bound states 
were possible at these energies for vectors [' = (I', 1',0) 
such that 

0< I' 0:; 0.9880u, if S = t-
O < I' 0:; O. 9999u, if 1 0:; So:; 5. 

(5.2) 

Results almost as good as the respective ones in (5.2) 
were obtained for the values of r on ~ at which no 
bound states exist by applying (3. 5a) with p == 3, q = 4 
for S = t, (3. 5b) with p == 3,q == 2 at this same spin 
value, and (3.4) with m = 1 for S == 1. Incidentally, the 
upper bound on I' in the second line of (5. 2) is the 
highest value of this parameter at which the Green's 
function computations of interest in this subsection~ were 
carried out. The numerical calculation of the GIlV(t, [') 
for line ~ by the approach of the Appendix becomes in
creaSingly tedious beyond this value. 

For S == t, we calculated the eigenvalues of K([,) 
directly on the small portion of ~ where trace-inequality 
techniques failed. At each S ~ t, one can show that a 
bound state with energy in the range E < E min([') exists 
at a vector r = (1',1',0) on ~ if and only if I' lies in a 
certain open interval which, to the present accuracy, is 

O. 9958u < I' < 1T, if S == t, (5.3) 

for the ferromagnets investigated in this section. Com
paring the respective stated results expressed by (5.3) 
and by the first line of (5.2), one sees that the latter 
trace-inequality result is in excellent agreement with 
the corresponding exact one. 

For these ferromagnets, it was not possible to exclude 
bound states at energies above E max ([') for all [' E ~ by 
the theorems of Sec. 3. Since a direct eigenvalue 
approach to this question would have been rather tediOUS, 
the matter was not pursued any further. 
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APPENDIX. NUMERICAL EVALUATION OF GREEN'S 
FUNCTIONS FOR THE BCC STRUCTURE WITH NN 
INTERACTIONS: [111] AND [110] DIRECTIONS OF r 

Before discussing in more detail the procedures 
which we employed to r.educe to convenient numerical 
proportions the problem of computing the functions 
Guv (t, [') in (2.34) for the case t == t([') when [' had one 
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of these respective directions, we shall summarize 
these procedures schematically. The G,..v(t, r) with 
/-I, II == 0,1,2, or extensions of these functioCls, were ex
pressed as linear combinations of single integrals, 
whose integrands were known exactly in closed form 
in terms of complete elliptic integrals. After approp
riate transformations to remove the infinite singulari
ties in these integrands, the single integrals in question 
were computed by Gaussian quadratures on a CDC 3800 
computer at the Nav~l Research Laboratory. From the 
values of these G jJvlt, r) or of the alluded to extensions 
the remaining GHV(t, r) were computed for vectors 
r E Zbcc in the [111] and [110] directions via simple 
algebraic formulas, exception made of the case when 
r had the value implicitly specified below. Similar pro
cedures are applicable to the calculation of the Gil v (t, r) 
when r is on D or F. 

By first integrating over the variable P3 in (2. 34) and 
then making the change of variables 

one finds in the present case of bcc structures with NN 
couplings only that 

GjJv(t,r) 

== ~ rr 1." cosPjJ(x,y) cosPv(x,y)dxdy 

112 0 0 [(t _ a cosx cosy)2 _ (b + c cos2x)]1/2 ' 

if /J-, II = 0,1,2 and I t l:s j(r), 
(AI) 

whenever r lies on any of the special points or lines of 
ZbCC at which the finiteness condition of Sec. 3 holds. 
Here a, b, and c depend on r but not on x ,y, /J-, or II. Until 
further notice, the following remarks refer to vectors r 
fulfilling all the conditions just stated and to values of t 
as speCified in (AI). 

The GjJv(t,r) with /-I, j.I = 0,1,2 are expressible as 
linear combinations of double integrals Irs of type (AI), 
but with cosPI' cosPv replaced by cosTx cosSy, where 
r and s are integers such that 0 :s r, s:s 2. Effecting 
either the x or y integration in a given Irs whose sub
scripts obey these requirements, the double integral in 
question reduces to the form32 

10"/2 [l(z)K(k(z» + m(z)E(k(z» + n (z)O(a 2(z), k(z»]dz, 
(A2) 

which, for r = $ = 0, collapses to the simpler represen
tation 

Goo(t,r) = J"/2 f(z)K(k(z»dz 
o 

(A2) 

for the indicated Green's function given by (2.34), where 
z denotes the variable x or y not integrated over, and 
where the dependence on various parameters and in
dices has been suppressed. The functions l(z),m(z),n(z), 
and fez), as well as the moduli k(z) and parameters 
a2-(z) of the complete elliptic integrals K(k(z», E(k(z», 
and fI(a 2 (z), k(z» of the first, second, and third kinds, 
respectively, are elementary functions which involve t 
and r, and whose functional forms depend on whether 
the x or y integration was performed to arrive at (A2) 
or (A2'). However,k(z) and a 2 (z) are independent of 
rand s. 

Henceforth we shall limit ourselves to the situation 
when t = f(r). In this situation, the denominator of (AI) 
has zeros in the square 0 :s x ,y :s 11 of integration. Be
cause of this vanishing, the integrand of any given integ-
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ral of type (A2) corresponding to an ITS with indices 
satisfying the conditions stated in the last paragraph has 
an infinite singularity at z = 0 (at a value of z in the 
interval O:s z:s 11/4) in the case z = x(z =y). This sin
gularity is of logarithmic type for either z = x or z = y 
if r satisfies the requirements mentioned in (AI) and, 
ilJ. addition, is different from the vector redefined in 
Sec.5. Elsewhere in the interval O:s z :s 11/2, each of 
the latter integrands is infinitely differentiable in z 
for both of these choices of this variable. 

In the remainder of this Appendix, we shall restrict 
our attention first to the case of the [111] direction and 
then to that of the [110] direction. 

Line A' 

Whenever r is a point of A' or coincides with the 
point r at the center of Zbcc' we set GjJv(t, r) '" GjJv(f3), 
where {3 is the value of the paramete~ a 1 in Table I at 
the value of r of interest. Hence 1;"';2 :s (3:s 1 for this 
range of r. The point F({3 - 1) was considered in the 
present work in order to check the values of GjJv(l) ob
tained by the method which will now be explained with 
those obtained from the exact results (4.8). 

Equations (2. 38) and elementary symmetry arguments 
entail that all the G,..y ((3), are determined by linear com
binations of GOO ({3),G01(f3),Gll(t3), and G12 ({3) at any 
1/-{2:s {3:s 1 different from ~3/2. Certain, of these com
binations are not numerically stable for {3 close enough 
to .f3/2, but this can be remedied by interpolatory pro
cedures to an accuracy sufficient for our purposes. 

In the interval 

..f273 :s (3:s 1, (A3a) 

the four basic G~y({3) just mentioned were calculated by 
always making the choice z = x, to avoid the very awk
ward formulas obtain~d for the latter G jJV ((3) in the sub
interval .f273 :s y:s )3/2 of the interval (A3a) when 
z =y. 

To compute the function G oo ({3) accurately in the latter 
interval, a modification of the representation (A2') was 
employed, namely, a suitable term was subtracted from 
the pertinent integrand to eliminate the logarithmic 
singularity occurring in the latter and a compensating 
term was added, whose integral over the relevant inter
val was known exactly. The regularized integral was 
then evaluated numerically. In this and the remaining 
computations below, the pertinent elliptic integrals were 
calculated by a Landen-transformation subroutine in the 
case of those of the first kind and by Bartky-transfor
mation subroutines for those of the second and third 
kindS. 

For (/J-, II) == (0,1), (1, 1), (1, 2), we wrote 

(A4) 

Because the above infinite Singularities occur only at 
the value z == x = 0 of the chosen integration variable 
when (A3a) holds, we were able to represent these 
H v ({3) in this range of {3 as sums of single integrals of 
type (A2) with bounded integrands. For each such (3, 
outside of having the stated differentiability properties 
for 0 < x :s 11/2, these integrands are asymptotiCally 
proportional to x 2 log(l/x) as x --) + O. The Hjlv ({3) in 
question were easily evaluated to the desired accuracy. 

Another method was devised in the interval 

(A3b) 
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As an added check of our numerical work, this inter-
val was purposely selected to overlap the interval (A3a), 
in order to compare the values of the GjJu((3) at ~ == ../2/3, 
i.e., at r == r e , obtained by the previously outlined method 
and the one summarized below. 

In the interval (A3b) , we reduced Goo ((3), G01 ((3), G11 (~), 
and G12 ((3) directly to the form (A2), always with z == y 
and without using decompositions of the type (A4). If we 
had performed the same reduction for any of these 
G u((3) at any given ~ in this interval, but with z == x, an 
irifinite Singularity of the resulting integrand would 
have occurred at a pOint of the domain of integration 
which would have varied with the value of ~ selected, 
rather than occurring at the numerically more advan
tageous fixed value y == 0, as it does when the choice 
z ==y is made. 

In the case z == y , the integrands of the representations 
of type (A2) of Goo ((3), G01 ((3), G11 ((3), and G 12 ((3) are 
asymptotically proportional to log(l/y) as y --t + 0, if ~ 
is any given number such that 1/T2 :s ~ < -./273 and to 
Illy if ~ == -./273. The cusp possessed by each of the 
G ((3) at ~ == ../2/3, a fact already mentioned in Sec. 5, 
il~onnected with this asymptotic behavior in the inter
val (A3b) , as well as with asymptotic phenomena of each 
of the pertinent integrands taking place within the re
mainder of A'. Both of the types of infinite singularities 
mentioned in the penultimate sentence can be removed 
by a change 

y == w2m , m = 1,2, "', (A5) 

of the integration variable. For each positive integer 
m this change of variable allows us to express Goo ((3), 
G~l (~), G11 ((3), and G12 ((3) as one dimensional integrals 
with integrands possessing the following properties. 
They are infinitely differentiable in w over the trans
formed interval 0 :s W :s (1T /2)1/ m of integration when 
I' == ../'1:13, and when 1/.J2 :s I' < -./273 they have this 
property at all w ,r. 0 in this interval and are asymptoti
cally proportional to w 2 m-l 10g(l/w) as w --t + O. 

We evaluated the latter four Green's functions numeri
cally in a very satisfactory manner in the interval (A3b) 
by the transformation (A5) with m == 2. When using this 
approach, it was necessary to use appropriate, easily 
derivable, formulas for calculating the moduli and para
meters of the relevant elliptic integrals at the smaller 
values of w required in the Gauss integration method, 
in order to avoid numerical instability difficulties. 

Line l: 

If r is a point of L: or is coincident with point r, we 
write G u(f,r) == (;/lu(y),y being the value of the para
meter C:1 of Table I at the r in question. Therefore 
0< y:s 1 when r runs over the indicated range. Point 
r(y == 1) was considered in the calculations outlined 
below for a reason parallel to one stated in the previous 
subsection. For reasons which will become clear soon, 
it is convenient to extend the domain of definition of the 
(; v(y) (/-I, II == 0,1,2) to I' > 0, e.g., by means of the rep
r~sentation (AI). All of the previously stated results 
applying on L: hold equally well at any I' > O. 

By arguments similar to t~ose alluded to in connection 
with A I, the values of all the G JlU (I') at eac_h 0 < 1'_< 1 
are calculable as linear combmations of Goo (y),G01 (y), 
<211 (1'), (;12(1'), (;33 (1'), or (;00(1'), (;03(1'), (;11 (1'), (;33 (1'), 
G34 (y),at the I' in questi~n. However, some of the linear 
combinations giving the GJ.lu(Y) in terms of the first of 
these sets of Green's functions are numerically unstable 
at small enough values of y. This is disagreeable, since 
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bound states occur on L: only for extremely small values 
of y. However, the (;J.lu(Y) can be expressed in a stable 
way in terms of the second set of Green's functions for 
all r on L:. We thus determined numerically the five 
functions of this latter set in the range 0 < Y :s 1. yo 
do this, it was only necessary to calculate Goo (y),G 01 (Y), 
(;11 (1'), and (;12(1') at suitable values of I' > 0 and then to 
use the easily provable formulas 

(;03(1') == (1/Y)(;01(1/y), 

(;33(1') == (1/Y)(;11(1/y), 

(;34(1') == (1/Y)(;12(1/y), 

which obtain at each I' > O. 

In the latter range of 1', the choices z == x and z == y 
are about equally convenient from a numerical viewpoint. 

The required GJ.lu(Y) were readily computed to the de
sired precision by methods parallel to those employed 
in the case (A3a). 
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13, 92 (1968) and A. W. Saenz, Symposium on Current Problems in 
Neutron Scattering, Rome, Italy, September 24-27, 1968 
(unpublished). 

IA. W. Saenz, W. W. Zachary, and S. Podgor, Bull. Am. Phys. Soc. 
15, 1368 (1970). 

2In the case of magnon bound states (resonances), the adjective "low 
lying" indicates that the corresponding energy eigenvalue (real part of 
the energy) differs from the lower edge of the pertinent free magnon 
continuum by an energy which is small in comparison with a typical 
value of the width of the continuum. 

3In regard to the relevance of the nonexistence of low-lying magnon 
bound states to the validity of low-temperature spin wave calculations, 
see, e.g., M. Wortis, Phys. Rev. 138, A1126 (1965) and T. Morita and 
T. Tanaka, 1. Math. Phys. 6, 1152 (1965). 

4R. Silberglitt and A. B. Harris, Phys. Rev. Lett. 19, 30 (1967); Phys. 
Rev. 174, 640 (1968). 

51. B. Torrance, lr. and M. Tinkham, Phys. Rev. 187, 587 (1969). 
6M. F. Thorpe, Phys. Rev. B 4,1608 (1971). 
7F. J. Dyson, Phys. Rev. 102, 1217 (1956). 
81. Hanus, Phys. Rev. Lett. 11, 336 (1963). 
9M. Wortis, Phys. Rev. 132,85 (1963); N. Fukuda and M. Wortis, 1. 

Phys. Chern. Solids 24, 1675 (1963). 
lOIn the present paper, we have found it more convenient to refer to 

specific points, lines, and directions of symmetry than to the corres
ponding equivalence classes. Naturally, all statements about bound 
two-magnon states and allied topics made here for the case when r 
lies along some such point, line, or direction hold at the vectors r' 
related to r by the pertinent symmetry group operations. 

IIR. G. Boyd, Ph.D. Thesis, Univ. of California, Riverside, 1965; R. G. 
Boyd and 1. Callaway, Phys. Rev. 138, A1621 (1965). 

12W. M. Shaw, BulL Am. Phys. Soc. 13, 501 (1968). 
13The beginnings of a theory of three interacting magnons has been 

given by C. K. Majumdar, Phys. Rev. B 1, 287 (1970), and C. K. 
Majumdar and G. Mukhopadyay, Phys. Lett. A 31, 321 (1970). 

14For the sc structure, our definition of ~Ncr)(r E ZN) agrees with that 
of the corresponding "reduced zone" F of Wort is, Ref. 9. 

15Exception made of one-dimensional ferromagnets [See Wortis, Ref. 9, 
Appendix BJ, only arguments of a heuristic nature appear to have 
been given in the literature relative to the spacing of consecutive 
two-magnon eigenvalues of H(N) of given r within the corresponding 
band (2.15) for large N. 

16W. Ledermann, Proc. R. Soc. A 182, 362 (1944). 
17H. Rollnik, Z. Phys. 145,639 (1956). 
18S. Weinberg"Phys. Rev. 131,440 (1963). See also R. G. Newton, 

Scattering Theory of Waves and Particles (McGraw-Hill, New York, 
1966), Chap. 9. 

19The stated differentiability properties of the k /E, r) which were 



                                                                                                                                    

1852 A. W. Saenz and W. W. Zachary: Two·magnon bound states 
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We study a new class of deformations of algebrll representations, namely, ilso(n) ~ sl(n, R), 
ilu(n) ~ s l(n.C) '" u(1) and ils p (n) '" s p (I) ~ sl(n, Q) '" sp(l). The new generators are built as 

commutators between the Casimir invariant of the maximal compact subalgebra and a second-rank 
mixed tensor. These algebra deformations are related to multiplier representations and manifold 
mappings of the corresponding Lie groups. Behavior of the representations under Iniinii-Wigner 
contractions is exhibited. Through the use of these methods we can construct a principal degenerate 
series of representations of the linear groups and their algebras. 

1. INTRODUCTION 

The closely related concepts of expansion and defor
mation of Lie algebras has been developed in both the 
physics and mathematics literature. In physics, expan
sions first appeared as a way of building symplectic 
algebras sp(n, R) from the pOSition and momentum 
operators with the canonical commutation relations, 1 

and later by deforming the Poincare algebra to the de 
Sitter algebra2 as well as obtaining possible dynamical 
algebras for various physical systems.3 .4 Indeed, these 
latter types of deformations have been performed for 
inhomogeneous orthogonal, 2.5.6 unitary5.6 and sym
plectic 6 ,7 Lie algebras using a specific type of deforma
tion, i.e., iso(n) ~ so(n, 1), iu(n) ffi u(1) ~ u(n, 1), 
isp(n) ffi sp(1) ~ sp(n, 1) and other noncompact forms. 
These deformations have then been applied to various 
problems in representation theory5.8 and shown by 
Gilmore 9 to constitute a well-defined family of defor
mations in which the coset space of the deformed alge
bra in the Cartan decomposition is of rank one. 

In this article we present a family of deformations of 
representations of Lie algebras on homogeneous spaces 
of rank one (spheres), but where the rank of the coset 
spaces of the deformed algebras in the Cartan decom
position is higher. Specifically, in Sec. 2 we treat the 
cases i 2so(n) ~ sl(n, R), i 2u(n) ~ sl (n,C) ffi u(1) and 
i 2 sp(n) ffi sp(1) ~ sl(n, 0) ffi sp(1). We develop these 
cases separately so as to provide a clearer formulation 
for the reader who is not so familiar with the com
plications of the quaternionic field, which would be 
necessary in a general formulation. We then discuss 
in Sec. 3 the connection between the deformations of 
these algebras and the existence of corresponding mul
tiplier representations10 .11 of the groups SL(n, R), 
SL(n, C) ® U(1) and SL(n, 0) ® Sp(1) on the homogeneous 
spaces corresponding to the real, complex and quater
nionic spheres. In Sec. 4 we show that the InonU
Wigner contraction12 of the representations of these 
groups with respect to the maximal compact subgroups 
are the groups 12 SO(n), 12SU(n) ® U(1), and 12Sp(n) ® 
Sp(l). 

2. DEFORMATIONS OF INHOMOGENEIZATIONS OF 
THE CLASSICAL LIE ALGEBRAS 

Since we will be interested in deformations 12 and ex
pansions 9 which are representation-dependent, we begin 
with suitable definitions of expansions and deformations 
of representations in which nothing is said about the 
abstract Lie algebra. Let cP be a representation of a 
Lie algebra a, Le., a homomorphism of a into some 
suitable defined vector space, which for our purposes 
can be taken as the space of infinitely differentiable 

1853 J. Math. Phys., Vol. 14, No. 12, December 1973 

functions over spheres. An expansion of the represen
tation cP is a mapping cjY ~ 1/1)., such that the 1/1).,' s form a 
representation of a Lie algebra a'. Moreover, if the 
condition 1/1)., ~ cP is satisfied, the expansion is said to 
be a deformation. The deformation of an inhomogeneous 
algebra can be thought of as the inverse of contraction. 12 
It is seen that the requirement that the 1/1).,' s form a Lie 
algebra places severe restrictions on the possible 
mappings 1/1).,' Such restrictions have an elegant formu
lation in terms of Lie algebra cohomology theory,13 
however, rather than attempt the general formulation 
here, we will discuss a family of specific examples of 
representation-dependent deformations of inhomo
geneizations of the classical Lie algebras. 

A. i 2so(n) ~ sl (n, R) 

Consider the Lie algebra so(n) of the orthogonal group 
whose generators satisfy the well-known commutation 
relations 14 

which preserve the usual metric in real n- space RR, 
so that the Greek indices take values 1, ... ,n. We ad
join now to this algebra a set of commuting n-dimen
sional second-rank symmetric tensors PjlV = PVjl ' We 
thus arrive at a Lie algebra which we denote by i 2 so(n), 
which is characterized, along with Eq. (2. 1) by 

(2.2a) 

(2.2b) 

The set of !n(n + 1) generators P constitute the maxi
mal Abelian ideal of i 2 so(n). 

The technique for deformation now consists of taking 
the commutator of the Casimir operator 41 of the ori
ginal algebra so(n) with the P's. Specifically, we con
sider the following members of the enveloping algebra 
of i 2 so(n): 

(2.3) 

where 41 '" - !MjlvMv jl and T is an arbitrary complex 
number. 

As 41 commutes with all of so(n), it follows that the 
N's transform under so(n) as the P's, Le., they satisfy 
Eq. (2. 2a) with PjlV replaced by Njlv. However, if we 
consider the analog of Eq. (3. 2b), that is, the commutator 
of two N' s, we find that in general, (for any choice of T 

other than the contraction limit T ~ 00), the N's do not 
close into a finite-dimensional Lie algebra. This is to 
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be contrasted with the better-known expansion2•9 

iso(n) = so(n, 1) where the algebra closes modulo a 
normalization factor. We can, however, obtain a repre
sentation of a Lie algebra if we impose some further 
restrictions. We choose the following representation15 

for P v and M v: P uv = x~xjx2 where the x~'s com
mute;x2 = x~:~ and M~ v = x!'a v - xvo" + O'~ v with 
[O'flV,xiJ = O,where we have mtroduced a == a/axfl' It 
is then found that the algebra will close if and only if 
a flV vanishes. This means that, in contrast with the 
iso(n) = so(n, 1) expansion, we do not have the free
dom to construct an additional vector space structure 
upon the representations described by Eq. (2.3), i.e., 
vector bundles over the sphere. This limits the possible 
representations one can construct to degenerate ones. 16 

In a straightforward manner one can then verify that 

[Nfl v' N po ] = OvpM~o + OflpMvo + OVOMflP + ofloMvp' (2.4) 

In order to see more clearly the structure of the 
algebra spanned by the M's and N's it is convenient to 
construct the traceless operators 

1 1 
XflV =="2 (MflV + Np.v) - 2n OflV TrN 

=x a -x x (x·a-O')-~o 
fl v ~ v n flV' (2.5) 

where x' a == XfloP.' a = ~(- n + T) and where we have 
taken the x to be the Cartesian coordinates on the 
(n - 1)-dini'ensional real sphere S .. _l' i.e., x2 = 1. One 
then obtains the Lie algebra in the form 

[XflV,XPO ] = 0VpXflO - 0flOXpV' (2.6) 

and TrX = O. By identifying the (n - 1) independent 
commuting X 's (no sum) as the Cartan subalgebra 
and the XflV (rt~ ZI) as the root vectors, one identifies 14 

the Cartan class An_I' 

In order to see what type of representations are 
allowed in our constructions, we notice the following 
relation in the enveloping algebra of sl(n, 1R), 

X AXAlJ = X v[(n + O')(n - 1) - 0' ]/n + 0flV(n - 1)0'(0' + n)/n2, 
fl p. ~.n 

which can be used to express all the higher-order 
Casimir operators in terms of the second-order opera
tor C2 = X X " hence we have only a most degenerate p.v Vfl 
series of representation. This reflects the fact that our 
representations are built on a rank one homogeneous 
space S .. _l' Contracting over /.l and ZI in (2.7), we have 
C 2= (n - 1)0'(0' + n)/n. 

The fact that we have an sl(n, IR) form of A .. _1 is 
indicated by Eq. (2.6) and the form (2.5) with the speci
fication of the hermiticity properties which must await 
the introduction of a Hilbert space structure which will 
be discussed in Sec. 3. Suffice it now to say that all the 
generators X will be anti-Hermitian under the usual 
scalar produ&V on the sphere S .. _l with the choice 
a = - ~n + ip, p real, Le., for T = 2ip. Indeed, with this 
choice of a, C2 is - n(n - 1)/4 - (n - 1)p2In. These 
representations are reducible as can be seen from the 
fact that the generators XJJlJ are all even functions of 
x . An extra parity label E is thus needed to specify 
i~reducible representations. Then we can say that the 
parameters (p, E) label the representations of a prin
cipal most degenerate series of sl(n, 1R) built on the 
space of square-integrable functions on the sphere. 

B. ;2 urn) => s/(n,C) EEl u (1) 
In analogy with the previous section, we consider the 

algebra u(n), the usual metric-preserving algebra for 

J. Math. Phys., Vol. 14, No. 12, December 1973 

1854 

the complex space e" and adjoin an ideal formed by 
the set of commuting second:!,ank mixed tensors Z iJV 
with the symmetry property Z u v = Z v (the bar de
notes complex conjugation). The i2u(nt algebra is then 
defined through the commutation relations14 

[CflV,C pO ] = OVpCflO - °JJOCpv, 

[CJJV,Zpo] = 0vpZJJO - °JJOZpv' 

and the two Z's commute. 

(2.8a) 

(2.8b) 

The extension proposed in (2.3) is, for the unitary 
groups, 

DiJV==i[lJI,ZflV]+TZiJV' (2.9) 

where lJI = - 2C JJv CvjJ is the u(n) second-order Casimir 
invariant. Again we are unable to find an expansion for 
a completely general ZiJ V and again one does not have 
the freedom to add an additional vector space structure. 
The particular choice of representation for which the 
<!e!ormation c~n be c:rrie~ thro~h iS15 CiJV =ZJJafl
zvafl' Z fl v = Z flZ vi I Z I ,I Z I == Z flZ fl' ~ere we have used 
the notation afl == a/azl!. and afl ~ a/az fl • It is then 
straightforward to verfiy that 

[DiJv,Dpo] = 0vpCjJo - 0flOCpV' (2.10) 

while the D's obey the same transformation properties 
(2.8b) under the C's as the Z's. Moreover, the trace 
of C fl v which we denote as C == C fl fl (sum), provides a 
u(1) subalgebra which not only commutes with the C's 
but also with the D's, thus providing the direct sum 
algebra sl(n, e) (j) u(I). The existence of this u(l) sub
algebra arises from the fact that the generators D fl v 
as well as each I Z Jl 12 , (/.l fixed) remains invariant 
under Z 11 -7 e;q, Z }J' This is the analog of the parity in 
the last section, and definite u(l) transformation pro
perties must be specified in order to get irreducible 
representations of s [(n, e). Indeed, it will be seen 
shortly how this provides us with an additional Casimir 
operator. 

A convenient form to display the sl(n, e) structure is 
obtained by constructing the traceless combinations 

X~v == HC flv ± DJlv - 0jJv(C ± TrD)/n], 

given explicitly by 

1 - - - ) C +0'0 
Xtv = zfla V - z-zflzV(Z • a + z· a - a -2n jJV' 

(2. 11 a) 

(2.llb) 
- -0 + 1 - ( a - a ) C -0' 0 X~v=-zv fl Z-ZflZV Z ' +Z' -0' -~ jJV' 

(2.llc) 
where 0' = - n + T and we have set Iz 12 = 1, so that the 
(2n - 1) independent real numbers in Z are the complex 
CarteSian coordinates on the (n - I)-dimensional complex 
sphere C .. -1 ~ S2 .. -1' It is easy to check that all X+'s 
commute with all X-' s and hence we have explicitly a 
pair of commuting sl(n, IR) algebras given by (2.6). In 
this form the Cartan subalgebra is given by the 2(n - 1) 
independent X~ fl (no sum) and one easily arrives at the 
Cartan structure A .. _1 (j) A .. _I • An additional advantage 
of the form (2.11) is the following convenient set of 
relations in the enveloping algebra of sl(n, e) 

X~AX~V = [Nq; 1 + n 2n 2(C ± O')Jx~v 
+n-l(C±O'/C±O'±I\O (2.12) 

2n "n J jJV' 

where N+ = nand N- = O. 
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As in the last section, these can be used to express 
all the higher-order Casimir invariants in terms of the 
second-order ones l7 • We are thus led to a class of 
degenerate representations, but not just a most de
generate series: the two Casimir operators obtainable 
from (2.12) are C~ == X~IJX~~ ± X;IJX-,,~ and take the 
values (n - 1)[a(2n + a) + C2]/2n and (n - l)C(n + a)/n, 
respectively. 

Now using the fact that C is the generator of a U(1) 
group and restricting the representations of this U(1) 
to be single-valued, one finds that the eigenvalues of C 
are integers m. In the next section we shall introduce a 
definite scalar product on C n - I , with respect to which 
hermiticity will be defined. For the generators (2.8a) 
we will have C ~"t ::::: C II~' while for the choice a ::::: - n 
+ ip, (p real), i.e., T imaginary in (2.9) D ~ / = - D ~ II 

and for (2. 11), (X~,,)t = X'F" ~. For this choice of a and 
C, the Casimir operators C~ are - (m 2 + 4p2)/2n - n/2 
and 2ipm/n, respectively. Thus we have Hermitian re
presentations of the sl(n, C) algebra described by two 
numbers, a real p and an integer m. 

In performing the previous deformation, we followed 
the analogy with the real sphere, making x ~x" -7 Z ~z II 
and USing the metric-preserving algebra on the com
plex sphere. We could alternatively have decomposed 
z ~z II into its real and imaginary parts and considered 
the corresponding deformations separately. Indeed, if 
we would have done this our a would be - n + ~T in
stead of - n + T making it more compatible with both 
the real and quarternionic cases. In the next section, 
when we consider the corresponding quaternionic case, 
it will be expedient to work in terms of real components 
due to the noncommutativity of the quaternions them
selves. We shall indicate there the corresponding re
strictions which yield the sl(n, C), sl(n, IR), u(n), and 
so(n) subalgebras. 

C. i
2
sp(n) EB sp (1) ~ s/(n, 0) EB sp(1) 

Since the symplectic algebra sp(n) is the metric
preserving algebra for the n-dimensional quaternionic 
plane1s i(}', it seems natural to carry the analogy with 
the last two sections one step further and look for the 
corresponding deformation to essentially sl(n, 0), the 
special linear algebra over the noncom mutative qua
ternionic field J4 (continuous division ring) O. Since 
the quaternions are perhaps not so well known, we pre
sent first a brief review of their propertiesl9 • 

The quaternions form a four-dimensional noncommu
tative algebra over the field of real numbers with a base 
composed of e" (a = 0, 1, 2, 3) whose multiplication 
table is 

where i,j,k = 1,2,3. We use the convention that the 
early Greek letters range from 0 to 3, whereas the 
middle Latin letters over 1,2,3, reserving the middle 
Greek letters for the tensor indices. A quaternion can 
thus be written as q = q"e". The quaternionic conju
gate is defined as q* == qOeo - qie i and one verifies 
that 1 q 12 == q*q = qq* = q "q" is a real nonnegative 
number which vanishes iff q itself vanishes. We can 
form the quaternionic n plane on by taking the n-fold 
tensor product of 0, which forms a vector space en
dowed with a scalar product on X on -7 0 given by 
u . q == utq~. The norm induced by this scalar product 
is IqI2==q'q=q*q =qq*=q"q". The scalar pro-
d t d f · d b J.! • ~ I f ~ J.I • J.I g uc e llle a ove IS e t invarIant by the group of n-
dimensional symplectic transformations whose infinite-
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simal generators MJ.I"v can be given in two different ways 
depending on whether the group action is defined from 
the right or from the left. This will be detailed in Sec. 3. 
An arbitrary second-rank mixed tensor with compo
nents Q~" transforms under the generators of sp(n) as 

[M~v' Qta] = 6lJpQ~a - 6J.1pQ:7a + 6vaQ~J.I - 6J.1aQ~v' 
(2. 14a) 

[Mt", Q~a] = 6upQ~a - 6J.1 pQta - 6uaQ~~ + 6/laQ~II' 
(2. 14b) 

[Mt", Q~a] = - ollpQ~a - 6/lpQ~a + 6I1aQ~/l + 0J.laQ~" 
(no sum on i) (2. 14c) 

[Mtv, Q~a] = €ijk(OllpQ~a + 6J.1pQta + 6vaQ~/l + 6J.1aQ~II)' 
(2. 14d) 

The symplectic algebra14 sp(n) spanned by the M's 
satisfies (2.14) with the additional speCification that 
M~" = - M~/l and Mtll = MtJ.!' We can realize this 
algebra15 on QII as 

(2. 15a) 

Mi± = ± (qioO + qioO - qOoi - qOa i ) - E·. (qja k + qjOk) 
J.I II ~ 11 V /l ~" II J.I 'Jk J.I" !J ~, 

(2. 15b) 
where 0 ~ == 0/ oq ~ and where (+) or (-) deSignates 
action from the left or right with respect to quaternionic 
multiplication. One sees then that qpqb transforms as a 
mixed second-rank tensor under the M+'s but not under 
the M-'s. Convers~ly, the quaternionic conjugate qbqp 
transforms as a mIxed second-rank tensor under the 
M-'s only. Furthermore, the commutator of the M+'s 
with the M-' s does not close to form a Lie algebra of 
finite dimension. It can be seen, however, that the 
traces 

(2.15c) 

commute with the Mi/l±'" s, ea~h forming the algebra 
sP.(1)'F £; su(2). Moreover, M'- commutes with qpqb and 
MH commutes with qbqp' Hence, we finally arrive at 
two possible isomorphic algebras which we denote as 
i2sp(n)+ EEl sp(1)- and i 2sp(n)- EEl sp(I)+ spanned by 
{M~II+' Mi-, qJ.lqt} and {M~~, Mi+, qtqll}' respectively. 

Using either of these algebras we are now in a posi
tion to write down the deformation formulas which are 
a generalization of Eqs. (2. 3) and (2.9) to the quater
nionic case. We use the first set of operators spanning 
i2sp(n)+ EEl sp(I)- and consider 

(2.16) 

where ~2± = - ~MO"lV[OIl + -2
1 Mi± Mi± is the second-/l J.I j.L II UJ.I 

order Casimir invariant for sp(n)±. If we consider the 
combinations 

(2. 17a) 

(2. 17b) 

where the XO are built to be traceless, and place Iq 12 = 1, 
the (n - I)-dimensional quaternionic sphere Q £; n-l 
S4n-l where the 4n - 1 independent real q" are the Car-
tesian coordinates, and set a ::::: - 2n + ~T, \ve arrive, 
after a fairly tedious calculation, at the explicit form 

(2. 18a) 
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Xi -qi"O_qO"i _c qi"k 
"y - "Vy "Vy "'ijk "Vy 

- (qyq~)i(q' 0 - 0'), q. a == q~o:. (2. 18b) 

It can be checked that the X's generate the Lie algebra14 

[X~v,X~o] = €tjk(fJvpX!o + fJI'OX~v)' 

identified as sl(n, Q). 

(2. 19a) 

(2. 19b) 

(2. 19c) 

It is not difficult to see that the XO's span an sl(n, R) 
subalgebra while the XO's and Xi'S for one fixed i, span 
an sl(n, C) EEl u(1) subalgebra. By taking the XOV s given 
by Eq. (2. 18) and the traces Mi- in (2. 15c), wI obtain 
an algebra sl(n, Q)+ EEl sp(1)-. It is easy to check that, 
indeed,Mi- commutes with all the X~:'s. Alternatively, 
we could have constructed the algebra sl(n, Q) - EEl sp(1)+ 
by starting fro~ the i 2sp(n)- EEl sp(I)+ algebra. The net 
effect of this on Eq. (2. 18) is to reverse the sign of the 
non-epsilon terms in the expression for the Xi v's. The 
sl(n, Q) structure of Eqs. (2.19) can be brought out by 
taking X~IL and, say, XJ.I' (no sum) as the Cartan sub
algebra. The root vectors are then given by XO v ± 
iX~ v and X~ v ± iX~ v' This identifies the Cartait class 
A 2n -1• 

The role played by the sp(l) is analogous to that of 
u(1) in the complex case. Both the set of generators 
X:v and each term Jq"J2 of the quaternionic sphere are 
invariant under sp(I)-. Again, definite sp(I)- transfor
mation properties must be specified in order to get 
irreducible representations of sl(n, Q)+. This will be
come clearer in the group theoretical context in the 
following section. 

In the enveloping algebra of sl(n, Q) we were able to 
derive one analog of Eqs. (2.7) and (2. 12) 

XO XO - Xi+ Xi+ = - Xi- Mi- + [4(n - 1) 
I'A AV I'A AV I'V 

+ n - 2Jx~v + n - 10'(0' + 4n)fJ v' 
n r n 2 I' 

(2.20) 

It seems, however, that this relation is not by itself 
sufficient to reduce all higher-order Casimir operators 
to the second-order one. Indeed, we expect more non
independent Casimir invariants due to the existence of 
the sp(I)- algebra. These invariants will be of higher 
order than second, since in contrast to the sl(n, C) case, 
sl(n, Q) is a Simple real Lie algebra. Due to the com
plexity in deriving such relations, however, we have 
thus far been unable to find them. Relation (2.20) does 
provide the second-order Casimir invariant C 2 == 
X0.xo - Xi+ Xi+ = - Mi-Mi- + (n - 1)0"(0' + 4n)/n "V VI' I'V v I' • 

The sp(1)- invariant (M-)2 == Mi-Mi- can be chosen to 
define a basis where its eigenvalues are l(l + 1) (1 in
teger on half-integer). In the next section we shall in
troduce a definite scalar product on Qn-l' with respect 
to which all the operators used in this section are anti
Hermitian if we choose 0' = - 2n + ip (p real). For 
these values of 0', the eigenvalue of the Casimir inva
riant C2 is the real number - l(l + 1) - (n - 1)(4n2 + 
p2)/n. 

3. HOMOGENEOUS FUNCTIONS AND MULTIPLIER 
REPRESENTATIONS 

In this section we shall relate the expressions ob
tained in the previous sections by the deformation of 
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inhomogeneous algebras to the corresponding technique 
of constructing multiplier representations for the group 
from certain classes of homogeneous functions Similar 
to those introduced by Bargmann10 and Gel'fand. ll In
deed, from the expreSSions for the generators givell by 
Eqs. (2. 5), (2. 11), and (2.18), the terms in 0' indicate 
that they should upon integration give rise to multiplier 
representations. 8 Rather than exponentiate these ex
pressions directly, however, we prefer to construc~ the 
multipliers by Gel'fand's method of homogeneous func
tionsll and obtain the corresponding generators for the 
one-parameter subgroups. This procedure lends insight 
into the expansions of the form (2.3) on the global group 
level. All the known expansions of the form (2.3) diS
play this correspondence to homogeneous functions. 8 

It is not difficult to see that the spheres Sn-l' Cn-l' 
and Qn-l introduced in the last section correspond to 
homogeneous spaces of the groups SL(n, F) of n x n 
matrices G = IIg"v ll , (/J., II = 1, ..• ,n), detG = l,g y E F, 
where F indicates the real, complex and quaternioh 
fields. Indeed, consider the. Iwasawa decomposition4 of 
SL(n, F) = KAN where K is SO(n), SU(n), and Sp(n), res
pectivelY,A is the (n - 1)-dimensional Abelian sub
group'of diagonal matrices of SL(n, F), and N is the 
nilpotent subgroup of lower-triangular matrices. Then 
in each case, if K' is the canonical subgroup SO(n - 1), 
SU(n - 1), and Sp(n - 1), respectively. K'AN is the sub
group of n x n matrices G' = II g' v II such that the ele
ments gin = 0 (i = 1, ..• , n - 1), ~nd detG' = 1. The 
homogeneous spaces 0 == KAN/K'AN are then, respec
tively, the spheres Sn-l' Cn_l' and Qn-l' The action of 
the group element g E G on the Cartesian coordinates 
sl'(/1= 1, ... ,n),s" E f,stsl'~l from the left is given 
by 

r - = [S*g-l*g-l S ]-1/2 r' A pAp (J (J , 
(3.1a) 

and if the field F is Q we can also have a distinct action 
from the right as given by 

.!: = [g-l s*s g-1*]-1/2 r" PA A. 0 po ' (3.1b) 

where it should be understood that the involutive auto
morphism *: s" ~ s * is the identity for F == R, complex 
conjugation for F = C, and quaternionic conjugation for 
F = Q. The subgroup G' = K'AN is then the stability 
group of the point (sl') = (0, .•. ,0,1) on O. The trans
formations of K [SO(n);SU(n), and Sp(n), respectively] are 
the largest group of rigid transformations of the sphere 
o since they leave the measure dO on the sphere invar
iant. The rest of the transformations g E G will produce 
a "deformation" of the surface of 0, where the Jacobian 
is 

(dO/dO')L == (r'/r)P, 

(dO/dW)R = (r"/ r)P, 

(3.2a) 

(3.2b) 

where p == n dimF, i.e.,p = n, 2n, and 4n for F = R, C, and 
Q, respectively. In the former two cases, (3. 2a) and (3. 2b) 
are equal. 

In comparing this approach with the one used for4 ,8,20 

SO(n, 1) :::> SO(n), SU(n, 1) :::> SU(n), and21 Sp(n, 1) :::> 
Sp(n), we notice that there is one essential difference 
with the above and that is that in the case of the se 
groups the subgroup K' is the centralizer of A and the 
normalizer of N in K. This has the consequence that 
the irreducible representations of the subgroup K' AN 
are just direct products of irreduCible representations 
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of K' and the irreducible representations (characters) 
of A. Hence, one can induce all these representations 
to the full group KAN. In the case of SL(n, F), however, 
K' is no longer the centralizer of A and only a" most 
degenerate" representation of K'AN labeled by a charac
ter of A can be induced22 to irreducible representations 
of SL(n, F). These are just the representations described 
in the previous sections by the deformation of the 
corresponding representations, of the inhomogeneous 
Lie algebras. 

A. SL(n, IR) 
Consider the space of homogeneous functions over the 

n-dimensional real plane IRn which are infinitely differ
entiable (except possibly at the origin) and satisfyll,23 

F(ay Il) = a O sgnEaF(y Il)' (3.3) 

where a,y Il E IR and E = 0,1. Now representations of 
SL(n, IR) can be constructed over this space as repre
sentations by left action 

TgF(Y Il) = F(y~) = F(g-~ uY v), g E SL(n, IR). (3.4) 

Since the functions F satisfy (3.3), i.e., are homo
geneous functions, the representation (3.4) gives rise 
to a representation on the unit sphere S .. _l in the 
following way: From (3.3) we see that we can define 
a function on S .. _l through F(y Il) = rO/(xl')' with xI' E 

S .. _l and r "" O. A simple calculation shows that (3.4) 
induces the representation 

over functions on S .. _l' where T% = r-oT gr O and the 
group action is given by (3. 1a). Furthermore, from 

(3.5) 

(3.4) and the infinite differentiability of the F' s, it follows 
that the I' s span the space :DE of infinitely differen
tiable functions on S .. _l which satisfy 

1(- x ll ) = (- i)E/(x ll ). (3.6) 

The function(r' /r) ° is a multiplier which trivially 
satisfies the condition10,l1 (r"/r')o(r'/r)o = (r"/r)o 
and hence Eq. (3. 5) is indeed a representation of 
SL(n, IR). 

We obtain the infinitesimal generators of SL(n, IR) by 
considering the one-parameter subgroups g vet) which 
tofirstorderaregv (t)""/lv -tavll , T~""lll + 
tavll X IlV , where we IJ'ave implicit the dependence of 
X)lV on (J. As it is well known that demanding detllgllvll = 
1 imposes the tracelessness conditions on the genera
tors. We can use (3. 1a) and (3.5) to arrive exactly at 
the generators (2.5) of sl(n, IR) obtained in Sec. 2A. 

One can obtain unitary representations of SL(n, IR) 
over S .. _l taking the vector spaces :DE, E = 0, 1, and 
completing them with respect to the norm induced by 
the inner product 

U{,/i)s = f dO (x)/f (x)/i(x), (3.7) 

where dO(x) is the SO(n)-invariant measure on S .. _l' 

Then one can see that the representation (3.6) is unitary 
with respect to (3.7) with (J = - in + ip (p real). The 
multiplier in (3.5) is just what is needed to offset the 
transformation (3. 2a) of the measure dO(x) under 
SL(n,R). 

B. SL(n, C) 
Consider the space of functions F(w ) over the com

plex n plane 0', infinitely differentiable in wand W 
(except possibly at the origin), which satisfy'i1.24 Il 
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(3.8) 

where a, w Il' (J I' (J 2 E e. Furthermore, we note that 
F(eiI/Jw,J = exp[i«(J1 - (J2)ltt]F(w ll ), thus providing a 
representation of U(l). Requiring this representation to 
be single-valued implies that (JI - (J2 = m is an integer. 
Then the functions F are said to be homogeneous of 
degree «(J,m) where (J = (J1 + (J2' Now representations 
of SL(n, e) can be constructed through left action as 

T gF(w ll ) = F(w~) = F(g-~vwv)' g E SL(n, e). (3.9) 

The homogeneity of the functions F(w) allows us to 
construct functions over G .. _1 as F(w ) = rO/(z ) with 
z E G .. _I • r "" O. The representation (3.9) indud'es the 
multiplier representation 

(3.10) 

over functions on G .. _I , where T% = r-oT gr O and (3. 1a) 
for C .. _I • It then follows that the functionsf(z) are in
finitely differentiable in z Il and z I' with the auxiliary 
condition 

(3.11) 

We denote this space of functions as :Dm • Actually 
(3.11) defines a representation of the U(l) subgroup of 
SL(n,e) 0 U(l) as T fez ) =f(eiI/Jz ) = eimI/Jf(z ). 

Il Il Il Il 

In the same way as in the preceding section, the in
finitesimal generators of both the representation of 
SL(n, e) (3.10) and U(l) (3.11) can be found with the 
parametrization 

u"" 1- iltt, T u "" 1 + it/lC, 

gVIl(t) "" /lV/l - tavll' T% "" 1 + t(avIlX~v - aV/lX~), 

By imposing the condition of tracelessness on these 
generators, we arrive at the expressions for X~v given 
by Eq. (2. 11). 

We endow the spaces :Dm with a Hilbert space struc
ture by completion with respect to the norm induced by 
the inner product 

Ur,fiJ:)c = f dO (z)/r(z)/T(z), (3. 12) 

where dn(z) is the U(n)-invariant measure on C .. _I • It 
follows that the representation (3.10) will be unitary 
with respect to the inner product (3.12) if we choose 
(J = - n + ip (p real), since the multiplier just cancels 
the change in the measure (3.2a). 

C. SL(n,O) 

The description of SL(n, 0) follows those of SL(n, IR) 
and SL(n, e), the major difference now being that the 
multiplication of quaternions in the representation can 
be taken from the left or right, giving rise to two 
different realizations of SL(n, 0). Let F(u ) be an in
finitely differentiable complex-valued fundhon on the 
quaternionic n plane 0" (except possibly at the origin). 
We can define representations by left and right group 
action as 

TfF(U/l) = F(g~~uv)' 
ffF(u/l) = F(uvg~~*), 

(3. 13a) 

(3. 13b) 

with u
ll 

E 0, g E SL(n, 0). Notice that we always have 
left multiplication with respect to the tensor indices. As 
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in the previous cases, we want to restrict our class of 
functions F to be homogeneous functions of Oil in some 
sense. Due to the quaternion noncommutativity, there is 
an ambiguity in factoring out quaternions as done in 
Eq. (3.8) for C. We thus consider" homogeneous" func
tions (in an expanded sense) of degree (a, I, m) which 
satisfy 

F~(uJls) = 6 F~,(uJl)D~'m(s(a, (3, y», 
m' 

(3. 14a) 

(3. 14b) 

where we have used the familiar Wigner D function for 
SU(2) ~ Sp(l), and s is a unit quaternion 1 s 12 = 1, para
metrized by Euler angles s(a, (3, y) = exp(e3 a) exp(e 2{3) 
exp(e3y)· 

We recognize that in order to write an equations such 
as (3. 14b) we must consider vector-valued functions 
FZ(u ) on Oil of degree l. There is an expression analo
gouJ'to (3. 14b) obtained by multiplication from the left. 
As in previous sections, we construct functions f on 
QII-l through F~(uJl) = raf~(ql!)' q E Qn-l' These will 
constitute the space :Dz. m of infinitely differentiable 
functions over QII-l' We then construct a multiplier 
representation of SL(n, O)L on :DZ•m as 

(3.15) 

where Tia = r-aTira and q~ is found in (3.1a). There 
is an expression similar to (3.17) for T: by using 
(3.1b). Now Eq. (3. 14b) simply becomes 

(3. 16) 

Notice that :DIm is not invariant under Sp(l). Indeed, 
it is seen that the f~n transform as the components of 
a rank 1 spherical tensor under Sp(l)R acting from the 
right. This equation also defines a representation of 
Sp(l)R by right action, i.e., T:f~(q ) = f~(qJls). It can 
be shown easily that this action and' (3. 15, commute, 
leading to th'e structure SL(n, O)L 181 Sp(l)R. It is clear 
that one can Similarly construct SL(n, O)R 181 Sp(l) L. 

One can then obtain the infinitesimal generators by 
using the parametrization gJlU = 0JlUeO - taJlU and im
pOSing the condition of tracelessness on the a~v term 
to arrive at the generators given in (2.15). We can 
Similarly obtain the infinitesimal generators of T: by 
reversing the sign of all non-epsilon terms in the co
efficient of a i u' Also from Eq. (3.16) we can obtain 
the generatols of Sp(l)R j they are the traces Mi- in 
(2. 15c). 

We introduce the Hilbert space structure by com
pleting :DIm with respect to the norm induced by the 
inner product 

(3.17) 

where q E QII-l and dn(q) is the Sp(n)L 181 Sp(l)R in
variant measure on Qn-l' Notice that there is no sum 
over m here since the space :D/ • m is invariant under 
the representation (3.15) of SL(n, O)L. This represen
tation is unitary if we choose a = - 2n + ip due to the 
SL(n, 0) transformation of dn (q) in (3. 2a). 

Also it can be seen that the representation (3.16) of 
Sp(l)R is unitary for I integer or half-integer, upon 
introduction of the usual vector space inner product 

(fi,j~)(q) = 6 f l~(q)f 2~(q)· (3.18) 
m ' 
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The contraction12 of the previous representations of 
the Lie algebras sl(n, F) Ell a(F) is to the algebras 
i2k(F) Ell a(F). We will adopt the notation used in the 
beginning of Sec. 3 and treat the three cases F = JR, C, 
and 0 together, and hence let k(F) denote, respectively, 
so(n),u(n), and sp(n), while a(F) denotes O,u(l), and sp(l). 
The generators of k(f) are MJiv, where a = 0 for IF = JRj 
a = 0,1 for IF = Cj and a = 0, 1,2,3 for F = OJ the re
maining generators are 

(4.1) 

with the same ranges of a. In order to perform the con
traction one considers the generators NJivl T as spanning 
along with the M Ji U a sequence of representations de
noted by s I (n, F) T' Upon taking the limit as 1 T 1 -7 ex) , 

one finds 

(4.2) 

whence we write sl(n, F)T ITI-+oo) i
2

k(IF). Equation (2.7), 
(2. 12), and (2.20) become identities in the contraction 
limit. We note that no role is played by a(F) in the 
contraction procedure. The deformation performed in 
Sec. 2 and the above contraction are inverse opera
tion. 6 We make note that although our representations 
were built as deformations of i2k(F)EIl a(F), they can 
also be viewed as expansions of the inhomogeneous 
algebra ik(IF) Ell a(F). 

B. Of the group 

The contraction of the corresponding group repre
sentations (3.5), (3.10), and (3.15) proceeds in the stan
dard way8.12 by allowing the group transformatiOn g(t) 
to approach the identity (t = 0) as we let p -7 ex) in the 
sequence of representations SL(n, F) ip in such a way 
that tp = ~,a real constant. Thus we see from (3.1) 
that s~~ sJl and 

. (r') -P/2+ip • ( ~ atu + a UJl ) ip 
hm r = hm 1 + pst 2 s Jl 

(4.3) 

where the same remarks for the cases F = JR, C, and 0 
apply. It should be noticed that only the symmetric part 
of aZ and the antisymmetric one of aiUI! contribute to 
the rriultiplierj the representations therefore contract as 

(4.4) 

showing that only the" boost" group elements generated 
by (4.1) have a finite contraction limit. We thus have 
found the representations built in Sec. 3 to contract as 
SL(n, JR) -7 12 SO(n), SL(n, c) 181 U(l) -7 12 SU(n) 181 U(l), 
and SL(n, 0) @ Sp(l) -7 12Sp(n) 181 Sp(l). 

5. CONCLUSION 

We have exhibited deformations of inhomogeneiza
tions of all the classical Cartan Lie algebras to those 
of the linear groups. These deformations are repre
sentation-dependent in that the procedure can be im
plemented only for representations which can be realized 
on rank one homogeneous spaces. While we have not 
been able to provide an 'if and only if' statement of 
this fact, we believe that we have indeed constructed 
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the most general representations from our deformation 
procedure. Thus while our family of deformations falls 
outside the class studied by Gilmore 9 (Le., rank one 
coset space in the Cartan decomposition), it does so only 
in a mild way, since a rank one homogeneous space is 
involved. These representations are precisely those 
which do not exhibit multiplicity problems when re
duced to the maximum compact subgroup. This supports 
a conjecture by Mukunda25 and Hermann4 that the 
ability to use the deformation or expansion algorithm 
is intimately connected with the nonexistence of mul
tiplicity problems. 

On the group level, it was shown that these deforma
tions are related to multiplier representations and 
"deformations" of the homogeneous space. In this re
gard, there seems to be a need to establish a more 
thoroughgoing connection between the infinitesimal and 
global approaches. A related approach is to perform 
the deformations not merely on homogeneous spaces, 
but on the whole group manifold. 21 In this way, cases 
where multiplicity problems appear might be incor
porated. 

The multiplier representations discussed in this 
paper can be used to calculate the finite group element 
representation matrix elementsS in the basis obtained 
by the canonical decomposition SL(n, IF) ::> K(F) [K = 
SO(n), SU(n), or Sp(n»). Although we only explicitly 
constructed a principal series, other series (e.g., 
supplementary and discrete) should be obtainable by 
allowing a nonlocal measure10•ll as has been done 26 

for SO(n, 1) ::> SO(n). It is also to be remarked that 
other noncompact chains can be discussed as well 
through our deformation procedure and multiplier re
presentations implemented on hyperboloids 
slst + ... + skSt - Sk+lst+l -"'- sns: = 1, as well 
as spheres. This would allow one to discuss such de
compositions as SL(n, IR) ::> SO(n - k, k), SL(n, C) ::> 
SU(n-k,k),andSL(n,Q)::> Sp(n-k,k), (k = 1, ..• , 
n - 1), without multiplicity problems beyond the doub
ling encountered in the reductionS SO(n, 1) ::> 
SO(n - 1,1). 

In conclusion iJ can be said that our realizations for 
n = 2, SL(2, IR) ~I SO(2, 1), SL(2, C) 2~l SO(3, 1) yield all 
the principal series representations and reproduce the 
known results on these groups by Bargmann10 and 
Gel'fand and collaborators.I 1 One can use Similar pro-

2- 1 
cedures to discuss the representations of SL(2, Q) ~ 
SO(5, 1). 

IS. Goshen and H. J. Lipkin, Ann. Phys. (N.Y.) 6, 301 (1959); Ann. 
Phys. (N.Y.) 6,310 (1959). 

2M. A. Melvin, Bull. Am. Phys. Soc. 7,493 (1962); Bull. Am. Phys. 
Soc. 8, 356 (1963); A. Sankaranarayanan. Nuovo Cimento 38, 1441 
(1965); A. Sankaranarayanan and R. H. Good Jr.. Phys. Rev. 
BI40, 509 (1965); A. Bohm, Phys. Rev. 145, 1212 (1966); E. Weimar, 
Nuovo Cimento Lett. 4,43 (1972). 

3y' Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. Lett. 17, 148 

J. Math. Phys., Vol. 14, No. 12, December 1973 

1859 

(1965); M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330 (1966); 
Rev. Mod. Phys. 38, 346 (1966); K. B. Wolf, Nuovo Cimento Suppl. 
5, 1041 (1967); C. P. Boyer and G. N. Fleming, Pennsylvania State 
University, preprint. 

4R. Herman, Lie Groups for Physicists (Benjamin, New York. 1966). 
5J. Rosen and P. Roman, J. Math. Phys. 7, 2072 (1966); J. Rosen, 

Nuovo Cimento B 46, 1 (1966); J. Math. Phys. 9, 1305 (1968); A. 
Chakrabarti, J. Math. Phys. 9, 2087 (1968). 

6J. G. Nagel, Ann. Inst. Henri Poincare 13, I (J 970). 
7J. G. Nagel and K. T. Shah, J. Math. Phys. 11, 1483 (1970); J. G. 

Nagel, J. Math. Phys. 11, 1779 (1970). 
8K. B. Wolf, J. Math. Phys. 12, 197 (1971); C. P. Boyer, J. Math. 

Phys. 12, 1599 (1971); C. P. Boyer and F. Ardalan, J. Math. Phys. 
12, 2070 (1971); K. B. Wolf, J. Math. Phys. 13, 1634 (1972). 

9R. Gilmore, J. Math. Phys. 13, 883 (1972). 
lOY. Bargmann, Ann. Math. 48, 568 (1947). 
"I. M. Gel'fand and M. A. NaImark, Unitiire Darste/lungen der 

Klassischen Gruppen (Akademie Yerlag, Berlin, 1957); I. M. Gel'fand, 
M. I. Graev, and N. Ya. Vilenkin, Generalized Functions (Academic, 
New York, 1966), Yol. 5. 

'2E. Inonii and E. P. Wigner, Proc. Natl. Acad. Sci. USA 39,510 
(1953); E. J. Saletan, J. Math. Phys. 2, 1 (1961). 

'3These appeared in the mathematical literature with M. Gerstenhaber, 
Ann. Math. 79, 59 (1964); R. Hermann, Commun. Math. Phys. 
2,251 (1966); Commun. Math. Phys. 3, 53, 75 (J966);Commun.Math. 
Phys. 5, 131 (1967); Commun. Math. Phys. 6, 157 {1967); Commun. 
Math. Phys. 6, 205 (1967); M. Levy-Nahas J. Math. Phys. 8, 1211 
(1967); M. Levy-Nahas and R. Seneor, Commun. Math. Phys. 9, 242 
(1968). 

14For a coherent discussion of the classical Lie algebras see M. 
Gourdin, Unitary Symmetries (North-Holland, Amsterdam, 1967), 
Chaps. 12-15. 

15We take the liberty of using the same notation for the abstract 
elements of the Lie algebra and their representations. 

'6R. L. Anderson and K. B. Wolf, J. Math. Phys. 11,3176 (1970). 
17Since S L (n, C) is a direct sum of two simple real Lie algebras, it will 

have two second-order Casimir invariants. 
18This is the compact symplectic group (also called unitary-symplectic 

group). to be distinguished from the noncompact real symplectic 
group of transformations which preserve only the bilinear 
antisymmetric form. 

'9For further details on quaternions and their connection with 
symplectic geometry, see C. Chevalley, Theory of Lie Groups 
(Princeton U. P., Princeton, 1946), Chap. 1. For a discussion of the 
representations of Sp(n) see P. Pajas and R. R;\Czka, J. Math. Phys. 
9, 1188 (1968). 

20S. Strom, Ark. Fys. 33, 465 (1966); Ann. Inst. Henri Poincare A 
13, 77 (1970). 

2IC. P. Boyer and K. B. Wolf, work in progress. 
"E. M. Stein, in High Energy Physics and Elementary Particles edited 

by A. Salam (IAEA, Vienna, 1965); G. W. Mackey, Induced 
Represenations of Groups and Quantum Mechanics (Benjamin, New 
York, 1967). 

231. M. Gel'fand and M. I. Graev, Am. Math. Soc. Trans!. 2 (2), 147 
(1956); G. Rosen, J. Math. Phys. 7, 1284 (1966); I. Hulthen, Ark. 
Fys. 38, 175 (1968). 

24C. Fronsdal in High Energy Physics and Elementary Particles, edited 
by A. Salam (IAEA, Yienna, 1965); C. Fronsdal, Trieste preprint 
IC/66/51; W. Riihl, Nuovo Cimento 42, 619 (1966); H. Leutwyler 
and Y. Gorge, Helv. Phys. Acta 41, 171 (1968). 

25N. Mukunda, J. Math. Phys. 10, 897 (1969). 
26C. P. Boyer, J. Math. Phys. 14,609 (1973). 



                                                                                                                                    

Asymptotic behavior of atomic bound state wave 
functions* 

Reinhart Ahlrichs 

Institute of Physical Chemistry, University of Karlsruhe, Karlsruhe, Germany 
(Received 24 October 1972; revised manuscript received 19 March 1973) 

In the present paper we investigate the asymptotic properties of an exact bound state wave function 
<p of an n -electron atomic system within the infinite nuclear mass approximation and neglecting 
relativistic effects. An explicit upper bound is derived for Ilr r <pi I, where r; denotes the distance of 
the ith electron from the nucleus and /.I. = 1,2,3, .. ·. We are then able to derive upper bounds for 
expressions like Ilh (r ;)<pII, where h (x) is an exponentially increasing function. We finally indicate 
an exponentially decreasing pointwise bound for <p. 

I. INTRODUCTION 

Two types of singularities occur in the Schrodinger 
eigenvalue equation of atomic and molecular systems. 
The first one is due to the singularities of the Coulomb 
potentials at points in configuration space where the 
coordinates of two or more particles coincide. The 
second one is concerned with the singular boundary con
dition, i.e., the case of one or more particle coordinates 
going to infinity. 

The consequences of the Coulomb singularities on 
the wave function are well understood in the case that 
just two particles coincide 1 ,2 and lead to the well-known 
cusp conditions. 

Concerning the asymptotic behavior of bound state 
eigenfunctions of SchrOdinger operators, it is generally 
presumed that they vanish exponentially. So far, this 
has been rigorously proven only for one-electron mole
cular ions by Fox and Bazley 3 and for three-particle 
systems, e.g., helium like ions, by Slaggie and 
Wichmann. 4 

It has been proven by Schnol5 that the eigenfunctions 
of an n-particle Schrodinger operator vanish exponen
tially in absolute value provided the potential is bounded 
from below and the corresponding eigenvalue is isolated 
and has finite multiplicity. Schmincke 6 has shown that 
the same result can also be obtained for certain classes 
of unbounded potentials, which do not include the case of 
Coulomb potentials, however. 

In the present paper we consider bound state eigen
functions-for the precise meaning of this term see 
Sec. II-of an n-electron atomic ion in the infinite nu
clear mass approximation, neglecting relativistic 
effects. The Hamilton operator is then spin independent 
and we have to consider only spatial wavefunctions 
o:p(rl"" ,rn )· 

ill Sec. IT we first define various quantities which will 
be used frequently in the following derivations. We also 
give a brief account of some basic mathematical 
concepts. The asymptotic properties of a bound state 
eigenfunction cp(rl' ••• ,rn) are then discussed in Sec. III 
in deriving upper bounds for expressions like IIrlfCPIl. 
The main results can be summarized as follows. 

(a) In subsection lIlA we first derive an explicit upper 
bound for IlrlfCPII, see (17), (18). It is shown that this 
bound cannot be improved considerably in general. 

(b) In subsection IIIB it is proven that cp vanishes 
exponentially in the mean, i.e.,h(ri)cp is square in
tegrable where h(x) is an exponentially increasingfunc
tion. The upper bound obtained for Ilh(ri)cpll is also 
shown to be about as close as possible. We finally de
rive an exponentially decreasing pointwise bound for 
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I cp(rv '" ,rn) I ,which appears to be relatively poor, 
however. 

The various expliCit bounds obtained are of a simple 
form and depend only on the ionization potential of the 
state under consideration and on the nuclear charge. 

II. NOTATION AND BASIC CONCEPTS 

We consider solutions of the eigenvalue equation (1) 
in the Hilbert space JC == L2(n 3n ): 

(H - E)cp == 0, cp ;c O. 

For convenience cp is required to be normalized to 
unity: 

IIcpll == 1. 

The Hamiltonian H is given by 

H = T + V, 

T==-t 6 6; 
i~l,n 

V = - z 6 (l/r;) + .6 (l/r;j)' 
i=l,n '<J 

(1) 

(2) 

(3) 

(4) 

where r; denotes the coordinate vector of the ith elec
tron with respect to the nucleus, Ir;1 = ri'r j " =rj -rj , 

6 is the Laplacian in three-dimensional sparie,z the 
nuclear charge, and n the number of electrons. Whenever 
confusion is possible, we will write H (n) instead of H to 
indicate the dependence on n. A comment is appropriate 
here on the definition of H, since it is not obvious that 
the formal expression (3), (4) defines a self-adjoint 
operator on JC. It has,however,been shown by Kat07 that 
a self-adjoint operator iI = T + V exists, which is uni
quely determined by (3) and (4). T is a generalization of 
T in the following sense: If T/,/ E X,exists locally al
most everywhere and T.f E JC.l. then T/ = 1'/.1,7 The 
domains DT and Dil of T and H COinCide, which is due to 
the fact that each single term in V and hence V itself 
is relatively bounded with respect to l' with bound zero: 

z 6 1I(1!ri)/1l + 6 II (l/r ij )/1I ~ all/II + bIIT/II, 
i ;<j 

/ EDT' a, b > 0, (5) 

where b > 0 can be chosen arbitrarily small. 7 

We further note that any eigenfunction cp of ii [i.e., a 
solution of (ii - E)cp = 0, cp ;c 0], is (equivalent to) an 
analytical function and satisfies the differential equation 
(1) in any region of the configuration space R 3n where V 
is regular.l,S cp is still continuous at the singular points 
of V and has only a rather mild singularity. 

In the following we have to deal with sufficiently well
behaved functions only for which T/ = 1'/ and hence 
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Hf = Hf. Having this in mind, we will fre,quently sup
press the tilde in order to keep the notation simple. 

Throughout this paper we consider only bound state 
eigenfunctions. To give a proper definition of this term 
we have to consider the implications of statistics and 
spin. As the Hamiltonian is invariant with respect to a 
permutation of the particles, the eigenfunctions of H can 
be classified according to the irreducible representa
tions of the symmetric group Sn' Because of the Pauli 
prinCiple, only some of these are physically realizable,9 
which in the nomenclature of Wigner (Ref. 9, pp. 129-33), 
can be classified by the irreducible representations 
15 (k), k = 0,1, ... ,[n/2]. The parameter k is related to 
the total spin S through S = n/2 - k. If the eigenfunction 
cp under consideration belongs to /5 (k) , it can only be 
ionized into (n - I)-particle states which transform 
according to the irreducible representations'/5 (k) or 

'/5 (lrl) of Sn-l' 

Let E c,.-I)denote the lowest eigenvalue of H (n-l) 
O,k _ 

belonging to ' D (k) and let 

E (II-I) = min (E (n-l) E (n-l») 
o O,k, O,k-l • 

The (lowest) ionization potential E of the state des
cribed by cp is then given by E = E ~n-l) - E. 

In the following we consider only states for which 

E = E ~n-l) - E > 0, 

which are usually called bound states. 

(6) 

In the subsequent considerations we will use frequently 
the quantities '11 and y defined as 

'11 =.J2E, (7) 

y = Z/'I1. (8) 

It is further convenient to introduce the n-electron 
operator H'; 

H'; =H +Z/r;. (9) 

For the subsequent derivations we need an estimate of 
the following kind: 

(10) 

where f is a sufficiently well-behaved fun~ion which 
belongs to the irreducible representation D (k) of Sn' and 
Q; denotes an operator which depends on r; only. We 
decompose Q if with respect to the irreducible repre
sentations of the subgroup Sn-l (of Sn) of permutations 
that do not affect r '. The only nonvanishing contributions 
belong to the irreducible representations 'Ii (k-l) and 
'Ii(k) of Sn_l.91f we further note that 

H'i = H(n-l)(rl"" ,r;-1,ri+ 1 ,··. ,rn) - iLl.i 

+ I) ~ ~ H(P-l), 
j("i) r;j 

the ,inequality (10) follows immediately from (6) and the 
definition of E (n-1). 

o 
We finally define the differential operator Pr. , 

(11) 

It is easily shown that Pr . is relatively bounded with 
respect to T: I 

lip r/ 112 "" - (j, LI. J) "" 0' II f 112 + (1/0') II Tf 11 2 , 

o < 0' < 00, 
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which then proves that PrJ is well defined and square 
integrable if this is the d.se for T f. 

The subsequent derivations are considerably Simpli
fied by a result due to Combes,10 who Showed that under 
the present conditions rfcp E JC and further rll.cp E DB 
for arbitrary IJ. = 1,2,3, .... ' 

III. RESULTS 
A. Explicit bounds for IIrl;l <p11 

I 

The derivations presented in this subsection are 
essentially based on the relationship (10). We then 
obtain a few steps the desired bound for IIr~cpll; see (17). 

We start from the following identity: 

which is easily proven if we use the eigenvalue equation 
in the form (H'i - E) cp = (Z/r;)cp, and apply standard 
differentiation techniques. It should further be noted 
that all terms occuring in Eq. (12) are well defined in 
the sense of Hilbert space theory, as has been shown in 
a paper by Combes10 we have mentioned briefly at the 
end of Sec. II, above. 

From the inequality (10) one obtains the following 
estimate for the lhs of Eq. (12): 

(r~cp, (H'i - E)r~cp) ~ dr~cpIl2. (13) 

The term (r~cp,PT.r~-1cp),occuring on the rhs of 
Eq. (12), can be integrated by parts (for an almost identi
cal derivation, see Ref. 11, p. 345): 

(14) 

Equation (14) is valid only if the lhs of (14) is real, 
which is easily verified from (12). Combination of (12), 
(13),and (14) yields 

IIr~cpll2 "" 2yTJ-ll1r~cplI'lIr~-1cpli + 1J.2'11-2 I1rr1cpIl2, (15) 

where y and '11 are defined in (7) and (8). The inequality 
(15) can be solved with re!,pect to Ilr~cpll 

IIr~cpli "" [y + (1J.2 + y2)1/2]'I1-lIIrr-1cpll, IJ. = 1,2, .... 
(16) 

Iterating (16), we obtain the desired explicit bound for 
Ilr~cpll : 

IJ. = 1,2, ... , 
(17) 

where II cp II can be ommitted since cp was required to be 
normalized to unity. 

In order to make the J.I dependence of (17) more trans
parent, we will now derive another bound which is some
what poorer than (17),however. Using the easily veri
fied inequality 

y + (;\2 + y2)1/2 "" (;\ + y) [1 + y2/2(;\ + y/2)2], 

one obtains 

n [y + (;\2 + y2)1/2] "" [r(1J. + y + 1)/r(y + 1)] 

x n [1 + y2/2(;\ + y/2)2], 
)..= 1,~ 
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where r(x) denotes the gamma function. The product 
on the rhs of the last equation is a slowly varying func
tion of IJ. If we insert the product representation of 
sinh (x) (see Ref. 12, p. 29), this term can be further 
approximated by an expression independent of jJ.. A 
simple manipulation finally yields 

IIr~cpll ~ C(y)r(/J + y + l)1rJl , f.L =: 0,1,2, ..• , (18) 

where 

C(y) = -./2: sinh (1Ty/J2)(r(y + 1hTy f1 (1 + y2 /2,\ 2»-1 
A:1,0 (19) 

and {) = [y/2]. The product occuring in (19) has to be set 
equal to unity if {) < 1. The bound (18) was proven only 
for J.1. ~ 1, but it is easily verified that it holds also for 
f.L =0. 

In the case of one-electron atomic ions the eigenvalue 
equation (1) is solvable and the bound (18) can be com
pared with the exact result. Let us, e.g., consider the 
eigenfunction CPn ,n-1 (r), where n is the principal quan
tum number and 1 =: n - 1 the angular momentum. (The 
magnetiC quantum number m does not enter the follow
ing formulas.) The radial partfn,n_1(r) of CPnm-l is 

fn,n-l (r) = Nrn-1e(- Zr/n), 

where N is a normalization constant. The ionization po
tential € is given by € = z2/2n 2,which yields 1/ Z /n 
and y = n. ExpreSSing IlrI'CPn,n-111 in terms of y and 1/, 
we obtain 

IlrJlCPn,n-lll2 = r(2J.1. + 2y + 1) [r(2y + 1)'(21/)2Jl]-1, 

which gives asymptotically for large J1. 

IIrJlCPn,n_lll~(r(y + 0.5)r(y + 1)]-1/2(J.1. + y)-1/4 
X r(J.1. + y + 1)1/-1'. (20) 

Comparison of this expression with the bound (18) 
shows indeed that (18) has, besides the slowly varying 
term (J1. + y )-114, the correct dependence on J.1. and 1/. The 
factor C(y), however, is not too good for large y. Con
Sidering the rather rough approximations that had to be 
made to derive (18), this bound for IIrJlcp11 is surprisingly 
good. 

For the following considerations it is convenient to 
have a bound of the kind (18) for noninteger powers of r: 

IIr~+pcpli ~ C(y)r(J1. + y + 1) (J.1. + y + l)p1/-rp, (18') 
• 

where p is a real number ° <:; p <:; 1. The estimate (18') 
is valid for p = ~ , since by virtue of Schwarz f inequality 

Ilrll+1/2cp112 = (yflcp, rv+1cp) <:; IIr~cpll.llr~+lcpli 
ii' " 

"" [C(y)r(J.1. + y + 1) (f.L + Y + 1)1/2 1/-r1/2 )2. 

Repeating the same procedure we see that (18') holds 
for arbitrary dual fractions p = j·2- m,j = 0,1, .•• , 2m , 
and hence by continuity for any real number 0 <:; p <:; 1. 

B. Exponential behavior of <p 

The f.L and 11 dependence of IIrI'CPn,n-lll displayed by 
(20) is a direct consequence of the exponentially de
creasing behavior of cP n ,n-l' From the Similarity of 
(18) and (20) one might expect that any bound state 
eigenfunction cP vanishes exponentially. This is indeed 
the case in a sense to be specified below. Let us before
hand define the function hfl,v(x) for real /3, integer v, 
with v> /3 :". O,X ;. 0, through 
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hfl,v(x) = ~ [xA-fl/r(,\ + 1)], 
·A= v ,00 

which can also be written as 

hfl,v(x) = x-/l (ex - ~ [xAjr(,\ + 1)]). 
A:O,v-1 

he,v(x) behaves asymptotically like x-fleX: 

lim xfle-x he v (x) = 1. 
%--+00 , 

We can now phrase Theorem 1. 
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(21) 

(22) 

Theorem 1: For any electronic bound state eigen
function cP of the Hamiltonian (3), he v(1/r)<p is square 
integrable if (3 > y + 1, where 11 and; are defined in 
Eqs. (7) and (8). 

Proof: By virtue of (18') we have 

1/A-Bllr. A- fl <p1I 
IIh e,v(1/rj )cpl!", ~ r( • 1) 

A~V,OO A + 

<:; C(y) ~ r(,\ + y - [{3]) (,\ + Y _ [(3])[S]+l-a, 
A: v,oo rCA + 1) 

where [13] denotes the largest integer contained in fl. To 
evaluate the sum on the rhs, we take advantage of 

r(x)xb/r(X + b) "" 1, if b ;. 1,x > 0, 

which follows immediately from the logarithmic con
vexity of the gamma function; see Ref. 13, p. 4. Putting 
x = A + Y - [(3] and b = 1 + [/3] - y, we get immediately 

I!h e,v(1JTi)cpli "" C(y) ~ (,\ + 'Y - [{3])r-a, (23) 
A: v,oo 

where the rhs does in fact converge for any (3 > y + 1. 
QED 

Theorem 1 cannot be improved much in general as is 
seen from a consideration of the particular one-electron 
eigenfunctions CPn n-l(r) already discussed in the pre
ceeding section. Taking into account the asymptotic be
havior of he,v(x) [see (22)],we easily verify that 
hfl v(1/r)cpn n-1(r) is square integrable if {3 > y + t,which 
is 'only slightly less restrictive than the requirement of 
Theorem 1: {3 > y + 1. 

We shall now prove that any bound state eigenfunction 
cP of H vanishes exponentially if r i ~ 00. For this pur
pose it is convenient to write x = (r l' r 2' ••• ,r n)' It has 
been shown by Kato1 that any eigenfunction <p of the 
Hamiltonian (3) is HBlder continuous for €I < 1, i.e., for 
any e with 0 < e < 1, there exists a parameter B depend
ing on e but independent of x and x such that 

I cp(x) - cp(x)k Blx -xl e. 

The inequality (24) implies 

Icp(X}12;. (1<p(x)I-Blx _xl e)2 

for Ix -xl"" R o = (lcp(x)I/B]l/e. 

(24) 

(25) 

We can now use (25) to verify the follOWing chain of 
inequalities: 

;. (Il!,in he, v (Wi) + 1\ 2 
~ri-Til$Ro J 

x B-3n1ew3n I cp(x) I (3n ie+2)'[282 /3n(3n + 9)(3n + 21/)], 
(26) 
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where w = 21T m / 2 /r(m/2) is the surface area of the 
unit sph:re in R m. In order to get rid of the parameter 
Ro = [lcp(x)IB]l/e occuring in (26), we note that Icp(x)1 
is bounded1 and hence Ro < Rmax. Since ha v is essen
tially the exponential, see (22), there exists a constant 
K > 0 such that 

mln [h a,v(1rr) + 1] '" mln [ha,V(rrYi' + 1] 
ITCTil5Ro I TCTt I <Rmax 

'" K[h a,v(1]r i ) + 1]. 

Combining the last inequality with (26), we finally 
obtain 

13 > y + 1, (27) 

where K = Gn/e + 1)-1 and K is a suitable chosen para
meter independent of x. By virtue of the asymptotic 
behavior of h a, v' see (22), (27), yields for sufficiently 
large r i 

Icp(x)I.;;Kr/8e-T/KT
i. (28) 

If we put s = m~xr., the following inequality (28') is 
an immediate con~eq~ence of (28), provided s is suf
ficiently large: 

(28') 

IV. DISCUSSION 

In the preceding sections we have derived bounds for 
Ilrfcpll and IIha,v(w)cpll,where cp denotes as before. an 
atomic bound state eigenfunction. The correspondlng 
bounds (18) and (23) provide information about the asym
ptotic behavior of cp in the mean for the case r; -7 <Xl. 

It has further been shown that (18) and (23) cannot be 
improved considerably in general. 

One can also use the results presented above to obtain 
bounds for expressiOns involving many-electron opera
tors. Let us, e.g., consider R defined as 

R = (. I) ri 2) 112. 
,=1,n 

It is then easily proven that 

R21' .;; nl'-l I) r~1' 
i=l,n z_ 

which in combination with (18) yields 

IIRl'cpll.;; c(y)r({J. + y + 1)n1'1P 

and further, in analogy to (23), 

(29) 

Ilh a,v<"1]R/n)cpll .;; C(y) 6 (A + Y - [13])),-a, (30) 
>..=; v,oo 

provided v > 13 > y + 1. 

The bounds (29) and (30) are rather poor,however. 
The relationship (30) proves that cp vanishes in the mean 
at least like e-T/R/n, whereas one would expect a decay 
like e-T/R. It has in fact recently been shown by 
O'Connor14 that cpeT/'R E Jeif 1]' < 1]. From O'Connor's 
analYSis it follows, of course,that cpeT/'Ti E JC,if 1]' < 1], 

this result is, however, weaker than the estimate (23) 
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which includes the case 1]' = rl. We, furthermore, note that 
O'Connor's treatment does not furnish explicit bounds 
like (23) or (18) derived in the present paper. 

The exponentially decreasing pointwise bound (28) is 
rather poor too. Partly stimulated by the present 
study,Simon15 has recently shown that Icpl < A(1]')e- n'R, 
if 1]' < 1]. The proof of Simon is based on the treatment 
of O'Connor. 

We finally make some comments concerning the gen
eralization of the results obtained in this study. It could 
appear that the derivations given in Sec. III are restrict
ed to the particular Hamiltonian specified in Eqs. (3) and 
(4). This is not the case, however. The considerations 
presented in this work can in fact be extended to Hamil
tonians of the form H = T + W, where W is a so called 
Kato potential. 1We then define H; as 

H; =H + T/lr; - r;,ol, 

where the parameters T and r ;,p have to be chosen such 
that the relationship (31) holds Lwhich is analogous to 
(10) above], 

(31) 

for dT) > O. The present method breaks down, however, 
if (31) cannot be fulfilled. Under the presupposition that 
(31) holds, all bounds derived above are obviously valid 
if we replace r; by Ir; -ri 0 1 ,Z by T and E by dT). The 
parameters T and r i 0 can then be chosen to optimize 
the various bounds. 'In the atomic case the optimal 
choice is, of course, r; 0 = 0 and T = Z, which in turn 
has the advantage that'E can be interpreted as the ioni
zation potential. 
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Energy eigenvalues of a bounded centrally located 
harmonic oscillator 
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Department of Physics, Western Washington State College, Bellingham, Washington 98225 
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In the study of the effects of finite boundaries on the magnetic properties of a solid, one encounters 
the problem of finding the energy eigenvalues of a one-dimensional harmonic oscillator located in a 
potential enclosure. Series expansion techniques are applied to solve this problem for a harmonic 
oscillator located at the center of an infinitely high potential well. An analytical expression for the 
energy eigenvalues is found as a function of the size potential enclosure L, the quantum state n, 
oscillator frequency (I), and the mass of the particle m. The first order approximation of this 
expression is given by E = Eosocoth(EosJEbo,J where Eoso "'ti (I)(n + 1/2) is the energy 
eigenvalues of an unbound harmonic oscillator and E bo> = (2m/h 2 ) (n + 1)21T2/L2 is the energy 
eigenvalues of a free particle in an infmitely high well. For the ground state this approximation is 
better than I % for all values of L, (I), and m. 

I. INTRODUCTION 

The problem of finding the energy eigenvalues of a 
constrained harmonic oscillator is of interest in several 
areas of phYSics. This mainly comes about because the 
squared or harmoniC term in a Taylor's series expan
sion of the potential energy gives the most important 
contribution to the Hamiltonian. Our interest in this 
problem arises from a study of the effects of finite 
boundaries on the magnetic properties of a metallic 
solid. Using the one-electron approximation, the prob
lem becomes that of finding the energy eigenvalues of 
a single electron in a magnetic field which is also in a 
potential well or box. This problem can further be re
duced to that of a one-dimensional harmonic oscillator 
in a box. The center of the OScillator can be anywhere 
inside or outside the box. In a previous paper the energy 
eigenvalues for this problem were found both by numeri
cal extraction of the eigenvalues from the exact series 
solution of the bound-oscillator differential equation 
and also by applying the WKB method to the bound
oscillator differential equation. 1 The WKB solution, 
although generally quite good, gi.ves its poorest agree
ment with numerical solution (10°f., error) for the energy 
eigenvalues in the region of most interest, namely the 
eigenvalues corresponding to those energy eigenstates 
for which the classical turning point of the unconstrained 
oscillator is near the edge of the potential well. In this 
paper by restricting the center of the oscillator to the 
Simpler case of being at the center of the potential en
closure we are able to obtain an analytical expression 
for the energy eigenvalues in this region. Hopefully the 
methods of this paper can be expanded at a later date 
to include those cases where the center of the oscillator 
is not at the center of the potential well. 

The Hamiltonian of a harmonic oscillator in the cen
ter of an infinitely high potential well of length L can be 
written as 

H = (1/2m)p2 + tmw 2x 2 + V(x), 

where ~ 0, 

V(x) = { 00, 

- L/2 < x < L/2, 

Ix I ~ L/2. 

The problem of finding the energy eigenvalues as a 
function of the length of the box L, the frequency (or 
strength) of the oscillator w, the mass m, and the quan
tum state n can be reduced to solving the dimensionless 
Sturm-Lionville differential equation 
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ljI"(r) + (A - r 2)ljI(r) = 0 (1) 

with the boundary conditions that the wavefunction ljI( r) 
vanish at the walls, ljI(± a) = O. Here r, A, l, and a are di
mensionless parameters defined by 

T = (mw/n)1/2x , A = 2E/1fw, 

a = 1/2, 1 = (mw/1f)1/2L. 

There are two important limiting cases for the eigen
values of this problem. When an energy level A lies 
well down inside the harmonic portion of the potential 
well (region I in Fig. 1), the eigenvalues approach those 
of an unbound harmonic oscillator, A ~ 2n + 1 for 
A « 12 /4. For an unbound oscillator the eigenfunctions 
of (1) are given by 

ljIn(T) = e-72
/ 2Hn(T), 

where Hn(T) are Hermite polynominals. Since ljI,,(T) 
falls off as e-T2

/ 2 beyond the classical turning point, the 
free oscillator wavefunction will be very close to zero 
at the walls of the potential enclosure provided the turn
ing pOints are not near the walls. For an unbound oscil
lator the point given by A = T2 represents the turning 
point of the oscillator. Consequently, T will be close to 
2n + 1 provided 2n + 1 is not close to [2/4 = a 2 • 

?; 
a::: 
w 
z 
W 
...J « 
i= z 
w 
Io a... 

n 

POSITION T 

FIG.1 Potential energy of a dimensionless harmonic 
oscillator centrally located in an infinitely high potential 
well. Region I is the area bounded by A '" [2/4 and 7 2 • 
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At the other extreme when an energy level is very 
high above the harmonic portion of the potential well 
(region II in Fig. 1) tbe eigenvalues approach those of a 
free particle in a box, X ~ (n + 1)21T 2/12 for X » 12/4 
where n == 0, 1, 2, •. '. This is not surprising since 
classically the oscillator will bounce off the walls long 
before it can reach its normal turning point so that it 
sees little effect of the harmonic portion of the potential 
well. It is the transition region around X == 72/4 between 
the unbound oscillator states and the particle in a box 
states that is of the most interest. 

The centrally located bound harmonic oscillator has 
been investigated by several authors. 1 - S Their results 
for the energy eigenstates can be divided into two 
groups. In the first group the eigenvalues are given as 
a table of numbers. 1 ,s Here the eigenvalues have been 
extracted numerically from the exact solution of (1). 
Although the eigenvalues can be found for most of the 
ranges of the parameters involved, the results are ex
pressed as numbers as opposed to an analytical expres
sion. In the second group asymptotic expressions for 
the eigenstates are found in the liiniting ranges dis
cussed above.1- 4 We have overcome these limitations 
by showing that all energy eigenvalues are given by a 
series expansion of the form 

X == Xo coth[(XO/X b) + a1(XO/X b)3 + a 2 (X O/x b)S + .. '1, 
(2) 

where Xo is the dimensionless free oscillator eigen
states 

Xo = 2n + 1 

and Xb is the dimensionless free particle in a box 
eigenstates 

Xb == (n + 1)21T 2/l2. 

Here the coefficients ak in this series depend only on 
the quantum number n. 

In the rest of this paper we (1) display a method for 
determining the successive coefficients ak and (2) dis
cuss the error made in truncating the series. 

II. SERIES SOLUTION OF EIGENVALUES 

To match the limiting forms of x, we choose the fol
lowing series as a representation of X as a function 
of the quantum state n and the size of the dimensionless 
boxl==2a: 

X == (2n + 1) cothF(a 2 ), 

where 
00 

(3) 

F(x) == L: C k X 2k+ 1 • (4) 
k= 0 

We have chosen the above form for X because of the 
asymptotic behavior of the hyperbolic cotangent 
function; 

cothz ~ l/z as z -70, 

cothz ~ 1 as z ~ co. 

(5a) 

(5b) 

Recalling that X ~ 2n + 1 when the size of the potential 
box I becomes large, the form (3) for X possess the pro
per behavior because of (5b). The other limiting be
havior, 1 ~ (n + 1)2 1T 2/12 when I is sufficiently small, can 
be used to determine the first coefficient Co of F(a 2). 
By keeping only the first term of F(a)2 when Z is small, 
the asymptotic limit (5a) implies that (3) approaches 
(2n + 1)coa2 • Therefore, 
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Co == (2n + 1)/(n + ll241T2 

if (3) is to approach (n + 1)21T 2/12 as 1 becomes small. 

Thus the expression 

X == (2n + 1) coth[(2n + 1)12/(n+ 1)21T21 

is a first order approximation of X which has the pro
per asymptotic limits. Amazingly this approximation 
gives very accurate results over a large range of 
parameter 1 or n (see Sec. IV). 

To obtain higher order approximation, we need to 
determine the successive coefficients C k of F( a2 ) in (4). 
To accomplish this, we will use the familiar series solu
tion of the differential equation (1) which leads to Her
mite polynomials in the unbound case. The boundary 
conditions that the wavefunctions vanish at the boundaries 
will give us a restriction that will be used to determine 
the coefficients ck • 

Let 

1jJ(T) == e-T2
/ 2 U(T) 

and 

Substitution of the above in (1) gives the even and odd 
solutions 

U1(7) == ao(l + f) (1 - X)(5 - X)· .. (41;> - 3 - x)T2k/(2k) I), 
k=l (6a) 

U2(7) == a1(7 + ~ (3 - X)(7 - X)··· (4k -1 - X} 

k=1 7 2k+ 1 /(2k+1)!). (6b) 

The central location of the oscillator in the potential 
well means that the two solutions are independent. The 
constants ao and a 1 are determined by normalization of 
U1(7) and U2(7). The boundary conditions become U1(a) 
== 0 and U2 (a) == O. 

By expanding U1(a) and U2 (a) in a power series in a, 
the boundary conditions imply that the coefficient of each 
term in the power series in a must vanish since the 
value of a can be arbitrarily fixed. 

To expand U 1 (a) and U 2(a) in a power series in a, 
we must also expand X in a power series in a, and also 
the product (1 - X)(5 - x), •• (4k - 3 - X) or (3 - X) 
(7 - X)· .. (4k - 1 - X). To this end, we write 

00 

X == L: bka4k -2 • 
k=O 

(7) 

We have chosen this form for convenience of present
ation in this paper. We know that had we chosen a power 
series with every power in a, the boundary conditions 
would have eveRtually shown that only the powers used 
in (7) would be different from zero. 

The ck can be related to the b k by expanding A as 
given by (3) and (4) in a power series in a and com
paring coefficients with X given by (7). To do this, 
we note that 

00 

cothz == 2) 22kB2kZ2k-1/(2k)!, I zl < 1T, 
k=O 

where B2k are 2kth Bernoulli numbers. s Therefore, 

00 22kB2kF2k-1(a2) (8) 
cothF(a 2 ) == 2) . 

k=O (2k)! 
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To expand F2k-l as a power series in a, let us look at 
the kth power of F(x). Since the terms in the expansion 
of F(x) go as ,%4n+2, it follows that Fk(x) goes as ,%4n+ 2k, 

so let us define C/: to be the coefficients of the expansion 
of Fk, 

Fk(X) = f; C:x 4n +2k• 
n=O 

(9) 

Note that the symbol Un" will sometimes be used as a 
summation index for convenience and should not be con
fused with the quantum number n. Appendix A gives the 
relationship between C: and cn ' Using (9) in (8), we 
have 

and a comparison with (7) shows that 

k 22tB C2t-1 
b

k 
= (2n + 1) :0 2t k • 

t~O (2t)! 
(10) 

With the aid of Appendix A the relationship between 
the first few terms are 

Co = (2n + l)/b o' 

c1 =c0
3 /3 -b 1 c0

2 /(2n + 1), 

(lla) 

(llb) 

As noted earlier, we will be able to determine co' Cv 
and c2 once bo' b v and b 2 are known. 

Returning to the problem of using U 1 (a) = 0 to deter
mine bw' we need to expand (1 - >..)(5 - >..) ••• (4n - 3 - >..) 
in a power series in a. Let A'k be defined by 

n 

(1 - X)(5 - X) .. • (4n - 3 - >..) = :0 A'k>..k 
k=O 

(12) 

for n = 1,2, g, .... Appendix B shows how the value of 
coefficients A~ can be determined. Expanding Xk in a 
power series in a, let B: be defined by 

00 

>..k = :0 B!a4n- 2k• (13) 
n=O 

Since X is also given by (7) the coefficients bn and B! 

are related. Appendix A shows how the B k can be de
termined from a knowledge of b n' Using (12) and (13) 
in U1(a) = O,we have 

00 n 00 AnBka 41-2k+2n 
1 +:0 :0:0 k I = 0 (14) 

n~l k=O 1=0 (2n)! 

Examination of the powers of a show that the powers 
of a go as 4m or 4m + 2 so that we can rewrite the last 
expression as 

f; !D4ma4m + f; !D4m+2a4m+2 = 0, 
moO m=O 

where 
00 

!Do = 1 + :0 A:B~/{2 n)!, (15a) 
n=1 

00 AnBn m-l 00 A:_2m+21BT-2m+21 
!D4 =:0 ~ + :0 :0 (15b) 

m n=l (2n)! 1=0 n=2m-21 (2n) I 

for m ~ 1,and 
m ~ An Bn-2m+21-1 

!D - :0 l.J n-2m+21-1 I 

4m+2 - 1=0 n=2m-21+ 1 (2n)! 
(16) 
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Since a can have any value we choose,!D4m and !D4m + 2 
must both be equal to zero if (14) is to vanish. These 
equations determine the coefficients b n' For example, 
Appendices A and B show that A: = (- 1) n and Bon = bOn 

so that 
~ (-l)nb on 

!Do = 1 + l.J = cos.Jb 0 
n 1 (2n)! 

Thus !Do = 0 implies that 

bo = (2s + 1)2rr2 /4 (17) 

for s = 0,1,2, .•.. It turns out that either !D4m or 
!D4m+2 will determine the coefficients b m as a re
currence relation in lower order coefficients. Therefore, 
we need only look at !D4m = 0 to determine the suces
sive coefficients b m • 

Appendix B shows that A:-t can be written as 

(18) 

where the values of {t! can be determined from the re
currence relation (B5i in Appendix Band (j) is the bi
nomial coefficient. Appendix A shows that B~ can be 
written as 

(19) 

where (Ef are functions of bI> b2 , b3 , ••• but not boo 
Note that (Er can be obtained using the recurrence re
lation (A3) in Appendix A. 

To evaluate !D4m and !D4m+ 2' we observe from (15) 
and (16) that they contain terms of the form 

00 An . Bn-i 00 ( l)n-; 2; I :0 n-' 1 =:0 - :0(,,){t~:0 (n-i)b n- i - 5 (El 

( ) ()
} J 5=0 5 ,os 

n=i 2n! n=i 2n! j=i 

= :0 ~ -:0 . J btl' - l.J 0 • 
1 (EI d 5 [2i (-l)i{ti .. d). (~ (-l)nb j'~ 

5=0 s! db& j=i J! dbb n=i (2n)! 

Since j ~ i, the jth derivative of the last sum over n 
starting at n = i is equal to jth derivative of the sum 
starting at n = 1, which is cos"; (b 0)' If we define 

ds (2i (- l)t(ti dj ~ Z/(x) = -:0 } xj-i -. (cosv'x) , 
dx 5 j=i j! dxJ 

then 
~ Ann _,.Bn

z- i 1 (EI Z ~(b 0) 
L.I =:0 s •• 

n = i (2n) ! s = 0 s ! 

Using this relationship, we find for m ~ 1 that 

!D = f t (E~Z~m-21 
4m 1=0 5=0 s! 

In a similar manner 

m 1 mlzs 
_ '" '" IDS 2m-21+1 !D 4m + 2 - L.I L.I -------. 

1=0 S 0 s! 

(21) 

(22) 

(23) 

Since (Er = b m ,we can expand (22) so that !D 4 m = 0 
gives for m ~ 1 
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where Zf are understood to be evaluated at boo This 
expression is a recurrence relation for b m in terms of 
b 0' b l' .•• , bm -1' which we will use to determine the 
coefficient b m • 

For b l' Appendix C shows that Z'}, can be reduced to 

n (- 1)IH~t sinv'x (- 1)IH~l'-1 
Z k(X) = cosv'x:6 k -I + --,:6 k -I ' 

1= 1 X +n 'IIX 1= 1 X +n 
(25) 

where H~k are numbers that can be determined from (C8) 
in Appendix C. Setting m = 1 in (24), we find 

b1 = Z~/(- Zli) == H£2 /b o - H~2 • 

Note that only the second term in (25) survives when 
evaluated at b o since ~o == 0 implies that cos.Jb o = O. 

Using Table IV (Appendix C), we find 

b1 == t -1/2bo' 

Similarly 

b2 = 1/45b o - 5/12b 0
2 + 7/8b 0

3• 

Turning now to the odd solution U 2(T), we can again 
follow the same procedure used on U 1 (T). Except for 

(26) 

(27) 

bo' the boundary condition U 2(a) = 0 gives the same re
lationship between the coefficient bn and b o as does (26) 
or (27) although not necessarily in the same form as (24). 
The first term in the expansion of U 2(a) in powers of a 
analogous to (15a) gives (sinv'b o)j.Jb 0 = O. Thus for the 
odd solution b o = (s + 1)21T2, where s = 0,1,2,···. We 
can combine the even and odd solutions together as 

b o = (n + 1)2(1T2)2, n == 0,1,2,···. 

Having determined bk we can determine ck using 
(10). For the first three terms we find 

(28) 

Co = (2n + 1)4/(n + 1)21T2, (29a) 

c1 == c03[t + ~ (2n + 1)-2]- C0
2[t (2n + 1)-1], (29b) 

c2 = Co 5[t + ~ (2n + 1)-2 - ~ (2n + 1)- 4] (29c) 

+ Co 4 [A- (2n + 1)-3 - t (2n + 1)-1] 

+ c03[~(2n + 1)-2]. 

If higher order coefficients are needed, they can best 
be found by computerizing the above procedure. This 
is necessary because of the complexities involved in find
ing the value of such terms as H~k for large n, k, and s. 
Since all the expressions used are in the form of re
recurrence relationship, the above procedure lends itself 
nicely to computerization. 

III. OSCILLATOR LOCATED AT ONE EDGE 

If we place one of the walls of our potential enclosure 
at T = 0, then this is equivalent to looking at a bound 
oscillator whose center is at one edge of the potential 
enclosure. The wave functions (6) are still valid solu
tions, and U(O) = 0 implies ao = O. Only the odd solution 
survives. When it is evaluated at a, U 2 (a) = 0, we obtain 
the same condition as before in Sec. II. As a result the 
odd solution we obtained for the centrally located oscil
lator will be valid for an oscillator located at one edge 
if l is replaced by 2l and n is replaced by 2n + 1. The 
first order approximation to A becomes 

A = (4n + 3) coth(4n + 3)l2/(n + 1)21T2. 
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IV. ERROR ANAl-VSIS 

Using (29) a more convenient form for equations (3) 
and (4) of the solution of A is given by 

A == (2n + 1) coth[z2 + a 1z 6 + a 2z 10 + ... ], (30) 

where 

a 1 = t + ~ (2n + 1)-2 + A(n + 1)21T2(2n + 1)-2, (31b) 

a2 = i + ~ (2n + 1)-2 - -b (n + 1)21T2(2n + 1)-2 

- % (2n + 1)-4 + fa (n + 1)21T2(2n + 1)- 4 

+ l~O(n + 1)41T4(2n + 1)-4. (31c) 

If AO < Ab (i.e.,z is less then one) we expect the first 
few terms in (30) to give good agreement with the exact 
eigenvalues since the maximum value of a1 is 0.1277 
and a is O. 0282 (which occur only when n becomes 
large f. As a function of the quantum state n, z has its 
maximum value at n = 0 so that z < 1 for all n if the 
ground state of the unbound oscillator is lower than the 
ground state of the free particle in a box: 

1 < 1T 2/l2 or ~llw < (1l 2/2m)1T 2/L2. 

An equivalent statement is that z < 1 for all n if the 
dimensionless free particle in a box's ground state 
eigenvalue is greater than one, 1T2 /l2 > 1. When the 
dimensionless ground' state eigenvalue is smaller than 
one, z will not be less than one for all quantum states. 
If N is the minimum value for n for which z "" 1, then 
for any n > N we will have z < 1. The quantum state N 
can be determined from the condition z "" 1 by solving 
(2n + 1)l2/(n + 1)21T2 "" 1 for N 

N> (Z2/1T 2 - 1) + l2/1T2(l2/1T 2 - 1)1/2. 

Table I is a comparison for the ground state between 
the exact energy eigenvalues and the truncated expres
sion retaining only the first term, A = (2n + 1) cothz 2 • 

Here the exact eigenvalues were extracted numerically 
using a method described in an earlier paper.1 If the 
second term in (30) is included, the results agree with 
the computer extracted results to within the limit of 
accuracy of the computer values, which is one part in 
105 • A direct comparison between (30) and the numerical 
solutions is not possible for large land n because of the 
limitations of the computer program used to find the 
exact eigenvalues. 

When z is greater than one, we expect the higher 
order terms of (30) to contribute significantly. In fact, 
the series may even diverge if z is sufficiently large. 
One saving factor is that the series appears in the 
argument of a hyperbolic cotangent function which is 
close to one even if its argument is no larger than 4 
(coth4 = 1. 000671). This means that before z can 
become too large, (30) is already very close to the un
bound oscillator states 2n + 1. Therefore, one may not 
really be interested in finding A from (30) for large 
values of z since under these circumstances A will be 
very close to (2n + 1). For example, in Table I we see 
that even when z > 1 the first order approximation 
still gives agreement better than 1 % for the ground 
state. Moreover, as z becomes large, the percent error 
decreases as A gets closer to the unbound ground state 
value of one. 

Another way to look at the case when z > 1 is to note 
that truncating (30) gives a value for A which is too 
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TABLE I. Comparison of the exact energy eigenvalues found numeri
cally and the first order approximation as a function of the size of the 
potential well I for the ground state" = O. 

A = 
Exact ;\ (2n + 1) cothz 2 ~o Error z 

1 9.90225 9.90335 0.0110 0.31830 
1.5 4.45979 4.46221 0.0543 0.47746 
2.0 2.59691 2.60103 0.1586 0.63661 
2.5 1. 77893 1. 78478 0.3290 0.79570 
3.0 1. 37786 1. 38496 0.5156 0.95492 
3.5 1. 17497 1. 18232 0.6255 1. 14408 
4.0 1. 07492 1. 08132 0.5958 1. 27323 
4.5 1. 02893 1. 03358 0.4514 1. 43239 
5.0 1. 00990 1. 01269 0.2758 1. 59154 
5.5 1. 00297 1.00436 0.1381 1. 75070 
6.0 1. 00076 1. 00138 0.0594 1. 90985 

large, so that the truncated approximation of A will be 
an upper bound for the exact value of A (for example, 
see Table I). Since the exact value of A is always 
greater than 2n + 1, we have that 

2n + 1 < A < (2n + 1) cothz 2 • 

From this we can conclude (as before) that when z 
is large the upper bound of A is very close to 2n + 1 so 
that A must be very close to 2n + 1. 

V. SUMMARY 

We have shown that (3) or (30) is an exact expression 
for the energy eigenvalues of a bound harmonic oscil
lator whose center is at the center of the potential well. 
Moreover, if 1 is replaced by 21 and n is replaced by 
2n + 1 in (30), the resulting expression gives the energy 
eigenvalues when the center of the oscillator is located 
at one edge of the potential enclosure. 

When the natural frequency of the oscillator w, the 
mass of the particle m, and the size of the well L are 
such that 

tmwl< (1f2/2m)1f2/L2, 

one can truRcate (30) to give an approximate expression 
for the eigenvalues since z will be less than one in this 
case for all quantum states. The truncated solution 
may also be used for any quantum state where the cor
responding free oscillator state is less than the cor
responding free particle in a box state, which occurs 
when the quantum number 

The truncated solution of A will be an upper bound of 
the exact value of A. Since 2n + 1 is always a lower 
bound of A, the truncated expression can be used to ob
tain an approximate value of A even in those cases where 
z > 1. For the ground state the truncated approximation 
(retaining only the first term) gives an expression which 
is always better than 1 % for all ranges of the values of 
the parameters m, w, and L. 

APPENDIX A: THE RAISING OF A POWER SERIES 
TO A POWER 

. Let X be the power series 
00 

X = ::0 bnx 4n • 
>1=0 

Defjne Bk to be the coefficient of the power series of 
the kth pow~r of X, 

00 

Xk = ::0 Bt:x4n. 
n=O 
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Since Xl = X and XO = 1, we have 

B;=bn , B8=1, 

B2 = 0 for n '" 1. 

U Sing X k =:: X k-1 X and equating the coefficients of 
powers of x, we obtain the following recurrence relation 
forn",O: 

n 

Bt: = ::0 bn _1B I.-1· 
1=0 

(AI) 

For the first few coefficients of X k this recurrence 
relation yields 

B~ = kb ok-1bz + k(k -1)b ok-2b 1
2/2!, 

Bg = kb ok-lb 3 + k(k -1)bl-2 b1b 2 

+ k(k -l)(k - 2)b ok-3b 1
3/3!. 

The form of the above terms indicates that we can 
write B~ in the following form 

n 

Bt: = ::0 (f) b Ok-ICB7, (A2) 
1= 0 

where CB1 does not depend on boo Here (n is the bi
nomial coefficient. 6 To obtain a recurrence relation 
for CB7, we place (A2) in the recurrence relation (AI): 

n n 8 

::0 (k) b k-lCBn = ::0 b ::0 (k-l) b k -l-tCB8 
1= 0 1 0 1 8=0 n-8 t= 0 tOt 

n 71-1 8<1 

=::::0 (k-1) b HCBn +::0 :z:; b (.r1) b k-j(B~ 
t=O tOt 8=0 j=l 71-8 r 1 0 r 1 ' 

Since bo is arbitrary, we can equate its coefficients 
from both sides of the last expression. For b O

k - 1 term 

71-1 

CB1 =:: ::0 bn - 8
CB f-1 

8=1-1 

for 1 '" 1 and n '" 1. Fo.r convenience we write some 
important terms 

CB~ ::::: 0 for n '" 1, 

CB7 = 0 for l> n, 

71-1 

CB~ ::::: ::0 bn-ii , 
j=l 

CB~-l = {n -l)b 1
n - 2b 2 , 

(A3) 

CB~-2 =:: {n - 2)bt-3b3 + (n - 2)(n - 3)b 1 n- 4 b2
2 /2!. 

APPENDIX B: EVALUATION OF Ar AND (J,1 
Let 

n 

sn == (1 - A)(5 - A) ••• (4n - A) =:: ~ Apk 
11=0 
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for n = 1,2,3, .. '. Expanding sn for first few terms, we 
find 

A~ = (-1)kA8 ::;:: 1'5-9'" (4k - 3), 

At-1 = - (1 + 5 + 7 + 11"'), 

(B1a) 

(B1b) 

Ai-2=(1'5 +1-7 +1-11 +5'7 +5-11 +7-11 + •.. ), 
(Blc) 

A~-3::;:- (1-5'7 + 1'5-11 + 1-7'11 + 5-7-11 + ... ), 
(BId) 

Ai-4 = (1'5-7-11 + .. '). (Ble) 

It is interesting that Aik-j can be thought of as the sum 
over all possible distinct products of the set of numbers 
{I, 5, 7, ... ,(4k - 3)} when take j at a time. 

Using sn ::;:: (4n - 3 - X)S,,-l and equating coefficients 
of X k, we obtain the following recurrence relations: 

A~ = (4n - 3)A~-1 for k = 0, (B2a) 

A'k = (4n - 3)A'k-1 - AZ:l for n > k > 0, (B2b) 

A: = -A:=l for k = n. (B2c) 

Here (B2a) and (B2c) give (Bla). USing (B2b) and 
summing the resulting series, we find . 

A~-l = (_I)k-1 [k + 4k(k -1)/2 I], 

A t-2 = (- 1)Tr-2 [5k{k - 1)/2! + 44k(k - l)(k - 2)/3! 

+ 48k(k - 1)(k - 2)(k - 3)/4 I]. 

The form of these expreSSions for At- j indicates that 
we may write 

2j 

A~_j == (-1)k-j E (n (VI. (B3) 
I=J 

Here G,~ = 0 if 1 < j or l> 2j. The relation (B1a) 
shows 

a8=1, a~=1-5·9···(4k-3). 

We can obtain a recurrence relation for a{ if we put 
(B3) into (B2b) 

2j 2i- 2 2j 
E u) ail = (4k - 3) E (k"}) a Jz-1 + E ("[1) a i l1. 
l=j I=j- 1 l=j 

Bringing the second term on the right over to the left
hand side of the equation and shifting the sum by 1 in 
the first sum on the left, we have 

TABLE II. Values of (1)'k' 

jlk 0 2 

0 1 
1 1 4 
2 5 44 48 
3 45 632 1520 
4 585 11464 44560 

TABLE III. Values of tt)'k' 

jlk 0 2 

0 1 
1 3 4 
2 21 68 48 
3 231 1272 2000 
4 3465 27864 65200 

3 

960 
60480 

3 

960 
73920 
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2J 2i 

E (1:1) G,{ = (4k - 3) E ":1) G,{:i· 
I~ l~ 

(B4) 

By induction we will show that 

G,{ = (45 - 3) G,~:l + (45 - 4) G,~:~ (B5) 

for 2j ~ 5 ~ j. Let k :::: s where 2j ~ 5 > j; then the sum 
over l in (B4) only goes up to 5 since (f-1) :::: 0 if l> 5. 

Taking out the term l = 5 in (B3), we have 

s-1 5-1 

E. <t:l> Ci{ + G,{ = (45 - 3) E G,{:i (';=D + (4s - 3) G,l=i 
I=} I=j 

or s-l 

c.t{ == (45 - 3) a~:t + E a=D [(45 - 3) c.t{:l- a{]. 
I=j 

The sum of the second term on the right only goes up 
to 5 -1 and we have assumed that (B5) is true for all 1 
up to s - 1 in order to show, by induction, that (B5) is 
true for l = 5. Replacing a{ in the last expression by 
(B 5) and taking the term l ::;: s - 1 out of the resulting 
sum,we find 

s-1 

d{ ::;: (4s - 3) G,{:l + E (1=})[4(5 - l)G,{:l- (4l - 4)a{:::~] 
I=j 

= (45 - 3) c.t~:l + 4(s - 1) a~:::2 
8-2 s- 1 

+ 4 E U=l) (5 -1) c.t1=1 - 4 E n:D (1-1) d{:2' 
I=j l=j 

By shifting the last sum by 1 it can be seen that the 
last two sums cancel each other. Some important values 
of a{ are given in Table II. In a similar fashion we can 
expand 

n 
(3 - X)(7 - x) ••• (4n - 1 - X) = E Ap k. 

k=O 

Here A~ satisfy the following recurrence relation: 

A'J, (4n - 1)A'J,-1 - A'J,=! 

for n > k> O. Also 

A3 = 3-7'11'" (4n - 1) 

~ = (-1)n. 

Again we can write A'J, as 
2) 

A~_j ::;: (-I)k-J E (f)(fiz, 
1= j 

where 

a{ == (4s - 1) (l~=l + (45 - 4) (It:~ 

for 2j > s > j. Also CIt = 0 if 5 > j or 5 > 2j. 
See Table III for some value of IDS' 

APPENDIX C: EVALUATION OF Z'k (x) 

Starting with the definition of Z~ (x) given by (20) and 
shifting the sum over j by k, we obtain 

k 

Z'k(x) = Dn E (- 1) k[(k + j)! t 1d ~+ .xiDj+ k (cos.Jx), (CI) 
)= 0 J 

where Dn == dn /dx". Carrying through the nth differen
tiation, we have 

k 

Z'k(x) = E (_1)k[(k +j)!]-l 
)=0 

" x c.t:'i Z;1, (~) (j - s + l)sxi-sDk+n+j-s(cos.Jx). (C2) 
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Here we have made use of the factorial function (a)n = 
a(a + 1)··· (a + n - 1),6 and 

DS(xi) = (j - s + l)sxj -S, 
n 

Dn(uv) = '6 mDS(U)Dn-s(v). 
5=0 

Setting t = j -s, we can write (C2) as 
k 

Z'l = '6 G¥kxtDk+n+t (cos.Jx), 
t= 0 

where 
k 

(C3) 

G7 R = '6 (-I)k[(k + j) !]-I(j,%+j (J-t) (t + l)i-t. (C4) 
J =t 

By shifting the sum over t by k + n, (C3) becomes 
2k+n 

Z'l = '6 
l=k+n 

Now 

Gnk xl-lrnDI (cos.Jx) l-k-n • 

n-l (-I)i(n - j)2 F r,.-j)(.Jx) 
DnF(..Jx) = '6 J 

i =0 j! (2.Jx)n+j 

so that 

(C5) 

1-1 (-I)i(l- j)2.H(i)l-jei.,!x + (- i)l-ie-i.,!x] 
Dl (cos.Jx) = '6 '. (.J . . 

i=O )! 2 x)n+J 

Placing this into (c5) and letting s = l- j, we have 

2k+n H:k H(i)sei.,!x + ( - i)Se-i.,!x] 
Z'l= '6 s=1 (.Jx)2k+2n-s 

where 

Hnlt = 
5 

2k+n 
'6 (_I)I- 8 2-21+s[(l_ s) !]-I(S)21-2s G;:'i-n· 

I=k+n 
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TABLE IV. Values of H~k. 

s/k 2 3 4 

1 0 1/4 0 -19/32 
2 -1/2 -1/4 0 +19/32 
3 1/6 -1/8 -19/48 
4 1/8 1/8 +19/96 
5 -1/12 -17/480 
6 -1/48 -5/48 
7 +1/48 
8 1/384 

Note that when s > k + n the sum over l in H:k starts 
at l = s. By splitting the sum over s, in (C7), into even 
and odd parts, (C7) becomes 

Z~ = cos.Jx '6 (- I)lH~fxl-/rn 
1= 1 

+ .Jx sin.Jx '6 (-I)lH~f_lxt-k-n. 
t= 1 

Here the upper limits of the sums over 1 and tare 
(k + n)/2 if n is even. When n is odd, the upper limit of 
lis k + (n - 1)/2 and that of tis k + (n + 1)/2. 

The values of H:k can be found using (C8) once the 
values of G7 k are known. The values of G7 k can be 
found using (C4) with the aid of Table II for the values of 
<1~+.i. Table IV gives the most important values of H~k 
neeaed to find the first few coefficients b n • 
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Griffiths' inequalities for Ashkin-Teller model 
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The two Griffiths' inequalities for the correlation functions of Ising ferromagnets and two others 
added by Kelly and Sherman and by Sherman are extended to what we call generalized 
Ashkin-Teller model. In this model we consider a system of N particles; each can exist in r possible 
states, Let a collection of pairs of particles be represented by a graph with particles as vertices and 
pairs of particles as edges. The "many-body interaction" among a cluster of particles represented by 
such a graph G (A) is - JA (JA ;:: 0) when the particles in each connected component of G (A) all 
exist in the same state; it is 0 otherwise. For the special case with r = 2 and two-body interactions 
only, the Ashkin-Teller model is equivalent to Ising model. Therefore, what we present in this paper 
can be considered as yet another way of proving the original correlation inequalities for Ising 
ferromagnets with two-body interactions. We have also discovered another new inequality, namely 
<llA > <lIABRS > + <llAB > <llARS > _ <lIAR > <llABS > _ <llAS > < /)ABR > ;:: O. 

,_ INTRODUCTION 

In 1943 Ashkin and Teller1 considered a two-dimen
sional square lattice occupied by four kinds of atoms; 
nearest neighbors interact with only two distinct poten
tial energies, one between like and one between unlike 
atoms. This was later generalized by Potts2 and by 
Kihara, Midzuno andShizume.3 They considered rpossible 
states for each lattice site. Wr; will call this "Ashkin
Teller model". 

Recently, Griffiths4 obtained remarkable inequalities 
for the correlation functions of ISing ferromagnets with 
two-body interactions. These inequalities were sub
sequently generalized by Kelly and Sherman5 to systems 
with interactions involving an arbitrary number of spins, 
and by Griffiths6 to systems with arbitrary spins. 
Ginibre 7 further extended the second inequality. 

In this paper we will prove that the two generalized 
Griffiths' inequalities and two others added by Kelly and 
Sherman5 and by ShermanS are also true in the general
ized Ashkin-Teller model with interactions involving 
arbitrary "clusters" of particles. By a cluster of par
ticles we mean a collection of pairs of particles rather 
than a group of particles. We will present the two gen
eralized Griffiths' inequalities as Theorem I and 
Theorem II; the one added by Kelly and Sherman as 
Theorem III; and that by Sherman as Theorem IV. We 
have also discovered a new inequality which we present 
as a corollary to Theorem II. 

2. GENERALIZED ASHKIN-TELLER MODEL 

ConSider a system of N particles identified by the 
index i = 1,2, ... , N. The location of the ith particle 
will also be denoted by i. There will not be a lattice, but 
only a set of sites without any restriction on their geo
metrical arrangement or on the dimension of the space. 
Each particle can exist in r possible states denoted by 
Pi = 1,2, ... , r. Apair of particles will be denoted by (i,j) 
with i ;>' j. There are N(N - 1)/2 such pairs. Let M be 
the whole set of these pairs. We will consider the i's as 
vertices and the (i,j )'s as edges. Then corresponding to 
each subset A of M, there is a graph denoted by G(A). 
(Note that an isolated point will not be considered as part 
of a graph.) For each such graph G(A), we will define a 
number d(A) as follows: 

d(A) = v(A) - c(A), (2.1) 

where v(A) is the number of vertices of G(A) and c(A) is 
the number of connected components of G(A). 
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For each (i,j), we define a Kronecker delta 

for Pi = Pj 

for Pi ;>' Pj' 

For each subset A of M, we also define 

Since [O(p;. Pj)]2 = O(pp Pj)' we have 

OAOB = OAUB. 

(2.2) 

(2.3) 

(2.4) 

For convenience, "AUB" will be abbreviated as "AB", 
"AUBUC" as "ABC", etc. We note in passing that OAOA = 
ljA. 

Let y denote a configuration, i.e., a possible assign
ment of the values of all the p's; and let (ljA)y be the 
value of /jA in the configuration y. We see that (OA)y = 1 
only when the p's in the same connected component of 
G(A) have the same value in the configuration y; it is ° 
otherwise. 

The generalized Ashkin-Teller model can be described 
by the Hamiltonian of the system whose value at the con
figuration y is 

(2.5) 

where JA 2': 0, J", = 0, and the summation is over all the 
subsets of M • 

The partition function of the system can be written as 

(2.6) 

where {3 = (KT)-l, K being Boltzmann's constant and T 
the (absolute) temperature, and the summation is over 
all the r N possible configurations. The average value of 
OA can be calculated by the following formula: 

(6 A) = Z-l~(OA)y exp(- (3H-y)' 
y 

3. MAIN THEOREMS 

(2.7) 

The generalized Griffiths' inequalities for our general
ized Ashkin-Teller model can be written as the following 
two theorems: 

Theorem I: 

1 2': (OR) 2': r- dOO, for allR eM. (3.1) 

Copyright © 1973 by the American Institute of Physics 1871 
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Theorem II: 

(ORS) - (/)R)(/)S) 2:: 0, for all R, SCM. (3.2) 

On account of the identity 

(3.3) 

we see that Theorem II has the following physical mean
ing: The correlation of the states of any cluster of par
ticles (oR) can never decrease when any of. the inter
action constants Js is increased. Noting that when all the 
Jls vanish we have the equality (/)R) == r-d(Ii), we see that 
Theorem I is a natural consequence of Theorem II. 

Theorem II is actually a special case of a more general 
inequality which we will call 

Theorem II': 

(OA) (/)ARS) - (/)AR)(/)AS) 2:: 0, for all A,R, SCM. 
(3.4) 

In Sec. 6 we will prove Theorem II'. When we let A == 
4>, we will obtain Theorem II automatically. However, the 
phySical meaning of Theorem II' is unknown. 

As a byproduct of proving Theorem II', we obtain a 
new inequality: 

(/)A)(/)ABRS) + (/)AB)(/)ARS) _ (/)AR) (/)ABS) _ (/)AS)(/)ABR) 2:: 0,_ 

for all A, B,R, SCM. (3.5) 

This inequality will be identified as a corollary to 
Theorem II'. 

As observed earlier, Theorem II implies that none of 
the moments (/)R) can decrease when Js is increased. 
One has a strong feeling that (/)S) should increase at a 
faster rate than any of the other (/)R). That this is so is 
confirmed by 

Theorem III: 

1.. o(/)S) _ 1.. o(OR) = (/)S) _ (/)S)2 _ (/)RS) + (/)R) (/)S) 2:: 0, 
{3 Us (3 oJS 

for all R, ScM. (3.6) 

The upper bound for the rate of change of (/)R) with 
respect to Js is given by 

Theorem IV: 

~[1 + (ORS)2 _ (/)R)2 _ (OS) 2] 2:: o(/)R) 
2 Us ' 

for alIR,SCM. (3.7) 

4. PROOF OF THEOREM I 

Lemma I: 

d(A) + deB) 2:: d(AB). (4.1) 

Proof: When we put two graphs G(A) and G(B) to
gether to obtain G(AB), it is possible that the number of 
connected components is reduced; this will happen when 
components of G(A) and components of G(B) overlap. So 
we have 

c(AB) :s c(A) + c(B). (4.2) 
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It is also possible that the number of vertices is re
duced; this will happen when vertices of G(A) and ver
tice of G(B) overlap. So we also have 

v(AB) :s v(A) + v(B). (4.3) 

But we can see that corresponding to each reduction in 
c, there must be at least one common vertex in G(A) and 
G(B); there may be more. Hence the reduction in v is 
always greater than or equal to the reduction in c, Le., 

v(A) + v(B) - v(AB) 2: c(A) + c(B) - c(AB), (4.4) 

or 

[v(A) - c(A)] + [v(B) - c(B)] 2:: [v(AB) - c(AB)]. (4.5) 

And by definition Lemma I follows. End of proof of 
Lemma I. 

Theorem I: 

(3.1) 

Proof: The value of OR is either 1 or 0; so the first 
part of the above inequality is obviously true. To prove 
the second part, we see that for any ReM we have 

= ~ ~ ~ JA ••• ~ JA ~ (/)A1 .. ·AkR)y. 
k=O k! A1CM 1 AkCM II r (4.6) 

But we have 

~(/)A) Y == rN-tJ(A); 
r 

and by Lemma I, 

Therefore, we have 

"'( A ' .. AkR) N-d(A ••• AkR) uo l - y=r 1 

r 
2:: rN-d(A1 .. ·Ak)-d(R) = r-d(Ii)~ (/)A1'''Ak)yo 

r 

Using (4.9) in (4.6), we obtain 

Z(/)R) 2:: r-d(R>Z; 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

and the second part of Theorem I follOWS. End of proof 
of Theorem I. 

5. PROOF OF THE COROLLARY TO THEOREM II' 

Because of the way we will prove Theorem II', it is more 
convenient to present the proof of the corollary before 
the proof of Theorem II'. We will just assume the truth 
of Theorem II' here. 

Lemma II: Let a, b, c, and d be all positive numbers 
and a 2: c, a 2:: d, ab ~ cd; then a + b ~ c + d. 

Proof: Without lOSing generality, let us assume that 
c 2:: d. We consider two cases. 
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Case I: b ~ d. 

Combining a ~ c and b ~ d, we get a + b ~ c + d. 

Case II: b < d. 

ab ~ cd =t> ab bd ~ cd - bd =t> (a - d)b ~ (c - b)d. 
But b < d; so we have a - d > c - b =t> a + b > c + d. 
End of proof of Lemma II. 

Carollary: 

(OA)(OABRS) + (OAB)(OARS) - (OAR)(OABS) - (oAS) (OABR) ~ O. 

(3.5) 
Proof: Let a = (OA)(OABRS), b = (OAB}(OARS), C = 

(OAR)(OABS), and d = (OAS}(OABR). From the first part of 
Theorem I, a, b, c, and dare all positive numbers. Assum
ing the truth of Theorem II' , we have a ~ c and a ~ d. In 
addition, since 

ab = (6 A}(OABRS)( OAB)(OARS} = {(OA)(OARS) H(oAB}(OABRS}} , 

(5.1) 

cd = (OAR)(OABS)(OAS)(OABR) = {(o AR)(O AS) H(o ABR) (0 ABS) }, 
(5.2) 

we see that the two factors of ab is each greater than or 
equal to the two factors of cd, respectively. So we also 
have ab ~ cd. All the conditions of Lemma II are satis
fied. By thIs Lemma, we have a + b ~ c + d. This is 
just the content of the Corollary. End of proof of the 
Corollary. 

6. PROOF OF THEOREM I\' 

Definition I: 

g(A, B) = deAl + deB) - d(AB). (6.1) 

This is the reduction in d when we put G(A) and G(B) 
together. By Lemma I we have g(A, B) 2:: O. 

Lemma Ill: If G(e) is a subgraph of G(B), then 

g(A, B) ~ g(A, e). (6.2) 

Proof: If G(e) is a subgraph of G(B), the intersection 
between G(A) and G(B) will be more than or equal to that 
already exists between G(A) and G(e). By the same argu
ment presented in the proof of Lemma I, more intersec
tion can only lead to further reduction in d; or at least 
remains the same. End of proof of Lemma ill. 

Lemma IV: 

deAl + deARS) $ d(AR) + d(AS). 

Proof: By Definition I, we have 

deAl + deARS) = deAl + d(R) + d(AS) -g(R,AS), 

d(AR) + d(AS) = deAl + d(R) -g(R,A) + d(AS). 

And by Lemma ill, we have 

g(R,AS) ~ g(R, A) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

since G(A) is a subgraph of G(AS). Using (6.6) we see 
that the right-hand side of (6.4) is less than or equal to 
that of (6.5); then the left hand sides of these two equa
tions will give Lemma IV. End of proof of Lemma IV. 
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We note in passing that Lemma I is actually a special 
case of Lemma IV when G(A) is a null graph. 

Definition II: 

(6.7) 

By this definition we have X A = 0 when JA = 0; and X A 

increases monotonically as JA increases. We also have 
the following expression: 

exp[f3JA(oA) .,] = 1 + (OA)yX A' 

Theorem II': 

(6.8) 

(3.4) 

Proof: We will prove this theorem by mathematical 
induction in the following steps: 

1. Let all the J's be zero: In this case we have 

Z=rN, 

the total number of configurations. Therefore, 

(lSA) = Z-l1;(OA)., = Z-lrN-d(A) = T-d(A). ., 
Hence we have 

(6.9) 

(6.10) 

(OA){OARS) _ (!)AR)(OAS) = r-d(A)r-d(ARS) _ r-d(AR)r-d(AS) 

= r -[d(A)+d(ARS)J - r -fJt(AR)+d(AS)]. (6.11) 

Using Lemma IV in (6.11), we will obtain (3.4). Hence 
Theorem II' is true when all the J's are zero. The truth 
of the Corollary for this particular case follows. 

2. Suppose Theorem II' and the Corollary are true 
when a certain number of the Jls are not zero (including 
the case when all the J's are zero), we will prove that 
Theorem II' is again true when an additional JB is not 
zero. 

Let the partition function before the addition of non
vanishing JB be written as 

Z = I)Z.,; ., 
and that after the addition be written as 

(6.12) 

(6. 13) 

where we have used (6.8). Let the average value of oA 
be denoted by (OA) when the partition function is Z; and 
by <OA)' when the partition function is Z'. Then we have 

Z'(!)A)' = I)(OA).,Z.,[l + (oB).,XB] ., 
= I)(OA).,Z., + xBI)(oAB).,Zr 

r ., 
=Z(OA) + Z(OAB}XB• 

USing (6.14) repeatedly, we obtain 

Z I 2{(OA}'(OARS)1 _ (OAR) '(OAS) '} 

= Z2{[(OA) + (OAB)XB][(OARS) + (!)ABRS)XB] 

- [(OAR) + (OABR)XB][(OAS) + (OABS)X B]) 

= Z2{[(OA)(OARS) _ (llAR)(llAS)] 

+ [(OA)(OABRS) + (OAB}(OARS) 

- (OAR)(!)ABS) - (OAS}(OABR)]XB 

+ [(OAB}(OABRS) - \lSABR)(OABS)]X}}. 

(6.14) 

(6.15) 
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Assuming the truth of Theorem II' before the addition 
of the nonvanishing JB , we see that the constant term and 
the coefficient of the quadratic term are both nonnegative. 
And the truth of the Corollary implies that the coeffic
ient of the linear term is also nonnegative. Hence we 
have 

(6.16) 

Therefore, Theorem II' is again true when the non
vanishing JB is added. The truth of the Corollary for this 
case follows again. 

3. Combining step 1 and step 2, and using the argument 
of mathematical induction, we can complete our proof of 
Theorem II'. 

7. PROOF OF THEOREM III 

Lemma V: 

d(RS) ~ d(R). (7.1) 

Proof: When we put graph G(S) onto graph G(R), the 
number of vertices can not decrease, i.e., v(RS) ~ v(R). 
This is favorable to the inequality. On the other hand, 
for any increase in c by 1, there must be a corresponding 
increase in v by at least 2, i.e., the increase in c is 
always over compensated by the increase in v. Hence the 
truth of our Lemma. End of proof of Lemma V. 

Lemma VI: 

(7.2) 

Proof: From (4.7) and (4.8) we have 

(7.3) 

And by Lemma V, we have d(A1 " 'AkRS) ~ 
d(Al' •. AkR). Therefore, each term of (7.3) is greater 
than or equal to the corresponding term of (7.4). So 
Lemma VI follows. End of proof of Lemma VI. 

Theorem Ill: 

(3.6) 

Proof: Let a = ({jS), b = ({jS)({jR), C = ({jS)2, and d = 
({jRS). We see that a,b,c,and d are all positive numbers; 
a ~ c since ({jS) :so 1; a ~d by Lemma VI; and ab = 
({jS)2({jR), cd = ({j S)2 ({jRS), again by Lemma VI we have 
ab ~ cd. Thus all the conditions for Lemma II are satis
fied. Hence Theorem III follows from Lemma II. End of 
proof of Theorem III. 

8. PROOF OF THEOREM IV 

Theorem IV: 

1 + ({jRS)2 _ (OR)2 _ (OS)2 ~ ! a(OR). 
f3 aJs 

(3.7) 

Proof: By Theorem I we have 1 ~ ({jR); by Lemma 
VI we have (OS) ~ ((jRS). Adding these two inequalities, 
we obtain 
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(8.1) 

Similarly, we can also have 

(8.2) 

Combining (8.1) and (8.2), we obtain 

(8.3) 

or 

Using (3.3) in (8.4), Theorem IV follows. End of proof 
of Theorem IV. 

9. DISCUSSION 

In this paper we have proved several correlation in
equalities for the generalized Ashkin-Teller model with 
many-body interactions. Our many-body interactions 
are somewhat different from ordinary ones. Usually 
people consider many-body interactions as correspond
ing to groups of particles; while we consider them as 
corresponding to collections of pairs of particles, or 
corresponding to graphs with particles as vertices and 
pairs of particles as edges. If we restrict ourselves to 
considering interactions corresponding to complete 
graphs only, then our many-body interactions will be the 
same as ordinary ones. In this sense, we may regard our 
type of many-body interactions as Hgeneralized many
body interactions." 

When the number of possible states of each particle is 
two and all the many-body interactions except the two
body ones are vanishing, then Ashkin-Teller model is 
equivalent to Ising model. This can be seen through the 
following transformation: 

(9.1) 

where the a's are the spins in ISing model which take 
the values H+ 1" or H_ 1". The two original Griffiths' 
inequalities for ISing model, i.e., 

I. (aka) ~ 0, 

II. (aka1ama n ) - (akal)(aman ) ~ 0, 

(9.2) 

(9.3) 

follow immediately from our Theorem I and Theorem II. 
This will be shown in the following: 

Proof of I: When the graph G(R) consists of a single 
edge only, we have 

d(R) = v(R) - c(R) = 2 - 1 = 1. (9.4) 

Then, from Theorem I, we have 

(9.5) 

Hence 

(9.6) 

End of proof of I. 

Proof oj II: Let G(R) and G(S) be two graphs each 
consists of a single edge, (k, l) and (m, n), respectively. 
Then, using Theorem II, we have 
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On the other hand, we also have 

(aka1aman) = ([20(Pk'P I) - 1][20(p m,pn) -1]) 

= 4(0(Pk,PI)0(pm,Pn» - 2(0(Pk'P I» 
- 2(0(Pm , Pn» + 1, 

(akal)(aman) = [2(0(Pk,PI» - 1][2(0(pm,pn» - 1] 

= 4(0(Pk' PI» (0 (Pm ,Pn» - 2(0(Pk' PI» 

- 2(0(pm,pn» + 1. 

(9.8) 

(9.9) 

Comparing the right-hand sides of (9.8) and (9.9), and 
using (9.7), we obtain II. End of proof of II. 

From the above discussion, we can say that what we 
have presented in this paper can also be considered as a 
new way of proving the original Griffiths' inequalities 
for Ising model. Our methods have been mostly graph-

J. Math. Phys., Vol. 14, No. 12, December 1973 

1875 

theoretical. In our opinion, these are more elementary 
than what have been used so far. 
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The time evolution of a system coupled to a reservoir, in such a way that no energy exchange at all 
takes place, is examined, considering the syst~m plus reservoir as dynamically closed, An H -theorem 
is proved, more precisely, it is shown quite generally that if the system and reservoir are initially 
uncorreiated, then the Gibbs-Jaynes entropy at time t, S(t), obeys the relation S(t) ~ S(O), We 
have previoulsy exhibited a simple model where S(t) > S(O), Some relaxation times of S(t), for an 
x-y model (system) interacting (no energy exchange) with an Ising model (reservoir), are obtained 
approximately, The values obtained seem reasonable, It is also shown, for this particular model, that 
if the motion of the system, but not the reservoir, is inverted at time T, then its Gibbs-Jaynes 
entropy T, later SMI (T; T), is given by SMI (T; T) """ S(T + T), i.e., the entropy keeps evolving in 
time as if the motion inversion had not taken place. 

I. INTRODUCTION 

The solution to the approach to equilibrium problem 
consists in describing the time evolvement of a system 
of particles initially not in thermodynamic equilibrium. 
PhYSical quantities which exist in non statistical phy
sics have a dynamical operator associated with it (en
tropy does not belong to this class of quantities). The 
expectation value of an operator A, as a function of time, 
is given byl 

(A(t» = Tr[Ap(t»). (1) 

For a dynamically isolated system with a Hamiltonian 
independent of time 

(E j I p(t) IE;) = exp[- i(Ej - E ;)th-1 )(Ej Ip(o) IE;), (2) 

where 

H IE;>= E; IE;>. (3) 

Then, 
- i(E - E )t 

(A(t» = :E;/Ei IA IEj)(Ejlp(o)IE;)e jff; 

If the set of energy levels becomes continuous, the 
sum in the above expression becomes an integral. The 
possibility for (A(t» to approach a constant value as t 
increases, clearly, exists. There may exist, therefore, 
some characteristic time T A for the approach to equili
brium of (A(t». 

The following question, discussed by Blatt,2 however, 
remains. Suppose the dynamically closed system suffers 
an inversion of the motion (for point particles, it would 
amount to reserving all the particle velocities instan
taneously) after some time much larger than T A. Accord
ing to the laws of dynamics,3 both classically and quan
tum mechanically, the system would evolve in time as in 
a movie (taken when the system was running forward) 
run backwards. Such a time reversal of a spin system 
has been performed experimentally by Hahn4 and by 
Rhim5 et al., with results in agreement with the pre
dictions of dynamics. Suppose the system is thermally 
insulated after an extremely long time and one performs 
the motion inverSion operation. One would not expect 
the system to go back to the initial nonequilibrium state, 
on intuitive grounds. However, if one thinks of the sys
tem as dynamically isolated one reaches the opposite 
conclusion. This apparent contradiction led Blatt2 to 
point out that one should not think of a thermally in
sulated system as a dynamically isolated one. He 
suggested that there are interactions between the system 
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and the surroundings which will bring the system into 
thermal equilibrium, i.e.,p(t) would become diagonal 
in the energy representation long before there is any 
energy flow into or out of the system. That is, according 
to Blatt p(t) would become diagonal with a characteris
tic time T s' long before T E (the characteristic time for 
any energy exchange to occur). And often T A « T s' 

The density matrix associated with thermodynamic 
equilibrium is given by 

p = jfJI), 

where j(H) has different forms in the microcanonical 
and canonical ensembles. Equation (2) shows that a 
dynamically isolated system, initially in a nonequili
brium condition, never satisfies Eq. (4). 

The Gibbs-Jaynes entropy6 is given by 

where k B is Boltzmann's constant and p s (t) is the den
sity matrix of the system at time t. Equations (4) and 
(5) imply 

(4) 

(5) 

S(t) = S(o), (6) 

a seemingly disconcerting result, in view of the second 
law of thermodynamics. One may look at Eqs. (5) and 
(6) (or rather, the claSSical analogs) as a manifestation 
of the fact that the timE) evolution of the distribution 
function (analog of p) in classical physics is governed 
by a measure preserving transformation if the system 
is dynamically isolated. Simply, the volumes of the 
phase space cloud is a constant of the motion. 

Two types of approach have been used to avoid the 
annoying result expressed by Eq. (6), which shall now 
be briefly discussed: 

(a) The effect due to interactions between the thermo
dynamically insulated system of interest and outside 
systems is accounted for phenomenologically. 

Clearly, if a thermally insulated system is acted on, 
even if ever so subtly so as not to transfer any heat, 
by some external system, then Eq. (6) need not be ful
filled. The transformation governing the time evolu
tion of the distribution function for the system of in
terest need not be measure preserving any longer. One 
may mimic this effect by coarse graining repeatedly 
in the course of time. 7 This procedure yields the well 
known master equation, which breaks time reversal 
invariance, and produces S(t) ~ S(o). 

Copyright © 1973 by the American Institute of PhYSics 1876 
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On the other hand, one may derive the master equa
tion rigorously8 for a closed system, thus obtaining the 
time evolution of the diagonal part of the density matrix 
if one assumes it to be initially diagonal. In this case, 
in contradistinction to the coarse graining scheme, the 
off-diagonal part of the density matrix plays a crucial 
role in a motion inversion experiment. The apparent 
break of time reversal invariance is not real in this 
case. This is so because whereas forward motion pro
ceeds under the assumption that the density matrix is 
initially diagonal (allowing one to use the master equa
tion), no such assumption can be made for the initial 
condition of the system after its motion is inverted. 

The introduction of a transformation which does not 
preserve measure may also be accomplished using 
stochastic fields,9 again, to try to cancel the mistake, 
so to speak, of considering the system dynamically iso
lated. To have a stochastic field X(f) means to have 
different probabilities X(f) to take all sorts of values in 
the course time. Now given an X(f), a point in phase 
space will evolve along a certain trajectory. Therefore, 
to have a stochastic field X(f) implies that a phase space 
point will evolve along several trajectories with a cer
tain probability for each one of them. Clearly, one no 
longer has a measure preserving transformation in 
phase space. It is then possible to show9 that S(f) :2: S(o) 
for a class of stochastic fields. Such a procedure may 
break time reversal invariance. 
(b) Thermal insulation is equated to dynamical isola
tion. The dynamical equations of motion are not tam
pered with, but Eq. (5) is modified. 

Some examples of this type of treatment are ergodic 
theory,10 C systems,ll and mixing flow.1 0.12 We shall 
just say a word about mixing flow, but the basic com
ments apply to the ergodic theory and C system 
approaches just as well. 

Crudely speaking, a system is said to follow mixing 
flow if any set of points of finite volume on an energy 
surface in phase space evolves in time in such a way 
that in the t --. 00 limit it covers the whole energy sur
face uniformly in a coarse grained way. The coarse 
graining is completely arbritary, as long as the energy 
surface is divided into cells of finite volume. It is in
tuitively clear that mixing flow implies ergodicity and 
that the converse is not true. Clearly, if one looks at 
the distribution function in a coarse grained way after 
f --. 00, then S(f = (0) :2: S(o) if the system obeys mixing 
flow. One such system is a set of hard spheres in a box, 
as has been shown by SinaL 13 Time reversal invariance 
is not broken, however. 

It may be worth remarking that in all of these treat
ments one deals with dynamically isolated system, 
strictly adhering to the laws of dynamics; therefore, one 
cannot escape the existence of Poincare recurrence 
times if one treats finite quantum mechanical systems. 
Indeed, Eq. (2) shows that p(f) will recur in time if the 
number of states initially occupied is finite, which is 
the case for finite systems with bound energies. This 
is to be contrasted with finite c;:lassical systems, where 
as Lebowitz12 has pointed out there is no recurrence 
time if there is mixing flow and if the system is describ
ed by a set of finite volume in phase space. 

We shall shortly point out some connections between 
the approach we intend to follow and the methods of 
attack described under parts "a" and "b". 

A thermally insulated system will betreated here as 
interacting with another system (reservoir), but taking 
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into account the special nature of the reservoir (ther
mally insulating) such that no energy at all goes in or 
out of it. To meet this condition we shall take 

(7) 

where HR is the reservoir Hamiltonian and H is the 
Hamiltonian of the whole assembly (system plus reser
voir). 

To be more speCific, let 

H =Hs +H/+HR, 

where Hs,HR , and H/ are the Hamiltonian of the system, 
the reservoir, and interaction between system and re
servoir, respectively. 

Notice that Eq. (7) implies not just that the reservoir 
gets zero mean energy. It does imply that there is no 
energy flow into or out of the reservoir at all regard
less of the state of the system and the reservoir. This 
is a radical idealization of thermal insulation, but it is 
more realistic than equating it to dynamical isolation. 

Systems interacting with reservoirs have been the sub
ject of many papers.14 However, energy exchange was 
readily allowed. 

We have previously shown,15 for a very simple model 
satisfying Eq. (7), that the entropy of the system [de
fined by Eq. (5)] satisfies S(t = (0) > S(O) if the system 
density matrix is initially nondiagonal in the represen
tation of Hs ' and if the system and reservoir (infinite) 
are initially uncorrelated. It was also shown that there 
is no recurrence time for such.a system (finite), and 
that if the system but not the reservoir is inverted at 
time T, then the entropy of the system at time f after
wards is given by S(T + f), Le., the entropy of the system, 
for the model of Ref. (15) keeps evolving as if no motion 
inversion had taken place. Thus, time reversal in
variance is broken. No statistical assumptions were 
made. The time evolution of the density matrix for the 
system p s was obtained from the dynamics of the dy
namically closed assembly (system + reservoir). 

An examination of the time evolution of p yields the 
following picture (see the general equatio~ (14)) the 
reservoir acts as a source of stochastic static fields 
acting on the system, and, of course, the time evolution 
of the system is governed by a transformation which 
does not preserve measure. That the fields turn out 
to be static is a manifestation of thermal insulation. 

The relation between this treatment and those de
scribed under part "a" becomes immediately obvious. 
This appToach may be thought of, therefore, as an attempt 
at first principles justification of such phenomenological 
treatments. 

Now, in mixing flow one may crudely think of a phase 
space could be come so filamentary in the t --. 00 limit 
that it fills energy surfaces uniformly in a coarse grain
ed way. The effect of the external thermally insulating 
reservoir is, presumably, to smear the cloud filaments 
so that there is no difference between the fine grained 
and coarse grained phase space distribution functions, 
and consequently the fine grained entropy, Eq. (5), and 
the coarse grained version should agree. 

Our treatment supports the mixing flow approach in 
the following academic point. The whole idea of mixing 
flow rests on the assumption that the system is not a 
pure state, Le., the state of a classical system is re
presented in phase space by a set of points of nonzero 
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volume. Now in Ref. (15) it was shown that, at least for 
a particular initial pure state of the reservoir, and any 
pure state of the system (except an eigenstate of Hs) 
S(t = 00) > S(O), i.e., in general, the pure state of the sys
tem becomes mixed in the course of time. This is a 
quantum result. Thus, the influence of the reservoir 
on the system forces one to conSider the time evolution 
of mixed states. On the other hand, whereas in mixing 
flow the motion is time reversal invariant, it'is not so 
in our approach. The reasons are obvious. 

Furthermore, there is some doubt as to whether bound 
systems follow mixing flow. ll 

In the following section, it shall be proved that for 
any system and reservoir if [HR,HI ] = 0, and if the 
system and the reservoir are initially uncorrelated, 
then the entropy of the system S is given by Eq. (5) will 
obey the relation S(t) ?: S(O). 

In Sec. ill, ps(t) is evaluated approximately for the 
x-y model interacting with an Ising model with the assem
bly in a particular initial condition. The main purpose 
of this calculation is to show that the time it takes ps(l) 
to become diagonal is not unreasonably large even 
though there is no energy exchange between the system 
and the reservoir. In the case conSidered previously, 
Ising system interacting with an ISing reservoir, the 
time involved in the approach of Ps(t) to a diagonal form 
turned out to be astronomically large. Thus, Sec. ITI 
supports the statement made in Ref. (15), that this un
desirable feature was due to the ISing character of the 
model, and not to the basic mechanism we propose 
for thermal insulation. It is also shown in Sec. III that if 
the motion of the system is inverted at time T, then 
the Gibbs-Jaynes entropy of the system considered 
there at time 'T later, SM I(T; 'T) is given by 

SMI(T; 'T) = S(T + 'T). 

II. TIME EVOLUTION OF THE GIBBS-JAYNES 
ENTROPY OF A THERMALLY INSULATED 
SYSTEM, GENERAL 

The proof given here is based on one given by Lan
dau,16 

Let the density matrix of a system interacting with 
a reservoir be Ps' Let the reservoir density matrix be 
PR' The density matrix of the assembly (system + 
reservoir) shall be denoted by PA' Clearly,l7 

PR= Tr sPA' 

where Tr II. (Tr s) denotes the trace over reservoir 
(system) states only. 

We shall consider arbitrary Hamiltonians for both 
the system and the reservoir,Hs andHR,respectively. 
The reservoir Hamiltonian H II. will be such that 

(8) 

(9) 

(10) 

where HI is the interaction Hamiltonian between sys
tem and reservoir. 

We shall prove that if Eq. (10) holds, and if 

(11) 

with 

Tr AP A(O) = Tr sP s (0) = Tr RPR(O) = 1, (12) 
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then 

Ss(t)?: s s(t = 0), (13) 

where S s is the Gibbs-Jaynes entropy for the system 
defined by Eq. (5). 

Equation (11) indicates that the system and reservoir 
are initially uncorrelated. A special case of Eq. (11) 
is provided by both the system and the reservoir being 
initially in a canonical distribution and brought to
gether at t = 0, then one may, for example, remove a 
constraint in the system and follow its time evolution. 
Notice, however, that P s(O) and P JO) are completely 
unspecified. Both the system and the reservoir might 
initially be in pure states, for example. 

(a) It shall first be shown that if Eqs. (10)-(11) hold, 
then 

ps(t) =~ (EflpR (0) IE:)e -i(Hs+h/>tps(O)e +(Hs+hs i)t, 

i (14) 

where each symbol will become meaningful shortly. To 
start 

P s (t) = ~ (E~le -i(H s+HI)te -iHRtPR (0) , 
(15) 

where IEf) is an eigenstate of HR' SinceHR commutes 
with HI (Eq. 10) and with Hs ' it drops out of the above 
equation. For the same reason, the state IEf) may be 
chosen such that 

(16) 

where h! is an operator acting only on the states of the 
system. 

Notice that Eq. (14) gives ps(t) in terms of Ps(O) with 
the evolution in time governed by a random static 
system Hamiltonian. 

(b) Next, it will be shown that if Eq. (11) is satisfied, 
then 

SR(t) + Ss(t) '" SR(O) + Ss(O), 

where 

S ( ) = - k Trp ( ) lnp ( ). 

From Eq. (11) it follows that 

(17) 

(18) 

Tr APA(O) InPA(O) = Tr APS(O)PR(O)[lnps(O) + InPR(O)], (19) 

since [ps' PRJ = O. Therefore, 

On the other hand, 

S A(t) = S A(O), 

and (see Ref. 18) 

(20) 

(21) 

TrAPA(t) InPA(t) - TrAPA(t) In[PR(t)PS(t)]?: 0; (22) 

that is, 

SA(t):5 Ss(t) + SR(t)· (23) 

Equations (20), (21) and (23) imply (17). 
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(c) Making use of the results obtained in parts (a)- (b) 
we shall now prove (13). Assume, temporarily that 

(24) 

then 

(E~ IPR(t) IEf} = ~(E~, Efle -iHRte -;(Hs+H IltpR(O) 

• 
(25) 

since [HR,Hs] = [HR,H[] = O. Using Eq. (16), Eq. (25) be
comes 

(E~ IPR(t) IEf} = e -i(E~-Ef) t~ (E~, ESi Ie -;(Hs +k;')1 
i 

x (0) (0) +;(Hs+k~ltIE~ ER) PR Ps e ., I ' 

but 

therefore, using (24) we have 

(E~ IPR(t) IEf} = 0m.I(E~ IpR(O) IEf} 

x 6 (Efle -i (H s + k;' ltps (O)e +i(H s + k~ It IEf). 
i 

Therefore, 

Le., 

under the assumption (30). Thus, 

which combined with Eq. (22) yields 

Ss(t) ~ Ss(O). 

(26) 

(27) 

(28) 

(29) 

But Eq. (14) implies that the value of S (t) is the same 
whether (24) holds or not, therefore Eq. (i3) holds for 
any PR(O) as long as Eqs. (10) and (11) hold. This com
pletes the proof. 

III. THE XY MODEL INTERACTING WITH AN ISING 
RESERVOIR 

The model for the assembly (system + reservoir) 
consists of an x-y model (system) of N spins laid out 
on a Circle, with its zero and first sites interacting with 
a one-dimensional ISing model (reservoir). The 
Hamiltonian for the assembly is given by 

where 

(31) 

(32) 

and (J t is the kth component of the Pauli spin operator 
at the lith site. The Latin and Greek indices refer to 
system and reservoir sites, respectively. Clearly, 
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there is no energy exchange between the system and 
reservoir, since 

Furthermore, 

and 

(33) 

(34) 

(35) 

therefore, the energy of the reservoir (H) may fluctuate 
in time by a quantity of order 1, at most. 

Performing the well-known Wigner-Jordan trans
formations 

and 

( 
i-I ) 

(J1- i(J'j = 2C i: exp - i ~o c; cj 
J; 

(on the system but not on the reservoir), Eqs. (31) and 
(32) become 

and 
M 

HI = (Bocnc o + B 1qC 1 ) ~ 2-I'(Jz. 
1';1 I' 

(36) 

(37) 

It is convenient to perform a further transformation 
to obtain 

with 

Let 

and 

H = 6 Ak17t17 k + HR + const 
k 

M 

Ho = Bo ~ 2-I'(Jff, 
1';1 

M 

H = B 6 2-I'(Jz 
1 1 1'; 1 1" 

B 1 « B 0 « J == HI. « H 0 « J. 

One may obtain Eq. (38) defining 

and solving the equation 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

[17k,H] = Ak17 k' (44) 

which, with H given by Eqs. (30), (32), (36), and (37), 
becomes 

J(gk,j_l + gk,j+-l) + 2oo.jHogk.O + 20ijHlgk.l = 2f1gkj' 
(45) 

A nontrivial solution of Eq. (45) exists if 

Ak = J cosk (46) 
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for the values of k given by 

tan(Nk) =_~ 
2 J sink' 

and 

(
'Nk) HI sink 

tan - =---=---
2 J 

under the conditions specified by Eq. (35), as can be 
shown after some tedious operations. 

(47) 

(48) 

We arbitrarity choose the smallest N/2 positive solu
tions from Eq. (47) and the largest N/2 negative solu
tions from Eq., (48). 

The solutions to Eq. (45) are then given by 

gkj = (2N)-1/2 (e ikj - e-iq,ke-ikj), for 1 :5: j:5: N, (49) 

and 
gkO == gkN' (50) 

where 

e+iq,k = [e- ikN - 1 + (2H1/J)e- ik] 

x [e ikN - 1 + (2H 1/J)e- ik]-I. (51) 

The constant (2N)-1/2 in Eq. (49) is chosen so that 

The eigenvalue equation (45) implies 

"Egkjik'j = 0 if Ak =t= A k, 
j 

(52) 

(53) 

From Eqs. (46), (47), and (48) it follows that Ak =1= A k, 
implie s k =1= k' , and one can work out the case k = k' to. 
o.btain 

(54) 

for the values of k and k' given by (47) and (48). Thus, 
Eq. (39) is satisfied. 

To each distinct reservo.ir state (specified by each 
spin being either up or down) there corresponds a 
value of H 0 and a value of H 11 which, in turn, implies a 
distinct set of values for k (and, consequently, fo.r A k ). 

Thus, the Hamiltonian for the assembly is specified 
completely by Eqs. (32), (38), (39), and (46) -( 48). 

(a) Time evolution of the density matrix. An example 

We are now in a po.sitio.n to. co.nsider a simple example 
o.f an initial condition for the assembly and follow the 
time evolutio.n o.f the density matrix for the system. 

The time evo.lutio.n of the system will now be followed 
from the assembly's density matrix initially given by 

(55) 

where Ps(O) and PR(O) are the initial system and reser
vo.ir density matrices, respectively. The fo.llo.wing 
simple initial condition will be co.nsidered 

P (0) = 2-N + 2-N " h ,(etc. _1.) s LfJJJ 2' 
J 
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(56) 

and 

(57) 

P s(O) is no.ndiagonal in the representatio.n o.f H 0 and 
satisfies Tr sps(O) = 1 (Tr s stands fo.r the trace over the 
states o.f the system only). Furthermo.re,h.« 1 for 
all j. Thus, the reservoir is initially at an infinite tem
perature, while the system is slightly off-equilibrium. 
For example, 4(SJ(t = 0» = hj Ii. 

The system and the reservoir are obviously un
correlated at t = O. The reservoir is at infinite tem
perature, whereas the system itself may be thought of as 
a collection of noninteracting spins (for t < 0) in thermal 
equilibrium under a weak external field varying with 
po.sition. One would thus, have Eqs. (56) and (57) at 
t = O. This interpretation would imply that the external 
field is switched off at t = 0 and, simultaneously, the 
Hamiltonian given by Eqs. (30)-(33) is turned on. 

We are interested in evaluating 

(58) 

where I{m ll }) is a reservoir state with the spin at the 
11th site up [down if m u = + 1 (- 1)]. Taking the Bo -? 0 
limit after the B 1 -? 0 limit is taken, it follows from Eqs. 
(47)-(51) that the set o.f gQj beco.me 

g Qj = 21/ 2N-l/2 cos(Qj) for 0 < Q :5: 1T, (59) 

g Qj = i2 1/ 2N-l/2 sin(Qj) fo.r 1T:5: Q < 0, (60) 

where Q and P are given by 21Tn/N, with n = - (N/2'), -
(N/2) + 1, •.. , - 1,1, ••• , (N/2). 

SubstitUting Eqs. (59), (60), and (43) into Eq. (58), the 
follo.wing equation obtains: 

ps(t) = {6}2-M({m·Il}le-iH.,.-lt(Pf (0) + 6 2-N C(Q, p)TJ+ QTJp 
mil Q,P 

- 2-<N+l)1hj)e+iHA-ll{mll})' (61) 

where C(Q,p) = "EjgQ.gpjhr It is shown in the Appen
dix that a negligible efror is introduced if one uses 

'A -/i-It 
TJQ(t) =~6.Q'KTJk(O)e-' k , (62) 

where 6. Q,K = 1 if Ik - Q I < 1T/N and vanishes o.ther
wise,k is given by Eqs.(47) and (48),Q = 21Tn/N. Sub
stituting Eq. (62) and its Hermitian conjugate into 
Eq. (61), one o.btains 

ps(t)= L; 2- M({m }I 6 e-u,-ltJ(cosQ-cosP)2-NC(Q, P)TJ+TJ 
{mil} Il Q,P Q P 

exp[-(i1i-lt~Ak(Ho,Hl)(6.kQ- 6.k'Q»)] I{m ll }) 

+ (Pf(O) - 2-(N+l)f hj). (63) 

Now, it follows from Eqs. (46)-(48), and Bl « Bo « J, 
that to a very go.od approximation wehave 

A,,(Ho,H
1

) =~ 6. Q'k(J cosQ + ~(Bo + Bl cos2 Q) 

X 13 2-Il»lI') , for k > 0 
1'=1 

(64) 
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and 

for k < 0, (65) 

except for a very small region for k > 0 (which we shall 
neglect) where B «J(Sink)-l is not satisfied. Sub
stituting Eqs. (64~ and (65) into Eq. (63), taking the 
M ~ 00 limit,and uSing the simple identity19 x-l sinx = 
n:,= 1 cos(2-lix), one obtains 

Ps(t) = 2-N - 2-(N+1):L;h j + 2-N 6 G(Q,P)r/"QTJpW(Q,P,t) 
j Q,P 

x e-iJh-1t (cosQ - cosP), (66) 

where 

W (Q,p,t) = [2N- 1F(Q,P)1i- 1t]-1 sin[2N-1F(Q,P)1i-1t], 

and 

F(Q, P) = e(Q)e(p)B1 (cos2 Q - cos2P) + [e(Q)e(- P) 

- e(- Q)e(p)] [Bo + BJ: (cos 2Q - cos2P)] 

+ e(Q)e(- P)B1 (sin2Q - sin2P). (67) 

. Clearly, all-off diagonal elements of ps(t) vanish in the 
t ~ 00 limit, in contradistinction to the case where the 
system of interest is dynamically isolated, where 

It should be noticed that the off-diagonal terms of 
p s (t) decrease significantly in magnitude in a time 
'T ~ (N1i/ J)(J/Bo) or 'T ~ (N1i/ ,,)J/B1), which may be 
interpreted as the time it takes a typical excitation in 
the system to traverse it times (J/B 1) or (J/Bo)' In 
the case Bl ~ 0, Bo ~ 0, one recovers the isolated 
x-y model result, Le., 'T = 00. 

(b) The Gibbs-Jaynes entropy 

The Gibbs-Jaynes entropy for the system, 

S(t) = - k B Tr s[ Ps(t) lnps (t)], 

fulfills 

S(t = 00) > S(t = 0), 

since ps(t) becomes diagonal in the representation of 
Hs as t ~ 00, and it follows from Peierls' theorem for 
convex functions that 

Trp lnp ~ TrPit lnPii' 

the equality sign holding only if (i I p Ij) = fJ ij P ii" 

(68) 

Thus, the case under consideration provides an 
example of actual entropy increase, and in a reasonable 
time 'T. 

To be sure that S(t = 00) - S(t = 0) is not negligible, 
we shall obtain an expression for S(t) to second order 
in h j s. It is a bit tediOUS, but straightforward, to sub
stitUte Eq. (66) into (68) to obtain 

S(t) = NkB ln2 - (kB/S) 6 [G(Q, Q)J2 
Q 

- (kB/S) 6' [G(Q, p)]2[W(Q, P, t)]2, 
p.Q 
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(69) 

where the prime on the summation sign means Q = P 
not included, whence 

S(t = 00) - S(t = 0) =(kB/S) 6' [G(Q,p»)2 (70) 
P,Q 

or equivalently, 

S(t = 00) - S(t = 0) = (kB/s)6h~, 
i 

(71) 

which is in general certainly not negligible. The sec
ond term in Eq. (69) is clearly time independent, and is 
due to the fact that the total spin 6ut is a constant of 
the motion, as may be easily checked. 

(c) Motion inversion 

We shall consider here an arbitrary initial state for 
the assembly (xy model + ISing reservoir). The assem
bly is allowed to evolve in time until t = T. Let the 
system density matrix at this time be Ps (T). At t = T 
the motion of the system (not the whole assembly) is 
inverted, Le., all the spins in the system are "turned 
around," but not the spins in the reservoir. Let the 
system density matrix at time 'T after the motion inver
sion takes place be pMI(T; 'T). NOW, if the system were 
dynamically isolated (instead of thermally insulated as 
it is here) we would have 

pMI(T; T) = pMI(O, 0), (72) 

Le., the motion of the system would be time reversal 
invariant. It will be shown next, that this is not true in 
the case under consideration. The assembly's density 
matrix immediately after T, pljI(T), is given by 

(R,Slp~I(T)ls',R') = (R,s'IUPA(T)U-1IS,R'), (73) 

where Is, R) denotes the system in state S and the 
reservoir in state R, U = npr (the representation of 
S j for every j is assumed), and the product n. is over 
the whole system (but not" the reservoir). On~ may 
check the validity of Eq. (73) verifying that any spin be
longing to the system is inverted while the reservoir 
is unaffected by the motion inversion operation for any 
p A( 'T). It follows, without difficulty, from Eq. (73) that the 
density matrix for the system at time 'T after the motion 
inversion operation takes place is given by 

p~I(T; 'T) = 6 (R le-iHTuPA(T)U-le+iHT IR), 
R 

(74) 

where the tilde denotes complex conjugation. USing 
i1 =H and Uj(Hs+HR +H)U-l =j(Hs+HR-H1) for 
any function j, it follows that 

p~I(T; 'T) = 6 (R Ie -i (H s+H R+Hlh e + i (Hs+HR-H1)T 
R 

X UPA (0)U-1e- i (Hs +H R-HI)Te + i (Hs +HR+Hlh IR). 

(75) 

Now, since [HR,H1] = [HR,Hs] = O,H~ disappears from 
the above equation. USing Eqs. (9), (62), that A~ - AQ is 
odd in (J? - Q) (neglecting errors of order l/N) for 
I Q - k I < 1T/N, Eq. (75) becomes 

p~I(T; 'T)e+iHs2T~ (R lexp[- i~(~Ak.QAk)TJQTJQ(T + 'T) 

x UPA(O)U-l exp[i~(~ A Q.0k) 

(76) 

The operators U and U-I may now be omitted from the 
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above equation. So, 

p~I(T; T) = e + iH s2T~ (R I exp[- i~ (~A k QAk\ 
R Q k • Y 

X'l1"Q'I1 Q(- T - T)PA(O) eXp[i-f(~Ak.QAk) 
( ) I ) -iH 2 T 

X'l1"Q'I1Q-T-T Re s (77) 

and consequently 

( iH 2T -iH 2T 
p~IT;T) = e s Ps (- T - T)e s • (78) 

Clearly, then, 

S~I(T; T) = Ss(- T - T), (79) 

since S is a real quantity. It is not difficult to see that 

Ss(-t)=Ss(t); (80) 

therefore, 

S~lI(T; T) = S s (T + T). (81) 

Equation (80) implies that S(t) decreases for t < O. 
Since S(t) increases for t > O. There is no contradiction 
here. It was shown in Sec. II that S(t) 2: S(O) if P A (0) = 
Ps(O)PR(O). Consequently, for t < 0, S may decrease, as 
it may during any interval of time if the system and the 
reservoir are correlated to start with. On the other 
hand, Eqs. (69), (81) show that the entropy does not in 
general return to its initial value if the motion is in
verted some time T after the initial condition P A = 
P s' PR is fulfilled. 

APPENDIX 

It is shown here that, to a good approximation 

'I1Q (t) = 'I1Q(O)~ Ak.Qe-iAkt, 

where 
f1 if Ik - Q I < wiN, 

A Q• k = 10 
~ otherwise, 

QN = 27m, and k is given by Eqs. (47) and (48). 

We start with 

i"'Q (t) = ['I1 Q(t),H], 

which upon substitution of Eq. (38) becomes 

iTJQ(t) = ~['I1Q(t), 'I1W)]Ak'l1 k(t). 
k 

Now, using Eq. (43) one obtains 

['I1 Q(t), '11 "k(t)] = LfgQjikj , 
J 

and by definition, g Qj satisfies 

(J/2)(g Q.j + g Q,j-l) = Akg Q,j' 

(A1) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

whereas gkj satisfies Eq. (45). If one multiplies (A6) 
by g kj and sums on j, similarly multiplies (45) by g Qj 
and sums on j, and finally subtracts the two equations, 
one obtains 

(Ak - AQ)~ iQjgkj = HIgkl + Hc/fkOiQo ' (A7) 
J 

Use of Eqs. (49), (59), and (60) yields 
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and 

.... _ i (e- ik - eir!>ke+ ik) 
~ g Qjgkj = - "NH 1 sinQ for Q < O. 
J AQ - A_k 

(A9) 

With the help of Eqs. (46), (48), and (51) the above equa
tions become 

~gQ·ik· = AQ k + (~) for Q > 0, 
. J J , J sink 

J 

(A10) 

and 

~gQ·ik· = AQ k + 0(~1) for Q < O. 
j J J , SInk 

(All) 

Neglecting the small region where Eo/ J sink « 1 is 
not fulfilled, we have from Eqs. (A5), (AlO), and (All) 

(A12) 

Furthermore, 

'11 k(t) = '11 k(O)e -iA kt. (A13) 

These last two equations yield Eq. (AI). 
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We show how, by finding an approximation to the exact Green's function, to obtain integral 
equations with compact kernels for two scattc;ring problems involving potentials of infinite range. 
They are one particle scattering in a Coulomb potential for a given partial wave and one particle 
scattering in three dimensions in a potential having r -2 behavior at infinity. In the second case, we 
solve only an inhomogeneous version of Schriidinger's equation. 

1. INTRODUCTION 

There has been a great deal of activity in the area of 
nonrelativisticquantum mechanical three-particle scat
tering since the demonstration by Faddeev1 that the Wat
son integral equations for multiple scattering could be 
treated on a rigorous mathematical basis. Actually, re
latively little use has been made in numerical calcula
tions of Faddeev's result that some power of the kernel 
of the integral equation is compact in a suitable Banach 
space. Perhaps the main effect has been to give people 
confidence that the problem is not really as difficult as 
had been imagined. 

Faddeev's work does not apply to certain potentials of 
infinite range, including the Coulomb potential and poten
tials behaving like r-2 at infinity. Our aim is to derive 
well-behaved integral equations for these potentials. 
We are not particularly optimistic that the use of such 
equations will be the best way to obtain numerical re
sults in three-particle scattering problems, but perhaps 
the existence of the equations would help to build con
fidence' as in the short-range case. In addition, they 
should provide a firm basis to discuss such questions as 
the ionization threshold behavior. 

Before considering the three-particle problem, we 
must first understand the one-particle problem. As far 
as we know, there is no satisfactory integral equation 
for the scattering of a particle in a Coulomb potential, 
even in partial waves, and none for scattering in a r-2 

potential in three dimensions. This paper begins the 
task outlined above by finding integral equations for two 
problems. The first is one-particle Coulomb scattering 
in a given partial wave and the second is one-particle 
scattering in three dimensions in a potential behaving 
like r-2 at infinity. Here our results are somewhat 
restricted, as will be explained below. 

Our method involves finding an apporximation G to 
the exact Green's function G which is more accurate at 
large distances than the commonly used Go' the re
solvent of the kinetic energy operator. In the cases dis
cussed in this paper, the straight-line eikonal approxi
!!,lation provides the basis for a satisfactory form of 
G, and perhaps this result will generalize to other prob
lems involving long-range interactions. 

2. PARTIAL WAVE COULOMB SCATTERING 

To illustrate our approach, we first discuss the prob
lem of one particle scattering in a Coulomb potential 
in a given partial wave, which we take for simplicity to 
be the S wave. We could easily remove this restriction 
and also add a short-range potential. 

The long-range nature of the potential causes dif
ficulties in both initial and final states. In many three
particle problems, such as scattering of an electron 
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from a neutral atom, the initial state is easy to deal 
with, and it is only the final state that causes trouble. 
In a one particle problem, it is difficult to achieve this 
situation. To come as near as possible, we study an 
inhomogeneous version of Schrtidinger's equation for 
the wavefunction 1/1, 

(k2 -If)1/I = g, (1) 

where g is a function that falls off rapidly at large dis
tances and 1/1 contains only outgoing waves at infinity. 
The e-H scattering problem could be stated in this way. 

In the present case we have 

d 2 c d2 
H= --+ -= --+ V(r), 

dr2 r dr2 

I/I(r) = 0 at r = O. 

The Lippmann-Schwinger equation for 1/1 is obtained 
from (1) by operating with Go(r, r'), where 

G ( ') . kr ikr> o r,r = SIn < e . 

The kernel of the integral equation, Go V(r') , is not L2, 
nor, as far as we can see, is it compact. The situation is 
not improved by explicitly including the leading term in 
the expansion of 1/1 for large r. 

We consider G(r, r'), chosen to represent more accur
ately the behavior of the exact G for large r,r'. We 
take 

G(r,r') = sin[<p(r<)] exp[i<p(r»], 

where 

<p(r) = kr + 1) In(r + a) - 1) Ina and 1) = - c/2k. 

We have omitted the phase shift because this is re
lated to the short-range form of V(r). We have used in
formation that could have been found from the JWKB 
approximation, without having the exact Coulomb wave
functions. 

Applying G to (1) and integrating by parts twice leads 
to the equation 

foOO 

dr'(k 2 -H')G(r,r')I/I(r') 

+ <p'(r){isin<p(r)exp[<p(r)] - cos<p(r) exp[<p(r)]}I/I(r) 

= fooo 
dr'G(r,r')g(r'), 

which may be written as 

I/I(r) + fooo 
dr'K(r, r')I/I(r') = rl(r) 

x fooo 
dr'G(r, r')g(r') 

Copyright © 1973 by the American Institute of Physics 1883 
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with 

f(r) = - [k + T//(r + a)] 

and 

K(r, r') = rl(r)(k2 - H')O(r, r') 

I
' -rl(r) sin</>(r) exp[i</> (r)] 

_ x ([ac/r'(r'+a)] + (iT/ + T/2)/(r'+ a)2},r'> r, 

- - rl(r) exp[i</>(r)](sin</>(r'){[ac/r'(r' + a)] 

+ T/2/(r'+ a)2} + cos</>(r') T/ ), r' < r. 
(r' + a)2 

Let us choose a so that 

IT//al< k, 

in which case f(r) will not vanish. It may be seen that 
the kernel of the integral equation K(r,r') sends func
tions dominated as r -7 C1J by ret, 0 < a < 1, into func
tions bounded by a constant at 00. From this we deduce 
that K(r, r') represents.a compact operator in the 
Banach space2 of functions continuous on 0 < r < C1J 

with norm 

IIfll = sup If(r)(1 +r)-etl. 
0< "'<00 

Alternatively, it would be possible to obtain an equa
tion with an L2 kernel by writing 

l/I(r) = t exp[i</>(r) ](1 - e- Y ) + e(r) 

and deducing an equation for e(r) with the help of the 
relation 

t + k-1 Jooodr'[( ac + 71
2 

) sincp(r') 
r'(r' + a) (r' + a)2 

+ 71 coscp(r')] l/I(r') 
(r' + a)2 

= - k-1 Jo
oo 

dr'g(r') sincp(r'). 

We can use the same formalism to discuss the homo
geneous form of Schr1)dinger's equation. We look for a 
solution of 

(E -H)x= 0 

of the form 

x = l/I + sincp(r) 

with l/I containing only outgoing waves at infinity. Then 
l/I satisfies (1) with g given by 

g(r) = sincp(r) ( ac + 7j2 ) + _--,71L-_ 
r(r + a) (r + a)2 (r + a)2 

x coscp(r), 

and the analysis described above applies. 

3. THE CASE OF THE r-2 POTENTIAL 

We now study the case of one particle scattering in a 
potential with r-2 behavior at infinity, but do not make a 
partial wave expansion. As an example, we take the 
potential V(r) = c(r2 + b2tl. Again the kernel of the 
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Lippmann -SchWinger equation is not L"I., and we do not 
know how to make it compact. To derive an integral 
equation~ith a compact kernel, we find a suitable approx
imation G to the exact Green's function G(r, r') which 
satisfies 

(k2 -H')G(r,r') = - 41fli(r' -r). 

The region of most importance is that in which both 
I r I and I r' I are large. 2n almost all of this region, we 
can find a satisfactory G by using the eikonal approx
imation with trajectories which are straight lines di
verging from the point r' = r. This leads, after approx
imating [k2 - V(r)]1/2 by k - C/2kr2, to 

0 1 (r, r') = (e ikp / p)e ifi1 , 

where 

c {I 
<PI = - 2k Jo dt(r + tPt2 

(2) 

c e 
= - 2k P' (3) 

Here, we have used P = r' - r, cose = f'·f and p = 
(rr'/p) sine. 

We cannot expect this apprOximation to G to be valid 
near e = 11', since the trajectory must pass near the origin 
where the potential is not small. To avoid singularities 
in this region, we modify (3) to read 

<P2 = - (c/2k) e(p2 + ll/2 + Itl/2, 

where 

l = rr'/p. 

The expression (4) is close to (3) for large l except 
near e = 11'. 

( 4) 

A further modification of (2) is needed to improve the 
behavior near r = O. Take twice differentiable functions 
h 1(r), h2 (r) satisfying 

hI + h2 = 1, 

hI = 0, r > 1, 

h2 =0, r<~. 

Then our final approximation 0 is 

We are again interested in solving (1), where in this 
case 

H = - ~2 + c(r2 + b2tl 
and 

(5) 

Take (1) with r' as the independent variable, multiply 
by (5) and integrate over the region between two spheres 
centered at r' = r, one small of radius R 1 and the other 
large of radius R?. Use Green's theorem and let Rl -7 

0, R2 -7 C1J; we obtain 

- 41fl/l(r) + f dr'K(r,r')l/I(r') = J dr'O(r,r')g(r') (6) 
and 

K(r,r') = (k2 -H')O(r,r'). 

Our contention is that the kernel K(r, r ') of the inte
gral equation (6) represents a compact operator in the 
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Banach space2 of continuous functions I/I(r) with norm 
given by 

111/111 = supll/l(r)(l +r)al. 
r 

The parameter 0' must be chosen to satisfy 0 < Q' < 1. 
An outline of the proof of this statement follows. 

First we evaluate K(r, r') and find, using d2 = p2 + ll/2 
+ 1, 

K(r, r') = (cb 2r'-2(r'2 + b2t1 + cr'-2d-1(P + d)-1 

x (ll/2 + 1) + c8Z1/2ror'p-1d-3r'-2 - (ic/2k) 

x {d-1r'-2 p-1p-1(r or' - 2p2) + c.r3 [ 8p-2(3P2 

- 2r2) + i Brp-3r '-lr1/2(3r2 + 4p2) 

+ 2pp-1r '-2(p2 -ror')] 

+ 38d-5[p2 p-2(r2 - p2) + fa r 3p-3r'-1 

- trp2p-3r'-ll-1/2rop]} + (c2/4k2) 

x {d-2r'-2 + 8d-4 [2pp-1r'-2(p2 -ror') 

+ ~rpp-2r'-lr1/2] + 82d-6[p2p-2(r2 _ p2) 

+ ts r 3p-3r'-1 - ~rp2p-3r'-ll-1/2r op]}) 

x h2(r)ei(kP+q,.)/p - V(r')h 1(r)e ikP/p. (7) 

With this we show that, if f(r) is a continuous function 
with IIf II = 1, then F(r) given by 

F(r) = j dr'K(r, r')f(r') 

satisfies 

sup IF(r)(l + r)BI< C, 
r 

(8) 

(9) 

where Q' < f3 < 1 and C is independent of f. The esti
mates necessary to show this are achieved routinely by 
considering separately three regions that contribute to 
(8), namely 

(i)r';> 2r, 

(ii) r' '" 2r, p ;> ~r, 

(iii) 0", P '" ~r. 

Some further details are given in the Appendix. 

We also need the equicontinuity of all functions F(r), 
in any region I r 1< R, which is demonstrated by using 

IF(r 1) -F(r2)1< jdr'IK(r1 ,r') -K(r2 ,r')1(1 +r')a 

and showing that the right-hand side, which is indepen
dent of F, approaches zero as I r 1 - r 2 1-- 0 for any 
fixed r 2 • 
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With these two results, the compactness of K follows 
immediately by standard techniques, much as in the 
proof of Faddeev. 1 

4. DISCUSSION 

There is a chance that the same sort of approach, 
with suitable modifications, will apply to Coulomb 
scattering in three dimensions and to three-particle 
problems involving long-range potentials. Our lack of 
knowledge of the form of G in what might be called the 
forward direction did not impede the derivation of a 
good integral equation. However, a similar ignorance 
about the way in which an inCident plane wave is modi
fied in this direction meant that we were forced to con
sider only an inhomogeneous form of Schrodinger's 
equation. To solve the homogeneous form of problems 
such as that discussed in Sec. 3, it will be necessary to 
either learn more about the wavefunction in the forward 
direction or discover an improved form of the integral 
equation. 

APPENDIX 

To demonstrate (9), we need only consider the co
efficient of h2(r) in (7). It is straightforward to show 
that we can find a constant such that 

j dr'd-a 8 bpCZ'pf r'i(1 + r'ta< C(l + r)-B + E, (AI) 

where E is any positive number and f3 is the minimum 
value of 

Q' +a-c-e-f-j -3-A, 

-f - max(O, 3 + j + C + e - a - 0' + A), 

Q' + a - c - e - f - j - 3, 

provided that 

2 + j + f - Q' < 1, 

2 + j + e + c> 1, 

2 + b - e + f + a/4 > 1, 

c> 1. 

Here we have used 

A = max(O, t[a - c - 2]). 

It may be checked that (AI) may be applied to all the 
24 terms in the coefficient of h 2(r) in (7). 

'L. D. Faddeev, Mathematical Aspects of the Three Body Problem 
(Daniel Davey Inc., New York, 1965). 

2L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed 
Spaces (Macmillan Co., New York, 1964), 
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By use of Lie derivatives symmetry mappings of constrained conservative dynamical systems are 
formulated in terms of continuous groups of infinitesimal transformations within the configuration 
space. Such symmetries are called "natural trajectory collineations" in that the total energy has the 
same fixed value along each trajectory of the natural family. this value being preserved by the 
symmetry. It is found that these natural trajectory collineations must be conformal motions subject 
to an additional restriction dependent upon the potential. The corresponding groups of nat~ral 
trajectory collineations are obtained for a flat configuration space with potential energy functions with 
rotational invariance about a point. A specialization of the theory to an indefinite Riemannian 
space-time shows that homothetic transformations are necessary and sufficient to map a natural 
family of time (space)-like geodesics into itself. A related integral theorem for constrained dynamical 
systems admitting linear or quadratic constants of the motion is obtained and illustrated. This 
theorem shows that in general a new constant of the motion will be obtained by deformation of an 
existing constant of the motion under a natural trajectory collineation. 

1. INTRODUCTION 

The related integral theorem 1 •2 •3 is a unified method 
which shows that if a dynamical system admits a dyna
mical symmetry, then in general a new constant of the 
motion will result from the deformation of a given one 
under this symmetry mapping. In Refs. 1 and 3, the 
related integral theorem is based upon dynamical sym
metry mappings of unconstrained systems. As origin
ally formulated 1 the theorem provided a unified method 
of generating quadratic first integrals for dynamical 
systems with geodesic trajectories based upon defor
mation of the metrical quadratic integral under projec
tive collineations. In a later paper3 an extended version 
of the related integral theorem was developed. This 
generalization provided a method for generating addi
tional constants of the motion for conservative dyna
mical systems governed by the equation4 

A
. Dvi . 
I =' -- + g 'J V . = 0 

dt .J' 
. dxi 

v'='
dt ' 

(1.1) 

where V(x) is the potential energy and g i' is the \lletric 
of the configuration space V n' Based up6n the de~or
mation of the energy integral under the'dynamical 
symmetrics of (1.1) (such symmetries were defined 
to be trajectory collineations) additional tn!adratic 
constants of the motion were obtained in a ~ystematic 
manner. Application of the theory to the Kepler prob
lem and three dimensional isotropic harmonic oscilla
tor showed that the well-known Runge-Lenz vector 
constant of the motion and symmetric tensor constant 
of the motion could be obtained in a simple, direct man
ner by this unified approach. 

In Ref. 2, though only briefly sketched, the related 
integral theorem concept was applied to a constrained 
(null geodesic) system. In the present paper we extend 
the analysis of constrained dynamical mappings and 
formulate an associated related integral theorem for 
dynamical systems (1. 1) for which the condition 

(1. 2) 

serves as a constraint in that Eo is a prescribed (fixed) 
constant. Such dynamical systems are of particular 
physical interest for two cases. For the case of a pOSi
tive definite fundamental form with metric g i/ these 
equations define a "natural family"s.6 of trajectories 
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with fixed total energy Eo. For the second case with 
indefinite fundamental form the Eqs. (1.1), (1. 2) with 
V = 0 define constrained geodesic trajectories (time
like, spacelike, or null depending upon the value of Eo) 
in a Riemannian spacetime. 

We initially deal with the formulation of the con
ditions for constrained dynamical mappings (Secs. 2 
and 3). For the first case we define "natural trajectory 
collineations" as those dynamical symmetry mappings 
which do not violate the constraint (1. 2). We obtain ne
cessary and sufficient conditions for natural trajectory 
collineations and find such mappings must be conformal 
motions in the configuration space of the problem and 
in addition must satisfy a further restriction which is 
dependent upon the potential energy function. 7 We then 
determine (Sec. 4) in a flat configuration space all poten
tial energy functions with rotational invariance about a 
point and their corresponding groups of natural trajec
tory collineations. 

In Sec. 5 we consider the second case and continue 
the analysis of constrained dynamical mappings. It is 
shown that the most general dynamical symmetry map
pings which map a natural family of time- (space)like 
geodesics into itself are homothetic motions. 

In Sec. 6 the conditions for the existence of linear and 
quadratic constants of the motion of a constrained sys
tem (1. 1), (1. 2) are obtained and a related integral 
theorem applicable to such constants of the motion is 
formulated. Linear dependency relations between first 
integrals derived by this method are shown to be essen
tially related to the structure of the group of constrained 
dynamical symmetrical mappings. 

We conclude the paper with an application of the 
related integral theorem to the case of null geodesics 
in a conformally flat Ricci symmetric space by obtain
ing a derived quadratic constant of the motion. 

2. NATURAL TRAJECTORY COLLINEATIONS 

ConSider a conservative system whose motion equa
tions in configuration space V II are given by (1. 1), where 
V = V(x i , ••• , xn) is the potential, and gij define the V n 
metric. 

A natural family of trajectories of (1. 1) is defined by 
the energy (first) integral (1. 2) where Eo is a pre
scribed constant. Such a natural family is said to admit 

Copyright © 1973 by the American Institute of Physics 1886 
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a natural trajectory collineation defined by a vector 
field ~i(X) and a scalar cp(x) is the infinitesimal trans
formation (oa = infinitesimal) 

(2. 1) 

along with the associated change in diffe~ential path 
parameter 

dt = {I + 2cp[x(t)]oa}dt 

(where cp is evaluated along trajectories) maps the 
natural family of trajectories into itself in that 

D' == • = - + g'JV. = 0 . fA' f (DVi .. ~ 
• • dt ,J' 

(2.2) 

(2.3) 

(2.4) 

for all values of the v i for which (1. 2) is satisfied. In 
(2.3) and (2.4) the Lie derivative f~ is taken with res
pect to ~i.8 

Equations (2.3), (2.4) lead to the conditions9 

C = ff,B = t(h ij - 4cpgij)vivj + V,i~i = 0, (2.5) 

Di = f~Ai = (ff,{j~}- OfCP,k- o;cp)viVk 

+ 4cpg ij V,j + gijV;ik~k - gjkV,j~:k = 0 (2.6) 

for all values of the vi'S for which (1. 2) is satisfied. 
In (2.5), (2.6) 

h ij == ff,gij = ~i;j + ~j;i' 2cp == ff,dt/dt, (2.7) 

With reference then to (2.5) we have by Hilbert's 
zero-theorem10 that C P == if>B for some positive integer 
p, where if> == if>(xl, ... , xn; v!, ... , v n) is a polynomial 
of degre.e 2p - 2 in the Vi. We show next that p = 1. 

Suppose first n ~ 3. Then B considered as a poly
nomial in the v i must be irreducible. For if not, and 
we have B == (>"iVi + >"o)(ll j v

j + Ilo) (where the >..'s and 
Il 's are functions of the x'), then by (1. 2) we must have 
gijviv j == (>"iVi)(lljVi) which implies the matrix [gij] is 
of rankll :0;: 2, a contradiction. Since B is irreducible 
(n ~ 3) it follows from the relationship between Band 
C p that B is a factor of C, i.e., we may write C = pB, 
[p = p(xl, ••• ,xn )], implying p = 1. 

Suppose next n = 2, and B is reducible, B == LM, a 
product of two linear factors (in v!, v2), with L '" OIM 
[01 = 01 (xl, x2)]. Then CP = if>B implies C = pLM = pB. 
lf L = OIM, B = OIL2, then it can be shown I gi·1 = 0, a 
contradiction. If B is irreducible, it follows a~ in case 
n ~ 3,that p = 1. Finally, if n = 1, it can be shown, as 
for n = 2, that C = pB, so P = 1. 

In a like manner we have D i = tJ; iB, [tJ; i = tJ; i(xi, ••• , 
xn)] for all n. 

It follows from the above-derived relations between 
C,B andD,B, and (1.2), (2. 5), (2.6), (2. 7) that 

ff,gij = 21lgij (21l == P + 4cp), (2;8) 

Y == V,i~i - p(V - Eo) = 0, (2.9) 

f~{j~ = OJCP,k + o~cp.j + ttJ;igjk' (2.10) 

Wi == 4cpg iiV . + gijV .. ~k 
,J ,Jk 

- gikV,j~:k - (V - Eo)tJ; i = O. (2.11) 
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3. NATURAL TRAJECTORY COLLINEATIONS 
(CONTINUED) 

We consider in further detail the four equations (2.8)
(2.11) as necessary conditions for a natural trajectory 
collineation. The condition (2.8) implies the mapping 
vector ~i defines a conformal motion, and it is known 
that for such a symmetry12 

(3.1) 

Equations (2. 10) and (3.1) imply 

OiAk+Oki>"·-g·kgim/J. =ttJ;ig'k (>"=/J.-CP). J ' ,J J , m J 

On putting i = j in (3.2) and summing, we find 
tJ; i == g ijtJ;j is a gradient, 

tJ; i == tJ;, i = (2n>.. - 2¢), i 

(3.2) 

(tJ; = 2n>..- 2cp + co,co = const). (3.3) 

If (3.2) be multiplied by ghigjk and summed on i,j,k 
there is obtained by use of (3.3), (n - l)(n + 2)>.. h = O. 
Hence if n > 1, >.. = /J. - cp = c = const. We can 'thus 
express /J., P [see (2.8)], tJ;, and tJ; i in terms of cp, 

/J.=cp+c, p=2(c-cp), tJ;=-2cp+c', 

tJ;i = 2¢, jg ij (c,c' = const). (3.4) 

Hereafter, we take n > 1. If then we form the ex
pression g im Wi from (2. 11) and make use of (2.7), (2.8) 
and the relation gij~:k = ~j;k' we obtain 

g. Wi=_pV +V.~i +Vk ~k-(V-Eo)'" 
~m ,m :)-im ,m 'Y,m.-

(3.5) 

Now by the use of (2.7), (2.8), (2.9), (3.4), (3. 5) we 
find g im Wi = Y'i' This implies (2. 11) is a consequence 
of (2.8), (2.9), (3.4). In addition, a simple calculation 
shows that (2.10) is a consequence of (2.8), (3.4). By 
means of (3.4) we can rewrite (2.8), (2.9) in the form 

(3.6) 

(3.7) 

and hence (3.6), (3. 7) are necessary conditions for a 
natural trajectory collineation [see (2.5), (2.6)]. It is 
easy to show (3.6), (3.7) will imply (2.5), (2.6) [making 
use of the dependency of (2. 10), (2. 11) on (3.6), (3. 7), 
and relations (3.4)]. 

The above results can now be summarized in the 
theorem to follow: 

Theorem 3.1: Equations (3.6) and (3.7) (n> 1), are 
necessary and sufficient conditions for the infinitesimal 
transformation (2.1) with the associated change in 
differential parameter (2.2) to define a natural trajec
tory collineation of a constrained dynamical system 
(1. 1), (1. 2). 

4, NATURAL TRAJECTORY COLLINEATIONS FOR 
POTENTIALS HAVING ROTATIONAL INVARIANCE 

As an application of Theorem 3.1 we determine the 
nature of the natural trajectory collineations when the 
configuration space is a Euclidean space Sn(n ~ 3), and 
V = V(r), where r2 = (xl)2 + '" + (xn)2 (Xi are rect
angular coordinates, so gij = 0ij)' It is found con
venient to use (2.8), (2.9) I rather than the equivalent 
(3.6), (3.7)]. 
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As previously observed (2.8) imply that vector ~i 
defines a conformal motion. Now the form for such a ~; 
in an Sn referred to the (Xi) rectangular coordinates is 
known to be13 .14 

where 

(4.2) 

[the 1.1. is the same as in (2.8)]. It is known that vector 
~ i generates the general conformal group G N of 
N = (n + 1)(n + 2)/2 parameters15 

GN=[U,Pi,Vi,Sij] (i,j=1,2, ••• ,n), (4.3) 

where (p; == a/ ax;) 

V" = xixjp" - ~r2p "' I J , 

Sij=xipj-xjPi. (4.4) 

There remains the solution of (2.9) for V = V(r), 
using p = 4c - 21.1. [as determined from (3.4)], and using 
(4.1) for ~i. 

We first dispose of the two cases V = Eo and 
V = Vo "" Eo (VO = const). If V = Eo, then (2.9) is 
satisfied identically and hence the group of natural 
trajectory collineations is G N itself. If V = V 0 "" Eo, 
(2.8) shows p = 4(;' - 21.1. = 0, so 1.1. = 2c = const. This 
implies a i = 0, and the group of natural trajectory col
lineations is the subgroup [U, Pi' Sij ] of GN with 
1 + n(n + 1)/2 parameters. 

Assume now that V(r) "" const. Define W == In(V -- Eo). 
Then (2.9) may be written 

(W'/r) ~ xi~i = 4c - 21.1. (W' = dW/dr "" 0), (4.~) 

which by (4. 1) reduces to 

X[/3 + (2a o + a)r2/2] + 2a = 4c - 2ao 

({3 == ~ bix i, X == W'/r "" 0). (4.6) 

If (4.6) be differentiated with respect to Xi the re
sult may be written Px i + R i = 0, where 

P == X'[t3 + (2ao + a)r2/2]/r + (2ao + a)X, 

R; == X(b j + a j r 2/2) + 2a i = R;(r). (4.7) 

Suppose it were possible that one of the R / s is 0 and 
another does not equal O. Then condition Px' + R i = 0 
will lead to a contradiction. This implies all R; = 0, 
or allR j "" O. If allR j "" 0 (soP"" 0), then Pxi + Ri = 0 

gives xii xj = R / Rp which again leads to a contradic
tion. Hence we must have all R i = O. If we form the 
equation XRi,i = 0, and make use of Ri = 0, we obtain 

(2X' - rX2)a j = O. (4.8) 

Before discussing (4.8) we consider first the possi
bility that (4.6) is satisfied identically, Le., assume 

/3 + (2ao + a)r2/2 = 0, 4c - 2ao - 2a = O. (4.9) 

The second of (4.9) implies a = 0, ao = 2c (a = 0 
implies a; = 0). Hence the first of (4.9) implies {3 = 0, 
ao = 0, Le., we must have ao = a i :;::: b j = 0 (c = 0), and 
the corresponding group of natural trajectory collinea
tions is [Sij],and V(r) is arbitrary. 

We return now to (4.8) and assume first 2X' - rX2 =0, 
which gives X = - 4(C o + r 2)-1, and so V - Eo = 
C1(C o + r 2 )-2 (CO,C 1 = const,C1 "" 0). From (4.6) 
we thus obtain 

ao =- 2c. (4.10) 

In the case Co = 0, then V - Eo = C 1r-4 , and the group 
is [U, Vj,Sjj] of 1 + n(n + 1)/2 parameters. In the case 
Co"" 0, then ao = 0 (c = 0), and the group is 
[~C oP; + Vi' S jk] of n(n + 1)/2 parameter s. 

Finally, we assume from (4.8) that 2X' - rX2 "" 0, so 
that a i = O. Then R i = 0 shows b i = 0 (recall X "" 0). 
Hence (4.6) gives aoW' = (4c - 2ao)/r, leading to 
V - Eo = C1r m (m "" - 4, as then 2X' - rX2 = 0). The 
group of natural trajectory collineations is now [U, S ij] 
of 1 + n(n - 1)/2 parameters. 

The results of this section are summarized in 
Theorem 4.1 stated below. In this theorem if [Xl,X2' 
... , X 9] is any stated group of natural trajectory col
lineatlOns the notation 1.1. (Xe) means the value of J.l. cor
responding to the generator Xe. A like meaning applies 
to cp(Xa) and c(Xe) [cp(Xe) = J.l.(Xa ) - c(Xe )]. In all 
cases of the theorem the J.l.-values for the basic genera
tors U, P;, Vi'S;j are, respectively, 

I.I.(U) = 1, l.I.(Vj) = xj, 

J.l.(Sij) = O. (4.11) 

Hence, for example, in the second type V = Vo it was 
shown above that 1.1. = 2c. It follows that in this case 
cp(U) = 1- c(U) = 1- ~I.I.(U) = ~. 

Theorem 4.1: If the infinitesimal mapping; (2.1), 
(2.2) defines a natural trajectory collineation of a con
servative dynamical system, (1. 1), (1. 2) (with a Eucli
dean configuration space n ~ 3), whose potential is 
V = V(r) [r2 = ~ (xj)2], then V(r) and the correspond
ing group of natural trajectory collineations will be 

TABLE La Natural trajectory collineation groups for rotationally invariant potentials. 

Type 

II 

III 

IVa 

IVb 

V 

Potential 

v = Vo '" Eo, Vo const 

Vir) arbitrary 

v - Eo = C or-4, Co const '" 0 

V - Eo = Cl(C o + r2)-2, 

CO'C l consts '" 0 

aThe notation in this table follows that of Section 4. 

J. Math. Phys., Vol. 14, No. 12, December 1973 

Group 

[U, v"S,}] 

[leoP, + V" S,}] 

¢(X) 

¢(U) = Co' ¢(P ,) = c,' ¢(V,) = x' - c;, 
¢(Sjj) = C ii , CO,Ci,C~,Clj consts 

¢(U) = 1, ¢(P,) = 0, ¢(S,) = 0 

¢(S,) = 0 

<t(U) = t, ¢(V,) = x', </>(5,) = 0 

</>(1cop, + V,) = x', ¢(S,) = 0 

¢(U) = co' </J(S,) = 0 
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one of the forms given in Table 1. The groups are all 
subgroups (or the full grouP) of the general conformal 
group 

5. CONSTRAINED GEODESIC MAPPING IN 
RELATIVITY THEORY 

We now apply the results of the previous sections to 
the problem of mapping constrained geodesics in rela
tivity theory. We therefore consider the V n to be a 
Riemannian space V 4 with signature -2 and take V = 0 
in (1. 1), (1. 2), and subsequent equations leading to (3.6), 
(3.7). [Note that the derivation of (3.6), (3. 7) is indepen
dent of the signature of the quadratic form in (1. 2).] It 
then follows that the natural trajectory collineation 
conditions (3.6), (3.7) may be interpreted as the condi
tions for mapping a natural family of geodesics into 
itself. 

For the speCific case in which V = Eo = 0, and t is a 
suitably chosen parameter, (1.1), (1. 2) will define null 
geodesiCS. By inspection of (3.6) and (3.7), we obtain 
the well-known necessary and sufficient conditions2 that 
the transformation (2. 1), (2. 2) maps null geodesiCS into 
null geodesics, Le., the mapping must be a general con
formal motion as shown by (3.6). 

We next assume that Eo "" 0 (V = 0). Equations (1.1), 
(1. 2) now define timelike (Eo> 0) or spacelike (Eo < 0) 
geodesics. 16 Equations (3.6) and (3.7) may then be 
interpreted as necessary and sufficient conditions that 
(2.1), (2.2) map a natural family of time- (space)like 
geodesics into itself. Inspection of (3.6) and (3.7) shows 
such mappings must be homothetic.17 Hence we may 
state 

Theorem 5.l: A necessary and SUfficient condi
tion that the infinitesimal transformation (2. 1), (2. 2) 
maps a natural family of time- (space)like geodesics 
into itself is that the mapping to be a homothetic motion. 

Since homothetic motions are also conformal, it 
follows that such mappings are sufficient to take null 
geodesics into null geodesics. 

For the particular case of a Minkowski space-time 
we note that the homothetic motion group consists of 
the 10-parameter inhomogeneous Lorentz group plus 
a scale change. 

6. RELATED INTEGRAL THEOREM BASED ON 
NATURAL TRAJECTORY COLLINEATIONS 

In this section we shall develop a related integral 
theorem l ,2,3 for dynamical systems (1.1) with quadra
tic constraint (1. 2). [As is well-known l ,2,3 this type of 
theorem will generate additional first integrals (re
ferred to as derived first integrals) from given first 
integrals.] We consider first the conditions that such 
systems admit linear or quadratic constants of the 
motion. 

For the existence of a linear constant of the motion 
it is required that 

L == Ai (x)v i = const (6.1) 

for all Xi(t) which satisfy (1. 1) subject to the constraint 
(1. 2). The requirement DL/ dt = 0, with use of (1. 1), 
leads to the condition 

(6.2) 

subject to the constraint (1. 2). By an argument similar 
to that of Sec. 2 it then follows that necessary and suffi-
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cient conditions for a linear first integral of a natural 
trajectory are 

F == AjV . + (2/n)(V - E \A ~ = O. oJ rr.a. .. m 

For the existence of a quadratic constant of the 
motion 

(6.3) 

(6.4) 

of a natural trajectory we obtain in a like manner the 
necessary and sufficient conditions lS 

G ijk == B (ij,k) - (1/2)r (kgij) = 0, (6.6) 

Hj == - 2gikB ij V,k + n,j - r/v - Eo) = 0, (6.7) 

where [from (6.6)] it follows that 

r k = 2(n + 2)-1(BLk + 2BL), BJ == gikBkj" (6.8) 

We now proceed with the formulation of a related 
integral theorem for the constrained dynamical system 
(1. 1), (1. 2). Assume such a system admits a linear 
first integral L and there exists a natural trajectory 
collineation defined by a vector ~i as described in 
Theorem 3.1. By forming £tL with respect to the 
natural trajectory collineation vector, we obtain 

(6.9) 

We shall now show that [refer to equations (6. 3) 
and (6.4)] 

a i == gij
aj , (6. 10) 

(6.11) 

and thus verify that £tL is a constant of the motion. 
The expansion of (6.10) by use of (6.9) gives 

e ij = (£tAJj + (£tA ) .. - 2CP(A i,j + A jd) 

- 2(CP,iA j + CP,i.Ai) - (2/n)[gab(£tA a),b 

- 2Aact,a - 2CPA :':n]gij' (6.12) 

By use of (3.6) we evaluate £t{j~} and substitute in the 
identity12 

(£tAi),j == £t(A i ) + (£tGj})Am 

to obtain 

(6.13) 

(£tAi),j = £t(Ai) + CP,jA i + CP,iAj - gijAmcp,m' (6.14) 

Use of (6.14), (3.6), and (6.3) in (6.12) leads to 
e ij = O. 

To verify f = 0 we expand (6.11) by use of (6.9) and 
(6.14) to obtain 

f = gij(£tAi)V,j - 2CPAiV, i + (2/n)(V - Eo)gab£t(Aa,b) 

- 2(V - Eo)Aacp ,b - (4/n)(V - Eo)A:':n' (6.15) 

We observe thatfas given by (6.15) may be expressed 
in the form 

f= £ F - (2/n)Am Z - AmZ + K .. AigkjV + 2cpF € .; m • m 'J ,k 

+ gij[(V - E c)/ n ][£t E ij + (2/ n)E ij] = 0, (6.16) 
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where the symbols Eij,F,Kjj' and Z are defined by (6.3), 
(6.4), (3.6), and (3.7), respectively. This last remark 
completes the verification that £,L is a constant of the 
motion. 

We next consider the verification that £f,J is a cons
tant of the motion, where £,J is based upon the deforma
tion under a natural trajectory collineation of a given 
quadratic first integral J of the form (6.5). We form 

bij = £tBij- 4cf>B ij , 

e=£f,n, (6.17) 

and define 

m· = - 2b .. gkiy k + e . - X·(V - Eo), 
J 'J. .J J 

where 

Xk = 2(n + 2)-1(bi;k + 2bt), 

(6.18) 

(6.19) 

(6.20) 

We shall now show [refer to (6: 6), (6. 7), and (6.8)] 
that h;ok and mj vanish identically for b jj and e defined 
by (6.17) provided (6.6), (6.7), (6.8), (3.6), and (3.7) are 
satisfied. 

If (3.6) is used in an identity similar to (6.3), we 
obtain 

(£,Bab),k = £f,(Bab;k) + 2Babcf>.k + Bkbcf>.a 

+ Bkacf>.b- (gakBr +gbkB;:')cf>.m' (6.21) 

We expand Xk of (6.20) by use of (6.17) and (6.21) and 
make use of (6.6), (6.8), and (3.6) to obtain 

(6.22) 

If the right side of (6.18) is expanded by use of (6.17) 
and (6.22) and use be made of (6.21), (3.6), and (3.7) we 
find hjjk = O. 

Next we show that mj of (6.19) vanishes. By use of 
(6.17) and (6.22) we expand (6.19) to obtain 

mj =- 2(£,B jj )gjkV. k + 8cf>BJV. i + (n.i~j).j 
- (£,r j - 2cf>rj - 4B Jcf>. j + 2cr)(V - Eo)' (6.23) 

From (6.7) we form Yj = £f,Hj and made use of (3.6) 
to obtain 

Y j = - 2(£f,Bjj)gikV.k + 4(cf> + c)BJV. k 

- 2BJ(V.m~m).k + (n. i~i).j 

- (£f,rj)(V-Eo)- rjv.i~i=O. (6.24) 

By use of (3.7) and (6.24) we may express (6.23) in 
the form 

(6.25) 

This completes the verification that £f,J defined by 
(6.17) is a first integral of the constrained dynamical 
system. 

We may summarize by stating the following Related 
Integral Theorem of a constrained dynamical system. 

Theorem 6.1: If a family of natural trajectories 
[defined to be solutions of the dynamical equation (1.1) 
subject to the quadratic constraint (1. 2)] admits a quad-
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ratic first integral (6.5) [linear first integral (6.1)], 
and if there exists a natural trajectory collineation 
based upon vector ~j as described by Theorem 3.1, then 
in general the family of natural trajectories will admit 
an additional quadratic first integral (6. 17) [linear 
first integral (6.9)], which is based upon the" deforma
tion of the original quadratic (linear) integral under the 
trajectory collineatiqn. 

If in Theorem 6.1 we take the V n to be of indefinite 
signature and choose V = 0, Eo = 0 [in (1. 1) and (1. 2)], 
then Theorem 6.1 may be regarded as a related integral 
theorem for null geodesics. If, in addition, we take 
n = 0 [in (6.5)], we then obtain Theorem 4.1 of Ref. 2. 

Next we obtain dependency relations between derived 
first integrals. We assume the existence of an r-para
meter group of natural trajectory collineations defined 
by the vectors ~~, Q' = 1, ... ,r. Based upon a given 
linear or quadratic first integral I and a natural trajec
tory vector ~ ~, we obtain a "first derived" first integral 
I = £ 1(£ = £, ) by use of Theorem 6.1. Repeated 

a a a loa. 

application of Theorem 6.1 based upon vector ~~ in 
general leads to a "second derived" first integral 
I Ba = £B£aI • 

We now assume Q' ;r! {3. By use of the group relation
ship 12 

(6.26) 

where C &B are the structure constants of the natural 
trajectory collineation group, we immediately obtain 
the linear dependency relations 

I Ba - laB = Claly 

between first integrals. 

(6.27) 

From (3.7) based upon vector ~~ and associated cons
tant c a we easily find 

C&BCy=O. (6.28) 

Use of (6.28) and the group relationship 12 

£B~~ = Cea~~ 

permits a detailed verification of (6.27) based upon 
given linear or quadratic first integrals I of the form 
(6.1) or (6.5) (refer to Ref. 3 for details of a similar 
calculation) . 

7. ILLUSTRATION OF THE RELATED INTEGRAL 
THEOREM 

In this section we give an illustration of Theorem 6.1 
as applied to null geodesics of a V 4 of signature + 2. 
If in (1. 1), (1. 2) we take V = Eo = 0, then the family of 
natural trajectories becomes the null geodesics of the 
space. 

We take the V 4 to be a conformally flat space C 4 

defined by the fundamental quadratic form 

4 
<I> =..!.... ~ e .(dxi)2, 

u 2 1 ' 

where 

u 2 = 8 2 + Q + i, 
4 

8 = ~ e.(x i )2, 
1 ' 

(7.1) 

Q = (x2)2 + 2x1x3 + (x4)2. (7.2) 
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It can be verified for this C 4 that the scalar curva
ture R = 0 and the Ricci tensor is covariant constant, 
i.e.,Rij;k = 0. 19 

It follows that if in (6.5) we choose n = 0 and 
B .. = R .. , then R .·v iV j is a quadratic first integral of 
'J'J 'J 

the null geodesics since the conditions (6.6), (6.7) are 
satisfied.2o 

In this C 4 the vector ~ i == /) i is a conformal motion 
vector (£fg ij = 2f.J.g i)' 4f.J. = ~: i)' Based upon this vec
tor we define by (6.17) [with cP = f.J. - c by (3.6)] 

(7.3) 

By Theorem 6.1 as applied to null geodesics, b ijv ivj 

defines a derived first integral of these geodesics. 

It is of interest to determine if the quadratic first 
integral defined by (7.3) is a linear sum of known quad
ratic first integrals of the null geodesics in this C 4' 

Two such known quadratic integrals are g ijV /vi and 
R .. V ivj • In addition, it is known the C 4 admits the full 
g;~up G15 of conformal motions 13 ,14,15,21 and each 
conformal motion vector defines a linear first integral 
9f the null geodesics [see (6.3), (6.4)]. The product of 
any two such linear first integrals defines a quadratic 
integral of the null geodesics. If the quadratic first 
integral defined by b i· is in fact a linear sum of the 
above mentioned quadratic first integrals, then22 

15 
b ij = AoRij + B~ij + 6 Kc<B~i(X(,)~j(X8) 

a,.B =1 
(7.4) 

must hold for some constants (not all zero) A 0' B 0' K aB , 

where G15 has generators [Xl'" ,.,X 15 ] = [U,P i , VpS ij ] 
[see (4.3)], !lnd ~i(Xa) indicates the vector correspond
ing to generator X a' It can be shown that (7,4) (using 
for example, i = j = 2) cannot be satisfied for any such 
choice of these constants, and hence b ijv iVj is linearly 
independent of th.ese known first integrals. 
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We give precise definitions of the weak and strong principles of equivalence and show that the new 
gravitational theory based on the improved energy-momentum tensor of Callan, Coleman, and 
Jackiw [Ann. Phys. (N.Y.) 59, 42 (1970) 1 satisfies both of these principles. As a consequence of 
the equality between the 4-momentum given by the canonical energy-momentum tensor and the 
"momentum" given by the pseudotensor that is the source of gravitation, the weak principle is 
also shown to hold in more general Einstein theories. Investigation of the interactions of a scalar 
field in the new gravitational theory shows that, besides the familiar long range interaction, there 
exists a new short range gravitational interaction between any scalar field' and other matter. 

I. INTRODUCTION 

In Lagrangian field theory the canonical energy
momentum tensor is of great importance since the 
energy and momentum of a system are obtained by 
integrating components of this tensor over the volume 
of the system. If we designate the field variables 
appearing in the Lagrangian £ by Q;(x), then the 
canonical tensor is 1 

T'V Q o£ !'>v£ (1) 
II = t,ll oQ. - II ' 

I,V 

where the repetition of the index i indicates summa
tion over all the field variables. This tensor is con
served: 

T~V,V = O. (2) 

The energy-momentum 4-vector is given by 

PIl = jT'"Od3x. (3) 

However, T'/ is not the only acceptable energy
momentum tensor. It is always possible to add to 
T~v an extra tensor of the form WJvaJ,ex to get a diifer
ent tensor 

T'V + W[vex] (4) 
" ",a' 

This leaves Eqs. (2) and (3) unchanged. The exist
ence of many alternative energy-momentum tensors 
has one good consequence: We can construct a sym
metric canonical tensor by adding some extra terms 
to the right-hand side of Eq. (1).2 But the lack of 
uniqueness of the energy- momentum tensor means 
that we cannot unambiguously identify the density of 
energy and momentum. The theory does not deter
mine how the energy and momentum are distrubuted 
over the volume of the system. 

The ambiguity in the energy- momentum tensor is 
removed if instead of taking as energy- momentum 
tensor "what is conserved," we take "what is the 
source of gravitation." Different densities of energy 
and momentum will give different gravitational 
fields and, therefore, in any given gravitational 
theory, these densities must be unambiguous. In any 
general Einstein theory3 we define the energy
momentum tensor by 

-Rv+.!./}vR-81TGTv (5) " 2" - " . 
This uniquely determines T"V as 

(6) 
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with 
15 0 0 0 -=-----, (7) 

15g"v og"v ax" ag"v,,, 

where £m is that part of the Lagrangian which con
tains matter variables. We can take the limit g"v --7 

TI"v to obtain the corresponding tensor of special 
relativity. If Eq. (6) is used, it is necessary to show 
that the resulting tensor gives the correct energy
momentum 4-vector, Le., it must be shown that the 
volu~e integrals of TuO and T'uO are the same. We 
will show that this is so in Sec. III. Equation '(6) has 
the further advantage that it directly gives a symmet
ric tensor. 

Although this settles the question of which is the 
right energy-momentum tensor in prinCiple, it does 
not in practice because we do ricit know how the gravi
tational field variables enter £m' One often postu
lates a minimal coupling principle: £m in the pres
ence of gravitation is obtained from the correspond
ing £m of special relativity (assumed known) by re
placing T/fJv by gfJ V and ordinary derivatives by covari
ant derivatives. 4 We will call the resulting theory 
the minimal Einstein theory. However, general Ein
stein theories, involving a direct coupling of the 
curvature tensor with the matter field variables, are 
not excluded by the experimental evidence. 

Callan, Coleman, and Jackiw 2 have proposed that the 
correct choice for the energy- momentum tensor (in 
the flat space limit) is the tensor obtained from the 
(symmetric) canonical tensor T'fJ v by adding a term 
- ~ (VV - ~ v 0 2)rp 2 for each scalar field rp that is 
pr~sent. If we suppose there is only one such scalar 
field, then the proposed tensor is 

8/ = T~v - ~ (ofJov - 15/0 2)rp2. (8) 

This tensor, called the new improved tensor, results 
from Eq. (6) if one adds to the usual minimal coup-
ling Lagrangian an extra term - .!.. "J- g R rp 2 repre
senting a direct interaction of thel~calar field with 
the curvature invariant R. 

This new tensor is an improvement over the old 
canonical tensor because: (i) In any renormalizable 
theory the new tensor has finite matrix elements in 
every order of perturbation theory (matrix elements 
of the canonical tensor diverge) and (ii) the currents 
associated with scale and conformal transforma
tions have simpler expressions in terms of the new 
tensor. 

The gravitational interaction of the new tensor has 
been discussed by Callan, Coleman, and Jackiw. 

Copyright © 1973 by the American Institute of Physics 1892 
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Their discussion was based on a particular example 
of a scalar matter field interacting with itself; all 
other forms of matter were assumed absent. The 
following is a more general discussion of these 
interactions and of the role played by the equivalence 
principles in the new theory. We begin witH some 
definitions of what will be meant by the weak and 
strong principles of equivalence. We will prove that 
in any general Einstein theory (including the theory 
based on the new tensor) the weak prinCiple is satis
fied. Essentially this amounts to a proof that the 
canonical (T'/) and gravitational (T/) tensors give 
the same 4-momentum. The examination of the 
gravitational interactions of a scalar field with other 
nonscalar matter fields shows that this gravitational 
interaction possesses a short range component. 
Finally, we consider the implications that this has 
for the strong prinCiple of equivalence. 

Our discussion is based on the use of c-number 
fields. Although it is often obvious what the q-num
ber version of many of the following equations should 
be, the precise definition of gauge invariant products 
of field operators is a very difficult problem in the 
quantum theory of gravitation (see, e.g., Ref. 5). We 
will only touch upon quantum theory in the simple 
example of the Appendix. 

II. THE EQUIVALENCE PRINCIPLES 

A distinction has been made by Dicke6 between the 
weak principle of equivalence (WPE) and the strong 
prinCiple of equivalence (SPE). The WPE states 
that in a given gravitational field all test particles 
fall with the same acceleration. The SPE states that 
in all freely falling, nonrotating laboratories the re
sults of any local experiments are the same, inde
pendent of the gravitational field surrounding the 
laboratory. The first principle asserts that inertial 
and gravitational effects are locally indistinguishable 
as far as the free motion of test particles is con
cerned. The second asserts that these effects are 
indistinguishable by any experiment. The trouble 
with the above statement of the WPE is that it does 
not make clear what is meant by a "test particle." 
Roughly, a test particle is a" sufficiently small" 
body. Just what limit must be set on the size depends 
on the gradients present in the gravitational field 
which the test particle is supposed not to feel. (One 
would probably also have to require that the gravi
tational self-energy be small and that the body have 
no spin.) Similarly, "local" in the statement of the 
SPE means that the experiment is confined to a 
"SUfficiently small" region. 

We will give two precise statements which roughly 
correspond to the above. We begin by defining the 
inertial and gravitational mass of an arbitrary sys
tem of finite size. The inertial mass M[ is the 
energy in the rest frame of the system. To define 
the gravitational mass MG we take a standard test 
body of mass ME•S and define its gravitational mass 
as M G •s = M1•S ' The gravitational mass MG of any 
arbitrary system can then be defined by the 
acceleration a that the standard test body experi
ences when released at a large distance r from the 
system in otherwise empty space: 

MG = lim (ar 2 /G). (9) 
r~GO 

In the particular case where the test body is falling 
towards an identical copy of itself, Eq. (9) serves to 
define G: 
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As a precise statement of the WPE we now take the 
following: The gravitational mass of any system 
equals its inertial mass. 

It is clear that the main difference between this 
statement of the WPE and the earlier one is that the 
limiting procedure needed to eliminate tidal forces 
has been made explicit. Furthermore, no restriction 
is imposed on the strength of the internal gravita
tional fields of the system. 

As a preCise statement of the SPE we take: At each 
point of space -time it is possible to find a coordin
ate transformation such that the gravitational field 
variables disappear from the field equation of 
matter. 

This statement is related to the one given at the be
ginning of this section; but the transformation that 
eliminates the gravitational fields from the field 
equations is only formally a coordinate transforma
tion. The transformation will depend on the micro
scopic gravitational fields, and it therefore cannot be 
interpreted physically as a transformation between 
macroscopic reference frames. 

It is clear that the minimal coupling principle im
plies the SPE, since only g~v and gl'v.a appear in the 
equations of motion of matter in the minimal Ein
stein theory. These gravitational variables can be 
eliminated by a transformation to the local geodesic 
coordinates. 

III. THE WEAK EQUIVALENCE PRINCIPLE IN 
EINSTEIN THEORIES 

We will show that the equality of inertial and gravi
tational mass holds in all general Einstein theories. 

(10) 

Suppose that the coupling of matter to gravitation is 
not minimal. This means that besides the usual mini
mal coupling Lagrangian density £min' there is an 
extra term dependent on the curvature tensor 

£ == (1/161TG) "r-gR" + £min + "r-gRa8opfa8oP". (11) 

The expression "r-gR"stands for the integrand that 
results when one integrates Jr-gRd 4x by parts 
wherever second derivatives of g~v appear and 
omits the surface terms; the definition of 
"HRa8opfa8oP" is similar. The functionf a80P (q;) 
is an arbitrary function of the matter variables qi' 

These matter variables can include any number of 
scalar fields, spinor fields, and vector fields, etc. 
We assume the Lagrangian yields field equations of 
second differential order: consequently f a80p cannot 
depend on the derivatives of the qj. Examples of 
nonminimal coupling terms_are ...r-:gR¢2 (where ¢ is 
a scalar field) and r-g R~vl/la ~vl/I (where 1/1 is a 
spinor field). 

The field equation can be written in the form 

_1 __ d_ (g~T _d_ (gvT ga 8 _ gva OT8») =~ v 
161TG dX i3 r-g dXa ~ 

with g~V =g~ur-g. The object~~u,which we call the 
gravitational pseudo tensor, is given by 

(12) 

~/=t~U+T/, (13) 

where t~U is the Einstein pseudotensor for the gravi-
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tational field, and T/ is the energy-:-momentum tensor 
density of matter 

~ 6£m 
TJ.lV:::: v-gTJ.lv:::: - 2 -" -, (14) ugllv 

where 
£ :::: £ . + "F/igR ja/3op" (15) m mm a/3op • 

It is pOSsible to define other pseudotensors by add-
ing a term W/va1,a to both sides of Eq. (12). This will 
not affect the arguments that follow in any essential 
way. The lack of uniqueness of the pseudotensor 
means that although the distribution of the energy and 
momentum of matter is unambiguous, the distribution of 
energy and momentum of the gravitational fields is not. 

We can show that the gravitational mass of the sys-
tem is related to the gravitational pseudotensor by 

MG:::: J;t00d3x, 

where the integral is to be taken over all space. To 
see this, we observe that;to 0 is a three-divergence 
(the time derivatives cancel): 

;toO:::: -- - -- -- (gOTgak_ gOagTk) 1 a (gOT a ) 
161TG ax k Fg ax a 

and hence 

J;t od3x ::::_1_ J gOT _a_ (gOTgak_ gOagTk)ds 
o 161TG Fg aX a kJ 

where the surface integral is over a surface at in
finity. We now suppose that we are in the rest frame 

(16) 

(17) 

(18) 

of the system and that no gravitational radiation is 
being emitted. In that case the solutions of the empty 
space field equations that apply at large distances from 
the matter distribution have the asymptotic behavior 

goo -'> 1 - B /r , 
where B is a constant. Tht: right-hand side of Eq. 
(18) can be evaluated by means of these expreSSions 
with the result . 

J;t00d 3x :::: B/2G. 

(19) 

(20) 

To identify the constant B, we observe that in the limit 
r -'> co, the standard test body will move along the geo
desics of gl1v .7 This means that the test body will move 
as though subjected to a potential !(goo - 1). Identifying 
this potential with the Newtonian expression - GMG/r , 
as required by our definition of MG, we obtain 

B = 2GMG (21) 

and hence (16) follows. 
The inertial mass, or energy, is given in terms of the 
canonical energy-momentum tensor T'/ 

M/ = JT'00d 3x :::: J(Qi'O ~ - £)d 3X, (22) 
aQi,O 

where Qi represents the combined sets of variables 
qj and gllv' The difference between MJ and MG is, 
therefore, the following: 

M[-MG= J[(Qi'O iJ~o -£) -toO-ToOJd3X 

= JUg; 0 _a - 1),£ -t oj d 3x L\ !'V, iJgJ.!v.o g 0 

+ J[(Qi'O iJ~,o -l).£m -To
O
Jd

3
X, 
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(23) 

(24) 

where £g stands for the first term on the right-hand 
side of Eq. (11). 

The integrand of the first integral in (24) is zero be
cause the Einstein pseudotensor toO is precisely the 
canonical tensor associated with £g. 

The second integral vanishes because of the follow
ing equality: 

A general proof of this equality is given in Appendix 
A. We therefore conclude 

in all general Einstein theories. 
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(25) 

(26) 

Equation (25) asserts that the tensor TJ.lV :::: TJ1V/-I- g of 
Eq. (6) satisfies the requirement that it gives the 
correct (Le., canonical) 4-momentum. 

If we add the integral of the Einstein pseudotensor 
to each side of Eq. (25), we obtain the simple result 

JT'J.l0d3x = J;t/d3x. (27) 

The arguments given in Appendix A are valid not only 
for general Einstein theories, but for any theory con
taining a tensor field gllv' For example, the result (27) 
holds in the scalar tensor theory of Brans-Dicke.s 
But the WPE fails in this theory since Eq. (16) breaks 
down in the presence of the long range scalar field. 9 

IV. THE SHORT RANGE GRAVITATIONAL 
INTERACTION 

We will now investigate the equation of motion of a 
scalar field interacting with gravitation and other 
fields. For simplicity we assume that there is only 
one scalar jield;but there can be any number of non
scalar matter fields. The equation of motion of the 
scalar field ¢ of mass jj is determined by the Lagran
gian 

£ =!.R (gllv¢ ¢ - jj2¢2) m 2 ,p. ,11 

- ~ R¢2R + £/ + £;,., (28) 
12 

where ~ contains the interactions of the scalar field 
with all. the matter fields (including self-interactions) 
and £;" is the Lagrangian of the other matter fields. 

The equation of motion is 

1 1 iJ£/ 
¢ .J!.. + jj2¢ + _ ¢R - -- -- :::: O. 

.J.! 6 .,f-g iJ¢ 

The gravitational field equation implies that 

R = 81TGT 

and hence 
41TG 1 a~ 

¢.J.l. +jj2¢ +- ¢T--- --=0 . 
• 11 3 .,f-g iJ¢ 

The explicit form of TJ.lv is 

- 2 15£ - 2 15 
TJ.lv = -- ---.:!!! = -- (£1 + £;") 

r-g 66J,v R 6~v 
+ ¢.J.lcp.v _ ~gllv(cp.a¢,a _ jj2¢2) 

_! (.+.2.J.l;v _ o-J.lv.+.2.a ) _ ~ .+.2(RJ.lV - ~gJ.lVR) 
6 'f/ b '+' ;a 6'+' , 

(29) 

(30) 

(31) 

(32) 
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so that 
- 2 0 

T = -- g - (£ + £') + 2"2,,, 2 ~ II"" 1 m ,... 'f-' y-g vg
llv 

-2 0 + cpcp .ex .• ~ + ~ cp2R = __ g __ (£ + £') 
~ 6 r-g II

v og, " 1 m 

1 o£ II + 1l2cp2 + cp ____ 1 • 

r-g ocp 

Inserting this in Eq. (31) we obtain 

1 o£[ 41TG 
cp.1I + 1l2cp - -- -- +--

;11 Fg ocp 3r-g 

x cP (01l2CP2 + cp o£[ _ 2g _0_ (P + £'») = o. ocp II V I5g
llv 

""'I m 

As pointed out in Ref. 2, the term ~ G 1l2 cp 3 is of little 
interest. It represents a self-interaction which can 
be eliminated by introducing a counterterm in £[' We 
can write 

and then 

1 o.c; 41TG 
cp .11.11 + 1l2cp - -- -- + --. R ocp 3r-g 

x cP cp _1 - 2g - (P' + £,) = 0 ( 
o£' 15 ) 
acp IlVogIIU""'I m • 

However, the remaining terms involving G in Eq. 
(36) are very interesting: When one carries out the 
coordinate transformation to the local geodesic 
frame, the gravitational interaction does not dis
appear. The· terms involving G represent a univer
sal short-range gravitational interaction between the 
scalar field and other matter. 

As a simple example, suppose £! = 0 so that there 
are only gravitational interactions. Suppose further 
that the only matter present besides the scalar field 
is a spinor field of mass M. Then (in the geodesic 
coordinates) 

which makes the "contact" interaction very obvious. 
This interaction cannot be eliminated by a counter
term in the Lagrangian. To see thiS, note that the 
equation of motion of the spinor field is (also in 
geodesic coordinates at the same point) 

(33) 

(34) 

(35) 

(36) 

(37) 

- iyllollt/l + Mt/I = O. (38) 

This equation contains no gravitational terms at all. 
A counterterm might eliminate the gravitational 
interaction from Eq. (37); but an extra term will then 
appear in Eq. (38). 

The essential difference between the self-interaction 
of cp and the interaction of cp with t/I is that the for
mer behaves as an ordinary nongravitational interac
tion of special relativity (so much so that, if desired, 
it can be canceled by a nongravitational counterterm), 
while the latter is impossible as a direct nongravita
tional interaction. This impossibility is strikingly 
demonstrated by Eqs. (37) and (38) which, if interpre
ted as equations of special relativity (valid through
out all of space-time) ,lead to the conclusion that t/I 
acts on cp, but not conversely. Only if the gravita-
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tional fields are taken into account is this contradic
tion avoided since then the equations have the spe
cial form (37), (38) only at one point. An example of 
the effects of the new short range interaction on 
gravitational scattering is given in Appendix B. 

Of course, this new interaction is extremely weak. 
The characteristic dimensionless coupling constant 
is (GM2/nc ) ~ 10-39 , the same as for the ordinary 
long range gravitational interaction. The short 
range interaction is, therefore, going to be masked 
very effectively by the other known short range 
interactions. However, it might possibly be of some 
importance in the renormalization of gravitational 
theory. 

V. CONCLUSION 

The gravitational theory based on the new improved 
energy-momentum tensor satisfies the weak prin
ciple of equivalence. It also satisfies the strong 
principle of equivalence, even though it is a theory 
with nonminimal coupling. Thus, although minimal 
coupling implies the SPE, the converse is not true. 
This comes as somewhat of a surprise since it has 
often been argued (e.g., Ref. 10, p. 337) that the SPE 
requires that in the local geodesic frame the laws of 
physics must be those of special relativity. We now 
see [compare Eq. (37)] that in the local geodesic frame 
the laws can differ from those of special relativity 
without any violation of the SPE. The nonminimal 
coupling terms which would usuatly be expected to 
produce a violation of the SPE conspire to produce 
instead a short range gravitational interaction. 

APPENDIX A: RELATION BETWEEN ENERGY
MOMENTUM TENSORS 

In this appendix we establish a general relation 
[Eq. (A21)] between the energy-momentum tensor of 
matter given by Eq. (6) and the corresponding canoni
cal tensor constructed from £m' 

Consider the integral 

(A1) 

We can also write this as 

where the complete divergence SII.II is the difference 
between ..;:::JigR Q jexBa p and "..;:::JigR Q jexBap" [£ ex" ap ex" ap • m 
has been defined in Eq. (15).] 

The integrand of (A2) transforms as a scalar density 
under general coordinate transformations. This 
means that corresponding to an infiniteSimal trans
formation XII -7 XII + ~II, the transformation of the 
integrand (regarded as an active transformation) is 

(A3) 

We can combine this with 

(A4) 

to get Noether's identity (Ref. 10, p. 92) 
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li£m 
litJl.." = liQj oQ

j 
, (A 5) 

where 

ot" = - (£m + S~p)~" + oQj :~m + OS,,). (A6) 
t." 

The equations of motion of matter are (%qj)£m = O. 
Hence Eq. (A5) reduced to 

o£m 
Ot~JI. = og"v og, 

Jl.V 

which we can also write 

ot~" = - t og"v TJl.v, 

where T"V = r-g TJl.v. The change in ~v is 

ogJl.v = - g"", ~"'.v - g",v ~"'." - g"v.", ~'" 

which gives 

(A7) 

(AS) 

(A9) 

ot" =(TJl.vO'~"') -r-:-igTJl.v 0' t", 
.J!. "'"",.v IV"'"",., • (A10) 

Since TII~v = 0, Eq. (A10) reduces to 

Ot".JI. = (T,..v~1I ).v· (All) 

We next need an explicit expression for atl' in terms 
of ~I'. The fields Q I transform according to 

where the matrixes Aln '" are constant and are com
pletely determined by the Lorentz transformation 
properties of the fields. The change in S" can be 
written 

(A12) 

OSI' = ~'" o (oSII) + ~'" o(oSJI.) + ~'" o (oSI') (A13) 
o~'" .13 o~'" .B.p o~'" 

.13 .B.p 

(Since S" contains only first derivatives of the 
fields, OSI' will at most contain second derivatives 
of ~".) We then obtain 

_ [(£ + SP )~JI. + o£m (_ Q ~'" _ A 13 ~'" Q) 
m .p 0 Q I.", In",.B n 

loll 

o (oSI' ) a (oSI' ) a (0 S" ) ] 
+ ~"'-- + ~'" --- + ~'" ---o ~ '" ./3 0 ~ '" .B.p 0 ~ '" .1' .13 .B.p 

= (V~JI. ).v • (A14) 

Equation (A14) must be true for every choice of the 
functions ~I'. In particular, we choose ~'" such that at 
some given point ~ '" = 0; but the first, second, and 
third derivatives are not zero. Since ~"'.Il is arbi
trary, the coefficients of this quantity on both sides 
of the above equation must be equal. This implies 

O.e 
- (.e + Sp ) 0 Il + ------'!!...- QI 

m .fl '" aQI.B .'" 

+ [a.em A 13 _ a (osI' )] _ a (oSB) = T 13 • 
aQ In", Qn a~'" a~'" '" 

1.1' .13 .J!. 

(A15) 

The second derivatives are also arbitrary, except for 
the constraint imposed by the symmetry condition 
~"'.B.P = ~""P.B· Hence the coefficient of ~"'.B.P in Eq. 
(A14) must either be zero or else equal to some 
quantity W",[BPl antisymmetric in /3, p: 
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a.em A BQ _ a(oSP)_~ a(oS")=W",[BP1. (A16) 
aQ In", n a~'" axl' a~a I.p .Il .B.p 

Finally, we examine the terms involving ~a.ll.p.o' This 
yields the condition 

a (oso) 
-- ~a = 0 (A17) a ~'" .8.p.o , 

.B.p 

which implies that 

a (oso) 

a~~Il.p 
(AlB) 

is anti symmetric in p, (J [or, alternatively, antisym
metric in (3, (J; these alternatives are equivalent 
since (AlB) is symmetric in /3,p]. As a consequence 
of Eq. (A16) we have 

[ 
a.em o (OSI')] --A 13 ---
aQ Ina Qn o~a I." .13 .1' 

(A19) 

The second term on the right-hand side vanishes be
cause of the anti symmetry of the expression (AlB) in 
p, (J. Furthermore, 

a (oSB) __ SB 
a~a - .a· (A20) 

Using these results, we find that Eq. (A15) reduces to 

a.em -.e 013 + Q -- + w.:[B"l - SP F.. 13 + SB = 't B m a I.a aQ a.JI. .p va .a a' 
1.1l (A2l) 

The term involving S" , can be put in the form 

where the tensor in the brackets is obviously anti
symmetric in p, (3. Hence the general relation (A2l) 
simply states that the canonical tensor constructed 
from .em and the tensor T! constructed from Eq. (6) 
differ only by a term of the form UJB"l.". If we as
sume that the matter is confined to a finite volume, 
the space integrals of the oa components of these 
tensors will then be equal, as was claimed in Eq. 

(A22) 

(25). This result does not depend on the detailed 
form of .em and SI'. The only essential requirement is 
that .em + SI'." transform as a scalar density and that 
.em and SI' contain only first derivatives and these at 
most quadratically. 

APPENDIX B: GRAVITATIONAL SCATTERING 

The following is an example of the effects of the short 
range interaction on the gravitational scattering, 
according to quantum theory, of a spin zero particle 
by a spin-t particle. This example is similar to one 
given in Ref. 2. 

For a transition k ~ k I , P ~ P I (where k and p stand, 
respectively, for the boson and fermion momenta), the 
transition matrix element to lowest order in G is 
proportional to 

41TGusI (P') t (p'" + P" )y'us (P)D"vaB (q) 

x (1/2/L) [2k ' akB - .,.,aB(k· k' - /L2) 

- HqaqB _ .,.,aBq 2)], (Bl) 
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where 

is the graviton propagator and q = k' - k. To first 
approximation, the fermion energy- momentum ten
sor is conserved and (Bl) simplifies to 

41TGus,(p'H(p'll + pll)yUUs(P) 

X (1/2J.1) {DllvcxB (q)[2k' cxk B - "T/cxB(k·k' - J.l2)] - t"T/IlJ. 
(B3) 

If we proceed to the nonrelativistic limit and assume 
that M is large compared to J.I, we obtain 

US (P)US,(p')[(41TGM/- q2) - (21TGM/3J.1)]. (B4) 

The first term corresponds to scattering by the 
familiar potential 

- GMJ.I/r. (B5) 

The second term behaves as though due to a potential 

- (21TGM/3J.1)li 3 (r), (B6) 

i.e., the gravitational interaction between spin-zero 
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and spin-~ particies seems to have a hard attractive 
core. 

1897 
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We study the propagation of an electromagnetic wave which has suffered changes of phase and 
amplitude in its passage through a randomizing medium such as a turbulent dielectric. General 
formulas are derived for the nth-order autocorrelation and spectrum of intensity fluctuations in 
terms of the 2 nth-order mutual coherence function on the initial plane. Simple expressions are 
obtained when the wave is initially weakly phase distributed. The probability distribution of intensity 
fluctuations is shown to be Gaussian in the limit of vanishing phase perturbation. 

Phenomena such as the twinkling of starlight and inter
planetary and interstellar radio star scintillations in
volve the propagation of an electromagnetic wave in 
uniform media after the wave has sUffered random 
changes of phase and amplitude in its passage through 
an irregular refracting region. Although the second 
and fourth moments of such randomized fields are ade
quate to analyze experiments involving interference 
and diffraction and to determine the autocorrelation of 
intensity fluctuations, it is necessary to use higher
order moments to completely characterize the statisti
cal properties of the field and to completely interpret 
experiments in which intensity fluctuations are meas
ured. In this paper we study the higher-order moments, 
using techniques developed in previous work1. 2 to ob
tain general expressions for the nth-order moments of 
the field and the corresponding spectra. Analytical re
sults obtained by previous authors3 -11 have generally 
been limited to the second and fourth moments, an ex
ception being the work of Mercier, 4 who obtained the 
nth moment in the special case of an infinitely distant 
phase screen with Gaussian autocorrelation. The 
general formulas derived in this paper are valid at all 
distances for waves which are initially random in both 
phase and amplitude, but special results shall be ob
tained for waves which have passed through such phase 
screens which introduce phase fluctuations without 
appreciable disturbance of the wave amplitude. That is, 
upon entering the uniform medium at z = 0, the wave 
1/1 = Aei S has uniform amplitude and random phase 
across the x-y (transverse) plane. As the wavefront 
propagates further from the screen, however, fluctua
tions of amplitude begin to develop which, of course, are 
randomly distributed across a plane parallel to the ini
tial plane. Because we are treating the propagation of 
an electromagnetic field in a uniform isotropic medium, 
we can employ the scalar wave equation to determine 
the field in this region. We do not consider the problem 
of the wave in the nonuniform medium. 

1. GENERAL THEORY 

We consider the propagation of an electromagnetic wave 
I/I(r) obeying the scalar wave equation 

(\7 2 + k 2 ) I/I(r) = O. (1) 

As usual, I/I(r) represents a monochromatic wave with 
k 2 = Ek~ = E(w/c)2. We shall assume that the boundary 
values are given over the z = 0 plane. The use of 
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Green's theorem leads to the Helmholtz-Kirchhoff in
tegral, which can be expressed in the form1 

I/I(r) = - ~.i. J J I/I(r') eikR dS' 
21T az R' 

(2) 

where R = [(x-x')2 + (y _y')2 + z2 ]1/2. Using Eq. (2), we 
now obtain the following expression for the 2nth-order 
mutual coherence function,M(r1,r2, .•. ,r2n ) = 
(l/I(r1)1/1* (r2 ) l/I(r3 ) 1/1* (r 4) ••• l/I(r2n - 1) 1/1* (r2n» in the 
space z > 0 in terms of the 2nth-order mutual coherence 
on the boundary plane: 

The zero subscript has been placed on the function M 
inside the integral as a reminder that it is being evalua
ted over the z = 0 plane. We shall assume that the 
mutual coherence is homogeneous on the boundary plane; 
it may be written as a function of the difference between 
coordinates: 

~2n=y1.-Y2, ~2n+1 =Y2 -Y3'''''~2(2n-1) 
= Y2n-1 - Y2n' 

(4) 

and ~' is a vector in 2(2n - 1)-space. It should be noted 
that the differences x2n - xl and Y 2n - y 1. can be ex-

. pressed in terms of the other differences and have not 
been included explicitly. Any other differences, such as 
x~ - x~ , where i and j are two different integers with 
i '< j, ~an be calculated, for example, from 

x'; - xj = fi + ~i+1 + ... + ~j-l . (5) 

We now introduce the 2(2n - I)-fold Fourier transform 
Mo(kg), 

Mo(~') = (1/21T)2(2n-l) j<2[2n-l]) dkt exp(jkt O ~')Mo(kt), 

(6) 
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where k ~ , ••• , k • are the spatial frequencies 
1 2 (2n-l) 

corresponding to ~1"'" ~2(2n-l) and dk~ = dk g ••• 

'2 2n-l 
dk < ( ). The integration is 2(2n - l)-fold, as

l 
indi-

cated by the numeral in parentheses, and each integral 
is taken from - 00 to 00. We employ this convention 
throughout unless otherwise indicated. The function 
Mo(k.) is subject to no restriction except that 
J(2l2n-1]) I Mo(k~) I dk~ < 00. Substituting, ~e obtain, 
upon interchanging the order of integration, 

M(r1,··· ,r2n ) 

(
1)2(3n-1) J(2[2n-l]) ~ a a 

= -2 dk.Mo(kgh- '''-a-n uZl z2n 

X J (4n) exp[jkt" f + jk(R 1 - R2 + ... + R 2n - l - R 2n )] 

RIR2 ••• R2n 

(7) 

By expressing the ~' in terms of x' and y' and regroup
ing so that each term in the exponential appears as a 
factor of Xj or Y j , Eq. (7) may be expressed in the form 

M(rl,··· ,r2n ) 

(
1 \2(2n-D J(2[2n-l]) ~ ( a ) 

= 2ri} dk. Mo(k.) aZ
l 

T(rl; kgl, kg22 

x (_3_ T*(r 2;k. - kg ,kg - kg ~ 
aZ 2 1 2 2n 2n+l'J 

X (a~3 T(r3;k' 3 - k'2,k~2(n+l) - k g2n +1)) 

X (3;4 T*(r4;k g3 - k~4,kg2(n+l) - k g2n +3)) 

x ( a 
aZ 2n - l 

where 

Using the formula obtained previously, 2 

a 
3Z

i 
T(ri;kgm,k· n ) 

(8) 

(9) 

= - exp{j[k. Xi + k~ Yi - Zi (k2 - k~ - k~ )l/2]). 
m n m n 

(10) 
Next, substituting Eq. (10) into Eq. (8), rearranging the 
argument of the exponential into factors of k t. , and again 
expressing Xi and Yi in terms of ~, we obtain~ after addi
tional manipulations, 
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We can assume that M 0 is nonzero only for k ~ such that 
each of the square roots appearing in Eq. (11) is real. 
This restriction on the spectrum can be interpreted in 
terms of the angular spectrum of plane waves to mean 
that evanescent waves are not included: These waves 
would npidly decay in any case. In order to evaluate 
the integral, we shall also expand each of the square 
roots in series and retain only the first two terms of 
each expansion. If 1 is the transverse scale of the wave 
fluctuations on the initial plane, it is readily seen that 
these approximations require that l> A = 2n /k and 
zA 3 /l 4 ~ 1. These requirements appear to be readily 
satisfied for all cases involving waves which have been 
randomized by terrestrial and solar atmospheric effects. 
For example, in the case of stellar optical scintillations 
due to the upper atmosphere, Z is apprOximately 104 m, 
A ~ 10-7 m, and 1 ~ 102 ; then ZA3/l4 = 10-25 • For radio 
star scintillations due to the ionosphere, the typical 
values are 1 ~ 105 m,A ~ 10m, 1 ~ 103 m;then zA3/l4 = 
10-4 • For radio star scintillations due to the solar 
plasma, Z is approximately 1011 m, A ~ 1 m, and 1 has the 
dimension comparable to the Sun ~ 109 m; then ZA3/l4 = 
10-25 • 

Proceeding with the expansions and limiting ourselves 
to the important case of the transverse coherence func
tion by taking zl = Z2 = '" = z2n = z, we obtain after 
some Simplification 

M(rl , ... ,r2n ) 

_ (1)2(2n-ll J (2[2n-1l) ~ 
- 21T dk~Mo(k.) 

x exp{jkg·~ + (jz/k) [(k. kg -kg k, +k g k, -00. 
1 2 2 3 3 4 

- k'2(n-l) k~2n_) + (k g2n k g2n +l - k' 2n+l ktZ<n+l) 

+ ... - k k )]} 
g4n-3 g2(2n-l) 

= 5'-l 2[2n-1l {Mo(k.)hxhy} 

= Mo(~) * 5'2;-1{hJ 5'2;-1 {h y}, (12) 

where 5'-l[ 1 is the inverse transform of order 2 (2 n - 1) 
2 2n-1 

and the star indicates the convolution. We have defined 

The inverse transform, g:2~-l{hx}, after rearrangement 
of terms, is given by 
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x exp(j{k. [(z/k) (k, - k, ) + ~2] 
2 1 3 

+ k. [(z/k)(k. - k t ) + ~4] + ... 
4 3 5 

+ k'2(n-l) [(z/k)(k g2n _
3 

- k g2n- 1) + ~2(n-1)]}) 

X exp{j(kg ~1 + kg ~3 + k, ~5 + ... + k, ~2n-1)]' 
1 3 5 b2n-l 

+ kg + ... + k~2n-1)]' (14) 
5 

Integrating over kg, k, , ••• , kg, we obtain 
24 2(n-l) 

~2~1_3hx} = (1/21T)n j<n)dk g dk g ... dk g 
1 3 2n-l 

X o[(z/k)(k g - kg ) + ~2] 
1 3 

Xo[(z/k)(k g -kg) + ~4] 
3 5 

X' •• 0[(z/k)(k t2n_
3 

- k g2n ) - ~2(n-1)] 

Xexp(j(k t h + k t ~3 + ... +k g ~2n-1)]' 
1 3 2n-l 

(15) 
where 0 is the Dirac delta function. It is convenient to 
introduce the transformations 

a n-1 = (z/k)(k, - k, ) + ~2(n-1)' '2n-3 '2n-l 

{3 = i (k g + kg). 
1 2n-l 

(16) 

The inverse transformations are 

kg = {3 + (k/2z)(- a 1 + a 2 + ... + a n-1 + ~2 - ~4 
3 

- ••• - ~2 (n-1»' 

k g2n-
3 

= (3 + (k/2z)(- a 1 - a 2 - ••• - a n-2 + a,,-1 

+ ~2 + ... + ~2 (n-2) - ~2 (,,-1), 

kg = {3 + (k/2z)(- a 1 - ••• - a n- 1 + ~2 + ~4 
2n-l 

+ ... + ~2 (n-1»' (17) 

The Jacobian of the transformation can be found from 
the n x n determinant: 

k/2z 

- k/2z 

- k/2z 

- k/2z 

k/2z 

k/2z 

- k/2z 

- k/2z 

k/2z 

k/2z 

k/2z 

1 

1 

1 

- k/2z 1 
(18) 

Factoring the common factor, k/2z, out of the first 
(n - 1) columns, the remaining n x n determinant with 
all elements below the diagonal equal to - 1 and the 
rest equal to 1 is found to be equal to (2)n-1. Thus the 
Jacobian is (2)n-1(k/2z)n-1 = (k/z)n-1: 

~2;-1{hx} = (1/21T)n(k/z)n-1 J(n) da 1da 2 ••• da n-1 d{3 

Xo(a 1) 0(a 2) 0(a3) .•• 0(an - 1 ) 

xexp(j{~1[{3 + (k/2z)(a 1 +a 2 + ... + a n-1- ~2 

- ~4 - ••• - ~2(n-1)] 

+ ~3[{3 + (k/2z)(- a1 + a 2 + ... +an-1 + ~2 
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- ~4 - ... - ~2 (n-1»] 

+ ..• + ~2n-1[{3 + (k/2z)(- a 1 - a 2 - ••• 

- ~4 - ... - ~2 (n-1»] 

+ ... + ~2n-1[{3 + (k/2z)(- a 1 - a 2 - ••• 

- a n- 1 + ~2 + ~4 + ... + ~2 (n-1)]}) 

= (k/21T z)n-1 0(~1 + ~3 + ~5 + ... + ~2n-1) 
X exp{(jk/2zm2(- ~1 + ~3 + ~5 + •.• + ~2n-1 
+ ~4(- ~1 - ~3 + ~5 + ... + ~2n-1) 
+ ... + ~2(n-1)(- ~1 - ~3 - ~5 - ••• + ~2n-1)]} , 

(19) 
the integration over (3 leading to the delta function term. 
Similarly, 

~2~-1{h) = (k/21T z)n-1 0(~2n + ~2 (n+1) 

+ ~2(n+2) + ... + ~2(2n-1) 
x exp{(jk/2z)[~2n+1 (- ~2n + ~2(n+1) + ~2( .. +2) 

+ .. , + ~2 (2n-1» + ~2n+3 (- ~2n - ~2 (n+1) 

+ ... + ~2(2 .. -1» + ... 
+ ~4n-3(- ~2n - ~2 (n+1) - ~2 (n+2) - ••• 

~ ~4 (n-1) + ~2 (2n-1»]} • (20) 

Thus the expression for the 2nth-order mutual coher
ence function in Eq. (12) can be written as 

M(~,z) 

= Mo(~) * (k/21TZ)2(n-1) 0(~1 + ~3 + ~5 + ... + ~2n-1) 
X 0(~2n + ~2(n+1) + ~2(n+2) + ... + ~2(2n-1) 
X exp{(jk/2z)[~2(- ~1 + ~3 + ~5 + ... + ~2n-1) 
+ ~4(- ~1 - ~3 + ~5 + '" + ~2n-1) 
+ ... + ~2(n-1)(- ~1 - ~3 - ~5 - ••• - ~2n-3 + ~2n-1) 
+ ~2n+1(- ~2n + ~2(n+1) + ~2(n+2) + ... + ~2(2n-1» 
+ ~2n+3(- ~2n - ~2(n+1) + ~2(n+2) + ... + ~2(2n-1) 
+ ... + ~4n-3 (- ~2n - ~2 (n+1) 

- ... - ~4(n-1) + ~2 (2n-1»]} • (21) 

The quantity of primary interest is the nth-order auto
correlation of intensity (I(P,-! qv z) I(p2, ~2' z) I(P3 , q3' 
z) ••• I(pn-1,qn-Vz)I(0,0,z). Thus,takmgx1 =x2 • 

x3 = x 4 ' etc., we set ~1 = ~3 = ~5 = ... = ~2n-1 = ~2n = 
~2 (n+1) = .•. = ~2 (2n-1) = 0; also ~2 = Pv ~4 = P 2, ••• , 
~2 (n-1) = Pn-v and similarly ~2n+1 = q1. ~2n+3 = q2' 
""~4n-1 = Q,,-1' We obtain 

(I(P v Q1,z)I(P2,Q2'z) ••• I(Pn_V Qn_1,z)I(0,0,z» 
= (k/21TZ)2(n-1) j(2[2n-m d~' MO(~/) 

X 0(- ~1 - ~3 - ~5 - ... - ~2n-1) 

x 0(- ~2n - ~2 (n+1) - ~2 (n+2) 
- ... - ~2 (2n-1» exp{ (jk/2z)[(p1 - ~2) 

x (~1 - ~3 - ~5 - ... - ~2n-1) 
+ (P2 - ~4)(~1 + ~3 - ~5 - ... - ~2n-1) 

+ ... + (Pn-1 - ~2 (n-1»)(~1 + ~3 + ~5 + ... 
+ ~2n-3 - ~2n-1) + (Q1 - ~2n+1)(~2n - ~2(n+1) - ~2(n+2) 
- ... - ~2(2n-1) + (Q2 - ~2n+3) 

x (~2n + ~2 (n+1) - ~2 (n+2) - ••• - ~2 (2n-1» 

+ ... + (Q,,-1 - ~4n-3) 

x (~2n + ~2(n+1) + .. , + ~4(,,-1) - ~2(2,,-1)]}· (22) 
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Integrating over ~2n-l' ~2 (2n-l), we have 

U(Pl,ql'Z) ••• I(O,O,z) 

= (k/21TZ)2(n-l) J<4[n-l))d~ld~2 ... d~:Hn-l) 

x d~2nd~2n+l ••• d~4n-3MO[~1' ~2' ~3' ... , ~2 (n-l) , 

- (~1 + ~3 + ~5 + ... + ~2n-:-3)' ~2n' ~2n+l""·, ~4n-3' 
- (~2n + ~2(n+l) + ... + ~4(n-l»)] 
x exp{ (jk/z) [(PI - ~2) ~1 + (P2 - ~4)(~1 + ~3) 
+ (P3 - ~6)(~1 + ~3 + ~5) + ... + (Pn-l - ~2(n-l») 

x (~1 + ~3 + ~5 + ... + ~2n-3) 
+ (ql - ~2n+l) ~2n + (q2 - ~2n+3) 

x (~2n + ~2 (n+l») + ... + (qn-l - ~4n-3) 

x (~2n + ~2(n+l) + ~2(n+2) + ... + ~4(n-1»)]}' 
(23) 

Transforming by setting Pi - ~2i = ~2j and 
qi - ~2 (n+;)-1 = ~2(n+;)-V where i = 1,2, ... , n - 1, 
and also dropping the primes on the ~i and ~2n+j-1' where 
i is odd, we have 

U(PV ql,Z) ... I(O,O,z) 

( 
k )2(n-l) J(4[n-l]) 

= 21TZ dh ••• d~2 (n-l) 

x d~2nd~2n+l ••• d~4n-3MO[h, (PI - ~2)' ~3' 

(P2 - ~4)' ••• , (Pn-l - ~2 (n-l»)' 

- (~1 + ~3 + ~5 + ... + ~2n-3)' ~2n' (ql - ~2n+l)' 

n-l 
+ ~ 

;=1 

;-1 

6 
m=O 

~2j ~2 m+l 

(24) 

The nth moment of the intensity field < In(z)) is obtained 
from Eq.(24) by setting p;,q; = 0. Experimental inves
tigations and previous theoretical work in radio astro
nomy have been particularly concerned with the spec
trum of intensity fluctuations. The definition for the 
nth-order generalization is 

MnIUx ,fx , •.• ,fx ,fy ,fy , ... ,fy ;z) 
1 2 n -1 1 2 n-l 

= ff' PI' P
2 
••••• P

ll
-

l
• ql' q 2 ..... q,,_J(I(P 1 , ql' Z) 

x I(P 2,q2'Z) ••• I(Pn-l,qn-l,z)I(O,O,z) -1], 
(25) 

where ff' indicates the 
PI' P2••··• P ,,-I' q I· Q2··· ··qn-I 

Fourier transform with respect to PVP2"" ,pn-1 , qv 
Q2, ••• ,Qn-l' We restrict ourselves to presenting the 
result obtained upon substituting (24) into (25) and carry
ing through a number of manipulations. We find 

ifnI = ff'a
l

• a
2 

• .... "n-1'6
1
.62 ..... 6n-

1 
{Mo[zfxl/ k , 0'1' 

zUx - fx )/k, 0'2' zUx - fx )/k, ••• , 
2 I 3 2 

0',,-2' zUx 1 - fx )/k'O'n-l' n- n-2 

- zfx /k, zfy /k, f3 v zUy - fy )/k, ••• , 
n -I I 2 I 

zUy - fy )/k, {J,,-l'- Zfy /k]-l}. (26) 
n-l n-2 1'1.-1 

Equation (26) may be written in terms of the original 
variables in the form 
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iII = ff' 8 B B {Mo[x 1 -X2 = zfx / k, 
nI cx 1 .a2 .···.a n- P I' 2'···· fl.-I 1 

X2 - X3 = O'V X3 - X4 = z(fx - fx )/k,x4 - X5 = 0'2"'" 
2 I 

X2n -3 - X2 (n-l) = zUx - fx )/k, 
n-I n-2 

X2 (n-l) - X2n-l = O'n-V 

Yl -Y2 = zfy/ k 'Y2 -Y3 = f3 1'Y3 -Y4 = z(fY2 - fyl)/k, 

Y4 - Y5 = f3 2,··· 'Y2n-3 - Y2(n-l) = zUYn _
1 

- f yn _2)/k, 

(27) 

Equations (24) and (26) or (27) are the basic general 
formulas. We next consider the case of a wave which 
has weak random phase fluctuations across the initial 
plane. This "weak phase screen" case has previously 
been analyzed3 directly from the 4n-fold integral only 
in the case of Gaussian p. 

2. WEAK PHASE SCREEN 

Assuming unit amplitude and random phase,8(r j ) = 8 j , 

on the z = ° plane 

M O(r1 , ... ,r2n ) = <1J;I1J;~1J;3t/14'" 1J;2n-l1J;~n) 

= < expj(81 - 82 + 83 - 8 4 + ... + 8 2n -1 - 82n ) 

= exp - i < 8~ + 8~ + 8~ + . .. + 8~n 
2n 2n 

+ ~ ~ (- 1);+j8;8j ), (28) 
;=1 j =1 

; "j 

where we assume Gaussian variables. We define the 
phase autocorrelation function P;j = P (r ; ,r j): 

(8;8j ) = S~Pij' (29) 

where Pi; = 1 and, because we assume homogeneity, 

Pij = p([(Xj - xj )2 + (Yi - Yj)2]1/2). 

Thus 

Mo(rl' .•• , r 2n ) 

= exp{- S~[n - (P12 - P13 + P14 - ••• + P12n) 

- (P23 - P24 + P25 - ••• - P2 2n) 

- (P34 - P35 + P36 - : •• + P3 2n) 

- (P45 - P46 + P47 - ••• - P4 2n) - ••• 

(30) 

- (P2n-l 2n)]}' (31) 

For a weak phase screen,nS5« 1, we write 

Mo(rl"'" r 2n ) 

~ 1 + S~[- n + (P12 - P13 + P14 - ••• + PI 2n) 

+ (P23 - P24 + P25 - ••• - P2 2n) 

+ (P34 - P35 + P36 - ••• - P32n) + ... + (P2n-l 2n)], 

and obtain for the nth moment of the intensity fluctuaJ32) 
tions, substituting in Eq. (24) and using Eq. (32), 

Un(z) 

( 
k )2(n-l) 2 J(4[n-l]) 

= 21TZ SO d~ld~2 ••• d~2 (n-l) d~2n 

[ 
'k {n-l ;-1 

x d~2n+l ••• d~4n-3 exp ~ ~ ~ ~2; ~2m+l 
.=171'1=0 n-l i-I 

+ ~1 ml?a ~2(n+i)-1~2(m+n)}J {(802 -n) + (Pi2 -P13 

+ P14 - ••• + P12n) + (P23 -P +P25-'" -P2 2n) 

+ ... + (P2n-l 2n)} R' (33) 
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where R signifies that this term is evaluated using the 
replacements 

~2i --) - ;2i t 
;2 (n+;)-1 --) - ~2 (n+;)-1 J for i = 1,2, ... , n - 1; 

Pi = qi = 0 for i = 1,2, ... , 2(n - 1). 

Using our definitions of ~,Pij can be expressed as 

Note that we must take 

;2n-1 = - (h + ~3 + ~5 + •.• + ~2n-3)' 

~2(2n-1) =- (~2n + ;2(n+1) + ~2(n+2) + •.• + ~4(n-1»· 
(35) 

Equation (33) consists of a sum of ~ (2n - 1) + 1 inte
grals resulting from the n(2n - 1) + 1 terms in curly 
brackets which are labelled J 0,J 1,J 2' .•. ,In(2n-1) , 
respectively. The integral J 0 resulting from the con
tribution of the term (S"(? - n) can be evaluated by first 
integrating over the variables ~2i and ~2(n"i)-1 which 
appear in the double sums in the exponential. We find 

J 0 = (1 - nS~)(k/21TZ)2 (n-1) j<4[n-ll) dh d~2 ••• 

X d~2(n-1)d~2n d;2n+1 ••• d;4n-3 

x exp{(jk/z)[~2b + ;4(~1 + ~3) + ;6(b +;3 + ;5) 

+ ... + ~2(n-1)(;1 + ~3 + ~5 + ..• + ~2n-3)] 

+ [;2n+1~2n + ~2n+3(~2n + ;2(n+1» + ;211+3 (~2n 
+;2(n+1) +~2(n+2»+'" 

+ ~4n-3 (~2n + ~2 (w1) + ~2 (n+2) + ... + ~4 (n-1»])' 
(36) 

Integrating over ;2' ~4' ••• , ~2 (n-1)' ~2n+V ;2n+3' ••• , 
~4n-3' we obtain a series of 6 functions with the result 

(37) 

The integralJ1,containing the termp«~~ + ~~n)1/2),can 
be evaluated by first integrating over ~2' ~4"'" ~2(n-1>' 
~2n+V ~2n+3'···' ~4n-3 to obtain 

J 1 =S~ f(2[n-1])dhd~3 .•• d;2n-3d~2nd~2(n+1) ••• 

x d~4(n-1)pmi + ;~n)1/2)6(~1)6(~~ + ~3) •.• 

x 6(h + ~3 + ... + ~2n-3) 6(~2n) 6(~2n + ~2 (n+1) 

X· .. 6(~211 + ~2 (n+1) + .•• + ~4(n-1» 

= S~. (38) 

The integral J 2 , which contains P13 = PW1 - ~2)2 + 
(~2n - ;2n+1)2] 1/2, can be obtained by first integrating 
over ~4' ~6"'" ~2 (n-1)' ~2n+3' ~2n+5' ..• , ~4n-3 to obtain 

J 2 = - (k/21TZ)2S~ 

X f(2n) dhd~2d;3d~5 ••• d;2n-3d~2nd~2n+1 

X d;2 (n+1) d~2 (n+2) ••• d~4 (n-1) 

x P[(~1 - ;2)2 + (~2n - ;2n+1)2]1/2 

X exp[(jk/z)(~2h + ~2n+1;2n)] 
X 6(~1 + ~3) <i{h + ~3 + ~5) .•. 

X 6(~1 + ~3 + ~5 + ..• + ~2n-3) 

X 6(~211 + ~2(n+1»ii(~2n + ~2(n+1) + ;2(n+2» 
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X ii(~2n + ~2(n+1) + ~2(n+2) + ;2(n+3» ••• 

X 6(~2n + ;2(n+1) + .•• + ;4(n-1» 

= - (k/21TZ)2S~ j<4) dhd~2d;2nd~2n+1P[(h - ~2)2 
+ (;2n - ~2n+1)2]1/2) exp[(jk/zm1~2 + ~2n~2n+1)]' 

(39) 
By setting A = ~1 - ~2' B = h + ;2' C = ~2n - ~2n"1' 
D = ~2n + ~2n+1 , the integrations over Band D yield ii 
functions with the result 

J 2 = - j(k/41TZ) S~ f(2) dMCp ([A2 + C2J1/2) 

X exp[- (jk/4z)(A2 + C2)]. (40) 

Each of the remaining integrals in Eq. (33), J 3,J 4' ••• , 
I n (2n-1)' can Similarly be reduced to one of the forms 
given above for J 1 or J 2: 

(a) The n 2 integrals, including J l' which contain p ij 
with i + j odd each similarly yield S5' 

(b) The (n/2)(n - 1) integrals, including J 2' which con
tain Pij with i and j odd each similarly yield the expres
sion for J 2 given above. 

(c) The (n/2)(n - 1) integrals which contain p ij with i 
and j even each similarly yield J~ . 

Combining all the results, we obtain 

(In (z» = (1 - nS~) + n2S~ + (n/2)(n - 1)(J 2 + J~) 

= 1 + n(n - 1)[S~ + Re(J2 )] 

= 1 + n(n - 1)S5 [1- loCO p(2..Jzt/k) sintdt], (41) 

where the expression for J 2 has been Simplified by 
transforming to polar coordinates (r, rp) in the A-C 
plane, integrating over rp, and then setting t = kr2 /4z. 
For a Gaussian model for the phase autocorrelation, 
p (r) :::: exp(- r 2 /12 ), we obtain 

(In(z» = 1 + n(n - 1)S~ (4z/k12 )2/[1 + (4z/kl 2)2], (42) 

which applies to all distances Z for n5g «: 1. [Mercier4 

also evaluated all moments of the intensity distribution 
with Gaussian autocorrelation of phase variation for the 
limit z --) IX) and any S~. The special result that appears 
in his paper and Eq. (40) reduce to < In(z)) = 1 + 
n (n - 1) 56 for the common case of Z --) IX), Gaussian p, 
and nS5 «: 1.] 

To obtain the nth-order intensity autocorrelation < I(P1' 
qvz)I(P2,q2'z) ••• I(Pn_1,qn_Vz)I(0,0,z» in the 
transverse plane we need only recalculate Eq. (33), sub
stituting ;2; - Pi for ~2i and ~2 (n+;)-l - qi for ~2(n+;)-1' 
where i = 1,2,3, ... ,n - 1, wherever they appear in the 
argument of p in the integral in Eq. (33). We obtain the 
following result upon carrying through this procedure: 

For a Gaussian model, the integrals involved may be 
readily evaluated. Setting p(x,y) = exp(- x2/1~ - y 2/1~), 
we obtain 
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- (1 + ~~;(~~+ Q;~1/4 exp [- 1~(1 ~ Qn (t;i P ky 
Q~ (t q) 2J sin [i tan-1 Qx + i tan-1 Qy 

1~(1 + Q~) k=i 'J 

+ l~(I~xQ~) (Ei Pkr + l~(I~Q~)(~i QktJ})' 
(44) 

where Q" = kl;/4z, Qy = kl~/4z. 
The nth-order spectrum of intensity fluctuations may be 
obtained from Eq. (26). After some manipulation, we find 

- exp(Jk'Z) [ix. Ux _. Ix. ) + lyUy - Iy. 1)] 
, m t -1 J. m z-

+ exp(jk
Z
) [ixUx 1 - Ix. ) + I y. Uy - I y. )] 

\ t m+ z-l ,m+l ,-1 

- exp(jk
Z

) [ix.Ux - Ix) + Iy . Uy - Iy.l}) , 
t m+l , ,m+l Z J 

- ~~ 
where p Ux . ,Iy .) is the Fourier transform of p(a i , {3i)' , , 
For n = 2, we readily obtain the important formula first 
stated by Salpeter, 5 

M2I Ux ,Iy ,z) = 4S~ pUx ,fy) sin2 [z(n + fy2)/2k]. 
1 1 1 1 1 1 (46) 

3. STATISTICAL PROPERTIES OF THE INTENSITY 
FIELD IN THE WEAK PHASE SCREEN CASE 

For the weak phase screen model we have chosen, 
(I) = 1, and we can show from Eq. (41) that the skewness 
E[(J - (I»)3]1a3 == O. Thus the distribution of J is sym
metrical as expected. We can also demonstrate that the 
variance, a2 , is small. From Eq. (41), 

a2 == (J2(z» - (J(z»2 = 2S~ [1- 1000 

p(2,Jzt/k) sint dt]. 

(47) 
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Assuming that p is a monotonically decreasing function 
with p(co} = 0, the integral is positive. Consequently, be
cause a2 is positive, the term in brackets in Eq. (47) 
must lie between zero and one. Hence a2 :5 2S~« 1 
for all weak phase screens. Salpeter,5 employing the 
spectrum of intensity fluctuations, has also shown that 
in the case of k12 /z« 1 and k12 /z» 1, the variance, 
a2 , is much less than unity. (In the case of a strong 
phase screen, S~ ~ 1, and Gaussian autocorrelation for 
p, Mercier4 expanded the exponential form of the fourth
order mutual coherence function on the screen in power 
series up to S5 2 and programmed the eightfold integral 
for numerical calculations. The numerical results show 
peaks corresponding to a2 > 1.) 

We can now show that the distribution function of the in
tensity fluctuations is Gaussian to a good approximation. 
The nth moment of a Gaussian distribution with unity 
mean and variance a2 iS12 

n(n - 1) (0
2 

mn (a 2 ) = 1 + 2 J 0 1nn_2 (a2 ) d(a 2 ). 

For a Gaussian distribution with 1no = m 1 = 1 and 
a2 « 1, Eq. (48) reduces to 

(48) 

mn(a2 ) = 1 + in(n - 1)a2 + O(a4 ) ~ 1 + in(n - l)a2 • 
(49) 

Our expression for (In (z» is identical to Eq. (49). 
Remembering that we require nSg « 1, we find there
fore that the distribution of intensity is Gaussian in the 
limit So -7 0 for all z. Mercier4 derived the same re
sult for Z -7 co in the special case of Gaussian p. The 
Gaussian statistics of intensity fluctuations have been 
described previously by other authors5 ,10 for the weak 
phase screen case. This same result can also be ob
tained from the formalism of the method of smooth per
turbations given in the work of Tatarski13 as a limit of 
the log-normal distribution for weak scintillations. 
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A general yet simple and hence practical algorithm for calculating SV, ::l SV2 X V, Wigner 
coefficients is formulated. The resolution of the outer multiplicity follows the prescription given by 
Biedenharn and Louck. Ii is shown that SV 3 Racah coefficients can be obtained as a solution to a 
set of simultaneous equations with unknown coefficients given as a by-product of the initial steps in 
the SV3 ::l SV2 X VI Wigner coefficient construction algorithm. A general expression for evaluating 
SV3 ::l R3 Wigner coefficients as a sum over a simple subset of the corresponding SU3 ::l SV

2 
X VI 

Wigner coefficients is also presented. State conjugation properties are discussed and symmetry 
relations for both the SV3::l SV2 X VI and SV3 ::l R3 Wigner coefficients are given. Machine 
codes based on the results are available. 

1. INTRODUCTION 

The work of Wigner on the theory of group representa
tionsl coupled with Racah's development of the algebra 
of tensor operators2 provides basic simplifying tech
niques for spectroscopic analyses. The usefulness of 
their techniques in any particular situation, however, de
pends to a great extent upon the availability of the appro
priate Wigner and Racah coefficients. Ordinary angular 
momentum algebra, for example, owes its utility as a 
calculational tool to the ready availability of SU 2 

Wigner and Racah coefficients. Other more complicated 
group structures for which Wigner and Racah coefficients 
are not so readily available, however, are also known to 
have real physical significance. The special unitary 
group in three dimenSions, SU 3' is a case in point. In 
1958 Elliott pointed out its usefulness in understanding 
the rotational structure of light nuclei. 3 Some four years 
later it was also recognized as being of importance in 
the classification of elementary particles.4 As a con
sequence, Wigner and Racah coefficients for this group 
have been given in either algebraic or numeric form for 
simple cases of special interest by a number of authors.5 

More general results have only recently been made 
available through the work of Biedenharn and Louck and 
co-workers. 6 - l2 Except for the case of multiplicity free 
and the so-called r s couplings, however, an additional 
algorithm is needed if numerical values for Wigner co
efficients are to be extracted from the formalism. And 
since most authors disagree in their choice of a phase 
convention, extreme caution must be used if results so 
obtained are used to augment simple algebraic formulas 
currently available. An additional compliCation exists 
because two inequivalent reductions are needed: SU 3 ::J 

SU 2 X U 1 in particle phYSics and SU 3 ::J R 3 in nuclear 
physics. 

The purpose of this article is to: (i) Formulate in the 
spirit of an ordinary tensor formalism (built with tensors 
which by construction have the same null space prop
erties as the Biedenharn and Louck Wigner operators) 
a general but Simple and hence practical algorithm for 
generating S U 3 ::J S U 2 X U 1 W igner coefficients for 
arbitrary couplings and multiplicities; (ii) express SU 3 
Racah coefficients as the solution to a set of simul
taneous equations with the unknown coefficients given as 
a by-product of the initial steps in the S U 3 ::J S U 2 X U 1 

Wigner coefficient construction algorithm; (iii) exploit 
properties of the S U 3 :::l R 3 projection process together 
with known transformation coefficients between the S U 3 
::J SU2 XU 1 and SV 3 ::> R3 schemes to express SU 3 ::J R3 
Wigner coefficients as a sum over a particularly simple 
subset of the corresponding S U 3 ::J S U 2 X U 1 Wigner co
efficients; (iv) list symmetry properties of the trans
formation coefficients between the S U 3 ::J S U 2 X Uland 
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SU 3 ::J R3 schemes and discuss conjugation properties 
of state vectors for both reductions; (v) give symmetry 
properties for both the SU 3 :::l SU2 XU 1 and SU 3 ::J R3 
Wigner coefficients. We begin by briefly reviewing 
common notations and discussing their relationship to 
one another. 

2. BASIC NOTATION 

The labels ~ and Il are used to characterize the irre
ducible representations of S U 3' The row labels in the 
S U 3 ::J S U 2 X U 1 reduction are chosen as 

€ = 2~ + Il - 3(P + q) = - 3Y, 

A = (Il + P - q)/2 = I, 
MA = r - A = I z , 

(1) 

where the integers p, g, r satisfy 0 s. p s. ~, 0 s. q s. Il, 
Os. r s. 2A. The notation I (~Il)€AMA) is that introduced 
by Elliott into nuclear physics to label states in the so
called intrinsic or body-fiXed system.3.13 In terms of a 
three-dimensional oscillator with nt quanta in the i
direction, € = 2n3 - nl - n2 while A labels the irreducible 
representation of SU 2 with projection MA = (nl - n2 )/2. 
In particle physics states are labeled as I (~Il)YIIZ> with 
Y denoting the hypercharge and I and I z the isospin and 
its projection, respectively.14 

An equivalent but mathematically more elegant notation 
is that due to Gel 'fand in which case states are labeled 
by patterns of the type l5 

Ie) == (2) 

The gjj' 1 s. is. j s. 3, specify the irreducible repre
sentation of Ui. in the chain U 3 ::J U 2 ::J U l' Specifically, 
gij is the numoer of boxes in row i of the Young tableau 
for U .• ~ =gl3 -g23' Il =g23 -g33' and /I =g33 are 
then ihe number -of columns containing 1, 2, and 3 boxes, 
respectively, in the Young tableau for U 3' For notational 
convenience e (for Gel'fand) will be used to denote the 
full set of gij labels. Apart from an nj -dependent phase 
factor I e) == I (~Il)€AM A) with g \2 = P + Il + /I = i(~ + 
21l) - h + A + /I, g22 = q + /I = 3(~ + 21l) - h - A + 
II, g 11 = r + q + II = 2MA + i(~ + 21l) - t € - 3A + II. 

The so-called betweenness conditions (gij 2: gi,j-l 2: 

gi +Li) are equivalent to the restrictions 0 s. p s. ~, 0 s. 
qs. /-I, Os. rs. 2A. 

States of particular interest are those for which the 
number of oscillator quanta (n i = 6jgj.i - 6jgj .i-l) in 

Copyright © 1973 by the American Institute of Physics 1904 
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TABLE I. (Subgroup labels for extremal states). The subscripts HW and LW mean highest weight and lowest weight in the Gel'fand 
sense (not to be confused with Emax - ~w and Emin - GHW)' 

G gl2 g22 gll P q r E 2A 2MA 

GHW g13 g23 g13 ,\ I' ,\ -A - 21' A A 

Gilw g13 g23 g23 A I' 0 -,\- 21' A -,\ 

GLW g23 g33 g33 0 0 0 2A +1' I' -I' 

G{w g23 g33 g23 0 0 I' 2,1. + I' I' I' 

the 3-direction is either a maximum or a minimum. The 
value of the subgroup labels for these so-called extremal 
states (I GE » are summarized by Table I. The I and J 
labels form a convenient code by which the states can be 
distinguished. The labels A, 1-1, II can therefore be thought 
of as either specifying or being specified by the distri
bution of oscillator quanta for extremal states. 

In the S U 3 ~ R 3 reduction states are labeled by the 
total angular momentum L and its projection M. Multiple 
occurrences of a given L can be distinguished in a 
variety of ways.16 The physically most Significant scheme 
is that due to Elliott in which case K, the projection of L 
along the body-fixed 3-axis, is used to sort the L -values 
into the familiar K - bands of rotational model theory. 1 7 

The prescription given is that projected states defined 
by 

I (G)KLM) == PitK I G) == (2L + 1) J dO. Dit~(n)R (0) 1 G) (3) 

form a complete basis if G = GE and for: 

GE = GHW : K = A, A - 2, .•• ,lor 0, 

L = K, K + 1, ..• , K + 1-1, 

L = 1-1, 1-1 - 2, •.• ,lor 0, 

GE = GL w: K = 1-1, 1-1 - 2, ••• ,lor 0, 

K;z! 0, 

K= 0; 

L = K,K + 1, .•. ,K + A, K;z! 0, 

(4a) 

L=A,A-2, .•. ,10rO, K=O. (4b) 

In Eq. (3), DkK(n) is an R3 rotation matrix and R(n) is 
an R 3 rotation' operator. The integration is over Euler 
angles. 

States defined by Eqs. (3)-(4) are not normalized nor 
are they orthogonal with respect to the K-Iabel. Working 
within such a scheme leads ultimately to nonhermitian 
matrices. To avoid this complication, it is convenient to 
orthonormalize the basis using a Gram-Schmidt process. 
The physical interpretation of K as a band label can be 
maintained approximately if a prescription analogous to 
that outlined by Vergados is used. 1S In this case 

I (GE)XiLM) = L; 0ij 1 (GE)KjLM), 
j:Si 

(5) 

where the orthonormalization matrix 0ij is defined re
cursively by the formulas 

(6a) 

(6b) 

(6c) 

An analytic expression which allows the coefficients 
«(GE)KiLMI (GE)~i.LM) to be evaluated is given in Sec. 3. 
Unlike the K of vergados,:Ie like K is given by either Eq. 
(4a) or Eq. (4b). The extent to which different K -values 
are mixed by the orthonormalization process depends 
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n1 n2 n3 J 

A+I'+V I' + v v 1 1 
I' + v A+I'+V v 1 0 
v I'+v A + I' + v 0 0 
I'+v v A+I'+V 0 1 

upon the relative magnitude of the coefficients «(GE)KiLMI 
(GE)KjLM) and «(GE)KiLM 1 (GE)KjLM). It can be verified 
that the mixing is indeed small. In particular, for GE = 
GHW(Gr.W) and i ;z! j «(GE)KiLMI (GE)KjLM) ~ ° if A(I-I) is 
fixed and I-I(A) ~ <Xl. 

3. ALGEBRAIC FORMULATION 

If 01 represents a set of row labels used to distinguish 
orthonormal basis states within a given representation 
of SU3 (0I = €AMA , or :IeLM, or'··), the Wigner co
efficients «(A 11-11)0I1; (A21-12)01 21 (A31-13)0I3)p are by definition 
the elements of a unitary transformation between coupled 
and uncoupled representations of SU 3 in the OI-scheme, 

1 (A31-13)0I3)p 

= L; «(A11-11) 0I1; (A21-12 )012 1 (A31-13)0I~p 1 (A11-11)0I 1) 1 (A21-12 )012). 
a~2 (~ 

The outer multiplicity label p = 1, 2, ••• 'Pmax is used to 
distinguish multiple occurrences of a given (A31-13) in the 
direct product (A 1 l-l1) X (A21-12). Although a definition 
bearing physical significance comparable, for example, 
to that associated with Elliott's choice of K for a resolu
tion of the inner multiplicity problem in the SU 3 ~ R 3 
reduction has not been proposed to fix p, Biedenharn and 
Louck and co-workers have demonstrated in a series of 
articles6- 12 that a mathematically' canonical definition 
which puts the outer multiplicity on a sound group theo
retical basis can be obtained through the use of the labels 
of an upper Gel'fand pattern for a Wigner operator of 
irreducible tensor character (A21-12). The practical 
aspects of this choice are manifest in the vanishing of cer
tain Wigner and Racah coefficients [Eqs. (15), (23), below], 
simple symmetry relations under conjugation [Eqs. (32)
(36), below], apd nice limiting properties for the SU 3 ~ 
SU 2 X U 1 Wigner coefficients (see Ref. 11, for example). 
Outlined below are techniques which exploit the essential 
features of this definition (albeit somewhat obscured but 
only so as to minimize notational needs) in defining an 
algorithm (based on an ordinary tensor formalism built 
with tensor operators which by construction have the 
same null space properties as the Wigner operators of 
Biedenharn and Louck) which can be used to evaluate all 
SU 3 ~ SU 2 X U 1 Wigner coefficients. Note that for most 
practical purposes, however, the outer multiplicity can 
be considered fully labelled with a running index p ::::: 1, 
2, ... , Pmax which distinguishes orthonormal basis states 
in the product space, 

(8) 

A. SV3 :J SV2 X V l Wigner coefficients 

Irreducible tensor operators under SU 3' TO"Il), can be 
defined through their commutation properties with the 
infinitesimal generators of the group.19 The Wigner
Eckart theorem allows one to express the matrix ele
ments of tensor operators defined in this manner as a 
sum over p of the product of a p-dependent generalized 
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reduced matrix element multiplied by the corresponding 
Wigne~ coefficient. Specifically, for the S U 3 ::> S U 2 X U 1 
reduction, 

«A3J.13)€3 A3MA I T«At~A I (A1J.1J€lA1MA) 
3 2 2 -"2 1 

= L «A3 J.l3)11 T(
A21l2) II (AIJ.ll» p (9) 

p 

x «Al iL1)€1 AIMAl ; (A2iL2)€2A2MA2 I (A3iL3)€3A~A3>P' 

This result can be used to define Wigner coefficients 
through the matrix elements of specially chosen tensor 
operators K(A

2 1l 2 )(p), 

«A3fJ3)€3A 3MA IK€(A~Il~A (p) I (AlJ.L 1)€1 AlMA) 
3 2''2 "2 1 

= «A3fJ3}!I K(A21l 2)(p)1I (A1iL1» (10) 

x «AlfJ1)€lAlMAl; (AZ/t2)€zA2M1\I (AsiL3)€3A~A3)P 

for which the p-summation of Eq. (9) is not required. 
The generalized reduced matrix element «Al/t1)IIK(A21l~ 
(p)1! (A3/t3» is then just a normalization factor. In par
ticular, the infinitesimal generators which have irredu-

: cible tensor character (A2/tZ) = (11) and operate only 
within a given representation of SU 3 [e.g., (Al/tl) = 
(A3/t3) = (AJ.L), only] are by definition matrix elements of 
the p = 1 variety. 

The problem is then one of constructing the operators 
K(A21l 2)(p); and in particular, constructing them in a 
manner which serves to uniquely define the outer multi
plicity label p. The scheme is straightforward: Clearly 
Pmax' the number of occurrences of (A3/t3) in the direct 
product (A l J.L1) x (A2/t2)' depends upon AI' /tl,A2 , /t2,A 3, J.L3' 
It is also clear that there exists an 1/ such that (A3/tS) 
occurs exactly p times in the product (A 1J.L1) x (A2 - 'f/, 
/t2 - 1/). And in this case p depends upon AI' /tl' A2 1/, 
/t2 - 'f/, A3,/.t3' Let 1/max be the value of 1/ such that 
(AlJ.L1) x (A2 - 'f/ma~' /t2 - 1/max) ~ (A3/t3) is not allowed 
whereas (i\lJ.Ll) x \i\2 'f/max + 1, iL2 - 'I1max + 1) --7 (A3 I1S) 
occurs with a multiplicity of one. Then (All.!l) x (5..2 == 
A2 - 'f/ma;'; + p, ii2 == 112 - 7)max + p) ~ (A3113) occurs with 
a multiplicity 2f p for p = 1, 2, ••• 'Pmax :S 'f/max' In this 
way, (AlJ.Ll) x (A2iL2) ~ (A31.!3) can be considered the 
parent coupling for the pth occurrence of (i\.31.!3) in the 
product (i\.1J.Ll) x (A2I.!Z)' The question then arises: Is it 
possible to construct the K(A2Il:l(p) from the correspond
ing K(A2ii~(p) in such a way as to preserve the unique null 
space) property of the parent operator which allow it to 
generate the pth occurrence (and no more) of (A3f.'3) in the 
product space? The answer is yes, it can be done via a 
build-up process using the group generators K(ll) == 
K(1l)(p :::: 1). In particular, iterating the result 

K(A21l 2) (p) = [K (A2-1. 112-1) (p) x K(ll)] (A
2 1lZ> 

€2AzMA2 €2AzMA2 
I; «l1)€AMA; (A2 - 1,112 - 1) 

€AfI2MA 

€' A'M' I(A /J. )€ AM )K(A2-1. 1l 2-1)(p)K(1l) 
2 ~"Az 2"'2 2 2 A2 €' A' M' €AMA 

2 2 Az 
(11) 

allows one to relate K(A21l2)(p) to K(1:2fi:l(p) for each p. 
Logical consistency demands, of course, that in each step 
p be chosen numerically equal to p and that p :::: 1 corres
ponds to a multiplicity free parent coupling, p = 2 to the 
second solution in the parent coupling having a twofold 
outer multiplicity, etc. The tilde, however; is used to 
denote the fact that p-orthogonality in the product space 
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is not guaranteed; that is, K(
A21l.)(p) will in general be a 

linear combination of all K(AZllzl(p) with p:S p. (That 
operators with p > p are not generated is a consequence 
of the fact that the group generators preserve the null 
space properties of the parent operator. Further dis
cussion on the consequence of this result is given below. 
In effect, it means that the weight diagramll for a 
coupled operator of the type T(AIl) x K(ll) is the same as 
for T(AIl).) To be ~ure, the build-up frocess cannot be 
used to define K(A

2 ii.)(p) because K( a-1,fiz- 1)(p) == O. But 
this presents no major problem since an analytiC ex
preSSion for the Wigner coefficients corresponding to the 
pth occurrence of (ASI.!3) in the product (i\.liLl) x (X2iiz) 
is available [Eq. (20), below] and through Eq. (10) serves 
to define the first nonvanishing operator in the build-up 
process. Note that the Wigner coefficient appearing in 
Eq. (11) is multiplicity free. Substitution of Eq. (11) into 
Eq. (10) yields 

«A1111)€lA1MAl ; (A.21.!2)€2 A 2M AzI (i\.3iL3)€3 A sMAs)p 

= «AsiL3)1i K(
A2 Il:l(p>II (A 1I1J>-1 

x «A3J.L3)IIK O
yl,1l2-

1)(p) II (i\.11.!1»({i\.1f.'1) II K(l1) II (A1/tJ) 

x I; {(l1)€AMA ; (AZ - 1, 1.!2 
<AAiA2MA 

(A2/Lz)€2 A2MA ) 
2 

1)€' A'MI I 2 ~"Az 

X «A1f.'1)€1A1MAl; (l1)€AMAI (A1iL1)€iA{MA/p"1 

x «Alf.'l)€l AiMA}; (i\.2 - 1, 1.!2 - l)€zAZMA;a I 

(A3f.'3)€3A~A3)P' (12) 

If K(ll) were not chosen to be of the generator type, re
presentations other than (A1111) would appear on the 
right- and left-hand sides of the matrix elements of 

(A -11l -1) ( ) K 2 • 2 (p) and K 11 and a summation over these re-
presentation labels would be required. Factoring each 
coupling coefficient into a reduced coefficient (double
barred or isoscalar part) multiplied by an ordinary co
efficient which carries the dependence upon the S U? pro
jection labels and carrying out the summation over pro
jection quantum numbers yields 

{(i\. 1iLl)€1 Al ; ('\2f.'2)€zA211 (A3f.'3)€3A3>p 

= «A3i.!3)IIK(
AZil 2 )(p) II (A 1I.!l»-1 

x «A3/Ls)I!K(A2-1'/lz-1>(p) II (i\.li.!l»«A 1 I.! 1) II K(ll} II (All.!l» 

x I; {(U)€A; (A2 - 1, iL2 l)€zAzll (A2i.!2)€2A2) 
€AAi A2 

x «A1111)€1 A1; (ll)€A II (A11.!1)€i Ai) p =1 

x ({AlI11)€iAi; (A2 - 1, f.'2 - l)€zAz ll (i\.3113)€3A3)p 

(13) 

where U(AIAA3AZ;A1A2) is an ordinarySU2 recoupling 
coefficient and €1 = €3 - €2' €z :::: €2 - €, €l. = €3 - €2 
+ E. 

It should be emphasized that Eq. (13) is valid for com
pletely general arguments €l> Al , €2' A2, €3' A3 and, 
furthermore, that certain coupling coeffiCients derived 
using this expression must necessarily vanish identi
cally. To see this, consider in more detail a coefficient 
calculated by repeating the recursion process 1/ times. 
The required matrix elements are for a tensor operator 
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K(A21'2)(p) 

= [ ... [[K(A2-lI,1'2-1I) (p) X K(ll)] X K(ll)] • •• X K(ll)] (A21'~, 
(14) 

in which K(ll) appears 1/ times. In general the maximum 
change in A induced by an operator KV"I') is t(A + iJ) 
since this is the maximum value of A in the representa
tion (AiJ). The generators, however, are of a special type; 
they change A by at most t. The operator given by Eq. 
(14) can therefore change A by at most (A2 - 1) + iJ2 -
1))/2 + 1)/2 = (A2 + iJ2 - 1))/2. Consequently, the corres
~onding coupling coefficient must be zero if I.A1 - A3 1 > 
2(A2 + iJ2 - 1)). The maximum 1) for which this result is 
valid is simply 1) = 1)rn,\x - p. Consequently «A1iJ1)E 1 A1; 
(A2iJ2)E 2A211 (A3iJ3)E3A3)"L must vanish for I A1 - A31 > 
t(A2 + iJ2 - 1)max + j5). This property is completely 
general and a direct consequence of the build-up process 
used to define the coefficients. Note that the number of 
coefficients predicted to be zero (more zeros may appear 
but for other reasons) is always a decreasing function of 
p. Although solutions obtained via repeated applications 
of Eq. (13) are not necessarily orthogonal with respect to 
the p-label, orthogonalizing in the increasing order p = 
1, 2, ••• , P max using a Gram -Schmidt process preserves 
the vanishings; and hence the Wigner coefficients satisfy 

----------------------------------------------~ 

A(A1 , A2, A3) = A2 + A3 - A 1, 

B(A1' A2, A 3) = A3 + A1 - A2, 

C(A1, A2, A 3) = A1 + A2 - A 3, 

D(A1 , A2, A3) = A1 + A2 + A3 + 1, 

R(Pj ) = Pi (Aj + 1 - Pj)(iJj + 1 + Pj), 

S(qj) = qj(iJj + 1 - qj)(A j + iJj + 2 - qj), (17) 

where N is a normalization factor. This result allows 
the recursion process of Eq. (13) to be carried out with
in a very limited number of coefficients. The restriction 
€3A3 = HW, however, also demands that 

«A1iJ1)€1 A1; (A2iJ2)€2 + 3, A2 II (A3iJ3)HW) 

I (2A2 + 1) )1/2 6 X(A1' A2) 

= \(2A1 + 1)(2A2 + 1)N(A2) A1=A1±1I2 "2A1 + 1 

x «A1iJ J€1 + 3,A1;(A2iJ2)€2 A21I(A3iJ3)HW), 

X(A1 + t, A2 + t) = - {S(q 1)[A(A1, A2, A3/2) + t] 

x [B(Av A2 , A3/2) + t]}1/2, 

X(A1 - t, A2 + t) = - {R(Pt)[C(Au A2,A3/2) + t] 

x [D(A 1,A2 ,A3/2) + t]}1/2, 

X(A1 - t, A2 - t) = + {S(q 1)[C(A1, A2, A3/2) + t] 

X [D(A 1 , A2,A3/2) + t]}1/2, 

X(A1 - t, A2 - t) = - {R(P1)[A(A1, A2, A3/2) + t] 

X[B(A 1,A2 ,A3/2) + t]}1/2, 

J. Math. Phys., Vol. 14, No. 12, December 1973 

«A1iJ1)E 1 A1; (A 2iJ2)E2A2 11 (A3iJ3)E3A3)P = 0 

for I A1 - A31 > t(A2 + iJ2 - 1)rnax + p). (15) 

This then quarantees the uniqueness of our result which 
by construction coincides with the Biedenharn and Louck 
prescription for a resolution of the outer multiplicity. 
Thus Eq. (13) provides a recursive means of defining the 
S U 3 :J SU 2 X U 1 Wigner coefficients for each mode of 
coupling characterized by p. 

An expression which is computationally convenient to 
evaluate can be obtained from Eq. (13) by restricting 
E2A2 = HW and E3A3 = HW. In this case lOA and E2A2 
are also forced to be of HW and «ll)HW; (A2 - 1, iJ2 - 1) 
HW II (A2iJ2)HW) = 1. The sum in Eq. (13) then reduces 
to simply 

6 «A 1iJ1)E 1A 1; (1l)HWII(A1iJ1)E 1 - 3,A1)p=1 
A' 

1 X «A 1iJ1)E 1 - 3, A1; (A2 - 1, iJ2 - 1)HW II (A3iJ3)HW)p 

x U(A1 , t, A3/2, (A2 - 1)/2; A1, A2/2). (16) 

It follows (making use of results available, for example, 
in Refs. 19 and 20) that 

N(A2 + t) = S (q2), 

N(A2 - t) = R(P2). 
(18) 

And knowing this additional result allows all coefficients 
of the type €3A3 = HW to be determined. Coefficients 
with €3A3 ;zO HW foUow from the ordinary recursion 
formula 

X «A 1iJ1)€1 - 3, A1; (A2iJ2)E 2A2 11 (A3iJ3)€3 - 3, As) 

+ 6 N2 3 U(A1A'2A3 t;AsA2) (
2A + 1) 1/2 

A~=A2± 1/2 2A2 + 1 

X «A 1iJ1)E1 A1; (A2iJ2 )€2 - 3, A211 (A3iJ3)€3 - 3, As»), 

f...JS(qj+1), Ai-Ai=t, 
Ni = ) ,.!. (19) 

~ ...JR(qj + 1), Ai - Ai = - 2' 

The process is easily realized for small values of 
n == [(A1 + A2- A3) - 2(iJ1 + iJ2 - iJ3)]/3. The maximum 
possible multiplicity is n + 1, i.e., Pmax :s n + 1. For 
example, for an allowed coupling with n = 0, Pmax must 
be one and «A1iJ1)HW; (A2iJ2)HW II (A3iJ3)HW) = 1. For 
n = 1, P max may be either one or two. If Pmax = 2, the 
coefficients with P = 1 and €3A3 = HW are determined 
via Eqs. (17)-(18) from the result for «A1iJ1)HW; (A2 -
1, iJ2 - 1)HW II (A3iJ3)HW). The solution for P = 2 can 
then be determined from Eq. (20) below. If, on the other 
hand, P max = 1, either (A 1iJ1) X (A2 - 1, iJ2 - 1) -t (A3iJ3) 
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is allowed and Eq. (20) cannot be used to generate an 
additional independent solution or (A 11l1) x (A2 - 1, 112 -
1) ~ (A31l3) is not allowed and l$q. (20) provides the only 
solution. For n = 2, P max may be either one, two, or 
three. And in this case it is still possible to generate 
useful algebraic results. For n > 2, however, the recur
sion process yields unwieldy expressions making the 
algebraic approach extremely difficult if not impossible. 

P2= 0, 

~ (~2) i~l l(j), P2 ~ 1, 
;=0 Z j=O 

However, from the systematics of the results it is poss
ible to predict a general algebraic expression for 
«A11l1)HW; (X:2iL2)E2A211(A31l3)HW)p (X2 = A2 - 71 max + p, 
iL2 = 112 - 71 max + P implying that p is the maximum 
multiplicity for this coupling) which leads to coefficients 
that are automatically orthogonal to those obtained via 
~q. (13) for th~ same X2 , iL2 but lesser p. Explicitly, if 
P = Il - 9. and q = A - p, 

. _ {(P2 + j + 1)(1-'1 + X:2 + iL2 - n + j + 2), 
I() - (a + j + l)(b - j - 1), 

j < i, 
j ~ i, 

. { (a + n - j)(b - n + j)(c + n - j)(d + n - j)(X2 + il2 - j + 1), 
g{J) = _ . 

112 - n +) + 1, 

j < Q.2' 
j ~ Q2' 

(20) 

j = minimum q l 
.1 . ; ( for which the coupling A1 + A2 = A3 is allowed, 

12 = maxImum q2) 

::: (n + 1 + ~2 -q 2) 
H(q2) = - - , 

A2 -lh 

a = A(A1/2, A2/2, A3/2) - n/2, b = B(A1/2, A2/2, A3/2) + n/2 + 1, 

c = C(A 1/2, A2/2, A3/2) - n/2, d = D(A1/2, A2/2, A3/2) - n/2, 

n = [(A1 + ~2 - A3 ) + 2(1l1 + iL2 - 1l3)]/3, 

where N is again the normalization factor. The formula 
[which is essentially the inverse of Eq. (18)] 

«A 11l1)E1 + 3, AI; (A21l2 )E2 A2 II (A31l3)HW) 

_ ( (2AI + 1) )112 L) Y(AI , A2) 
(2A1 + 1)(2A2 + l)N(Al.) "2=~±l/2 ..J2A2 + 1 

x «A11l1)E 1 A1; (E2A2)E2 + 3, A2 II (A 31l3)HW), 

Y(A1 + ~,A2 + ~) = - {S(q2)[A(A1, A2, A3/2) + ~] 
x [B(A1,A2,A3/2) + ~]}1/2, 

Y(A1 + ~,A2 -~) = + {R(P 2)[C(A1,A2,A3/2) +~] 
x [D(A 1,A2,A3/2) + ~]}1/2. 

Y(A1 - ~,A2 + ~) = - {S(q2)[C(A1, A2, A3/2) + ~] 
x [D(A1,A2,A3/2) + ~]}1/2, 

Y(A1 - ~. A2 - ~) = - {R(P2)[A(A1, A2, A3/2) + ~] 
x [B(A1' A2, A3/2) + ~]} 1/2, 

N(A1 + ~) = Seq 1)' 

N(A1 - ~) = R(P1), (21) 

can be used to generate coefficients with E 1 A1 ... HW re
cursively. Note that Eq~ (20) is valid for all p; it can be 
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used to provide the starting coefficients for the recursion 
process. 

The computational algorithm is then clear: Neglecting 
normalization factors, for each p = 1, 2, •.• 'Pmax' (i) 
start with the «A11l1)HW; (A2iL~E2A2 II (A31l3)HW)P of Eq. 
(~O) and use Eq. (21) to generate the «A11-'1)E1 A1; 
(A2il2)HW II (A31l3)HW)p, (ii) make use of Eq. (17) to gener
ate the «A1h)E1A1; (A21l2)HW II (A31l3)HW>p from the 
«A11l1)E1 A1; (A2P2)HW II (A31l3)HW)p, and (iii) obtain the 
«A11l1)E1 A1; (A21l2)E2A211 (A 31l3)HW)ji by using Eq. (18) to 
step the E2A2 labels. Then (iv) use Eq. (8) with Q 3 = 
E3A3 = HW to orthonormalize the resultant coefficients 
in the increasing order p = 1, 2, ••. , P max and, depending 
upon need, and (v) obtain the «A11l1)E1 A1; (A21l2)E2A2 II 
(A31l3)E3A~p by using Eq. (19) to step the E3A3 labelS. 

The process serves to define SU 3 ::l SU 2 X U 1 Wigner 
coefficients to within an overall phase. The simplest 
and most natural way for fixing the phase is to take all 
the normalization factors involved in the process to be 
positive, and we adopt this convention. This is very dif
ferent from the ordinary procedure in which a particular 
coefficient is assigned to be positive for each mode of 
coupling, i.e., each p-label.21 With the current approach, 
however, it is difficult to predict the sign of each indi
vidual coefficient, making a priori introduction of the 
ordinary convention practically impossible. Of course, 
the technique outlined above allows the ordinary con
vention to be introduced a posteriori during the ortho
normalization process. And such a choice reflects it-
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self in the p-dependence of the symmetry properties of 
the Wigner coefficients (see Sec. 4). 

It is interesting to note the effect of changing the 
order of the coupling in Eq. (11), 

K(A2jJ.) (p) == [K(ll) x K(A2-1,jJ2-1)(p) ] (A2jJ.) 

<2~M~ <2~M~ 

L; ({;\2 - 1,1-1-2 - 1)e2A2M~; (l1)eAMA 1(;\21-1-2)e2A2M~) 
<AAJ.MA 
x K(ll) K(A2-1,jJ2- 1) ( ) 

<AM <' A'M' p. 
A 2''2 ~ 

(11') 

For this form, the result corresponding to Eq. (13) is 

«;\11-1-1)e1 A1; (;\21-1-2)e2A2 II (;\31-1-3)e3 A3)p 

== «;\31-1-3) II K(A21'.)(p) II (;\11-1-1»-1«;\31-1-3) II K(ll) II (;\31-1-3» 

x «;\31-1-3) II K(A2-1.1'2-1)(p) II (i\11-1-1» 

x L; «;\2 - 1,1-1-2 - 1)e2A2; (l1)eA II (~21-1-2)E2A2) 
<AA2~ 

x «;\31-1-3)E3A3; (l1)EA II (A 3 1-1-3) E3A S>p =1 

x «A1J.11)E 1 A1; (;\2 - 1,1-1-2 - 1)e2Az II (;\31-1-3)E3 A 3)p 

x U(A 1 A2A3A; A3A2). (13') 

The choice E1A1 == HW and E2A2 == LW rather than E2A2 
== HW and E3A3 == HW can then be used to obtain a recur
sion relationship analogous to Eq. (17). 

B. SU3 Racah coefficients 
A straightforward generalization of the relationships 

between S U 2 unitary recoupling coefficients and S U 2 

Wigner coefficients leads to the corresponding relation
ships between S U 3 unitary recoupling (Racah or U func
tions) and SU 3 Wigner coefficients,19 The most practical 
of these relationships for evaluating recoupling co
efficients in terms of known Wigner coefficients is 

L; «A1J.11)e 1A1; (;\231-1-23)E23A23I1(AI-I-)EA)p 
p 1,23 

1.23 x U(;\11-1-1)(A21-1-2)(AI-I-)(i\31-1-3); (i\12J.112)P12' 

x P12,3(A231-1-23)P23,P1,23) 

L; «i\lJ.11)E1 A1; (i\21-1-2)E2A211 (A121-1-12)E12 A12)p 
<2~A3A12 12 

X «A12I-1-12)E12 A12; (A31-1-3)E3A311 (AI-I-)EA)p 
12.3 

set of simultaneous equations the solution of which is the 
required U functions. Note that the choice E1 A1 == HW 
and EA == HW makes it possible to eValuate all but one of 
the Wigner coefficients in Eq. (22) through Eqs. (17)-(18); 
the other requires Eq. (19) in addition. 

The sum on the right-hand side of Eq. (13) can with the 
help of Eq. (22) be identified (apart from orthogonality) 
as simply 

L; «A1J.11)E1 A1; (A21-1-2)e2A211 (A31-1-3)E3 A3)p U((i\lJ.11)(l1)(A31-1-3) 
p 0 

D X (A2 - 1,1-1-2 - 1); (A 1J.11)PA == 1,PB(A21-1-2)Pc == 1,PD)' 

This is a direct consequence of the special character of 
the couplings involved in the product tensors of Eq. (11). 
More general couplings would, by analogy with SU 2, re
quire a 9-(AI-I-) symbo1.22 The recursion formula (13) 
could therefore, in retrospect, be obtained from Eq. (22) 
by requiring U«;\11-1-1)(11)(A3J.13)(A2 - 1,1-1-2 - 1); (A 11-1-1)PA == 
1,PB(A21l2)PC == 1,PD) == 0 for PD '" PB' And indeed, this 
suggests a Simple method by which the techniques 
developed in this article may be generalized to other 
group structures. Note that the orthonormalization pro
cess, if carried out in the increasing order P == 1,2, •.• , 
Pmax, maintains the zero value of the U function for P D > 
P B' Consequently, 

U«A11l1)(11)(A31l3)(A2 - 1,1-1-2 - 1); (i\11-1-1)PA == 1, 
PB(i\21l2)PC == 1, PD) == 0 for PD > PB' (23) 

This result also follows from property (15) and is a 
direct consequence of the Biedenharn and Louck pre
scription for specifying the outer multiplicity. 

C. SU3 :) R3 Wigner coefficients 

The coefficients which effect the transformation be
tween the EAMA and JeLM schemes are known.23 [The 
choice made in Eq. (3) requires that an additional factor 
of 2L + 1 be included in evaluating Eq. (35) of Ref. 23. 
In addition, including the phase factor (i)"l+lr:J in the de
finition of I G) makes the coefficient real.] Explicitly, if 

I (GE)JeLM) == L; (G I (GE)JeLM) I G), (24) 

then 
g 

(G I (GE)JeiLM) == L; O;j(G I (GElKjLM), 
j~i 

(25) 

X «;\21-1-2)E2A2; (A31-1-3)E3A311 (A23J.123)E23A23)P23 

x U(A1 A2AA3; A12 A23). 
where 0;. is the orthonormalization matrix of Eq. (6) and 

(22) (G I (GE)KLM) is the inner product of a state I G) [defined 
by Eq. (2)] with a state I (GE)KLM) [defined by Eqs. (3)
(4)]. The parameter gin Eq. (24) is used to denote the 
subgroup labels (g12,g22,gll ~ p,q,r) of G. In terms of 
summation (K'~ M,M ~ M' for reasons of symmetry), 

Fixing E 1 A1 == HW and EA == HW in this expression while 
letting A23 run over its range of allowed values yields a 

(GI (GHw)MLM') == C t (P) Sl(MJ..A'NJ,M') Sl(NAAMA == AM)S2(K' kK == kM'LM), 
y=o y 

C == (_ l)L-P(~) 2[(A)(Il) (A + Il + 1) ( 2L )/ ( 2L ) ( 2A' ) (P + Il + l)J 1/2 
2P P q q \L-M L-M' A'+MJ.. q , 

S2(K'kKM'LM) 

- 2k + ~ + 1 ~(- 1)" (L :M) (L ::,~ a) y( 1)8C; K') / (q + A + M/2 + ~~: !'/2 + a - ~ -J 
A' == (p + Il - q)/2, A == i\j2, k == (A + Il - y)/2, 

MJ..==r-A', 
Nf....==P - y- A', 
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K == k, 
K' == k - (A - P + Il - q). 

(26) 
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The corresponding expression for (G I (GLw)KLM) can be 
obtained by conjugation (see Sec.4). Note in particular 
that the overlap of two projected states required for a 
determination of the orthonormalization matrix 0ij' is 
given by 

(27) 

Since I G) differs from I (;\'J.L)EAMA) by at most an n i -

dependent phase factor and n}l) + nP.) = n/S>, it is con
venient to write 

(G1;G2IG3)P 

= «(;\'1J.L1)E 1 A1MA1; (;\.2J.L2)E2A2M~ I (;\. 3J.L3)E3 AsMAs)p • (28) 

The SU 3 ::::> R 3 Wigner coefficients are then given by 

«(G LE)J<:lL 1M 1; (G2E)J<:2L2M21 (G3E)J<:3L sM 3)P 

= L; (G 1 1 (G lE)J<:lL 1M 1)(G2 1 (G 2E)J<:2L 2M 2) 
8 18283 

X (G 3 1 (G3E)J<:3LsM3) (G 1; G2 1 G3) p. (29) 

An expression which is more convenient to evaluate from 
a computational point of view may be obtained by directly 
expanding the inner product 

«(G LE)J<:lL 1M 1; (G 2E)J<:2L 2M 21 (G 3E)K3L sM 3)p 

= «(GLE)J<:lL1M1;(G2E)J<:2L2M2Ip!~KsIG3E)P. (30) 

Making use of the fact thatR 3(r2) = R 1(O)R2(r2), the effect 
of the projection operator acting to the left can be deter
mined. Integrating over Euler angles by means of the 
Clebsch-Gordan series for rotation matrices then leads 
to the result 

«(GLE)J<:lL1M 1; (G 2E)J<:2 L 2M 21 (G 3E)K3L sM 3)p 

= L; (L 1M!; L2M21 LsK3)(G 11 (G LE)J<:lL 1M l'> 
81 8 2 

M{(Mi) 

x (G 2 1 (G2E)J<:2L2M2>(G1; G2 1 G3E )p 

x (L1M1;L2M2ILsM3). (31) 

Applying Eq. (5) to the 3-space yields the required SU 3 ::::> 
R3 Wigner coefficients. Note that the summation in this 
case is only over SU 3 ::::> SU 2 X U 1 Wigner coefficients of 
the type G3 = G , i.e., those which can be evaluated 
through Eqs. (17)-(18) without the use ofEq. (19). Clearly a 
factorization into the product of a reduced SU 3 ::::> R 3 
Wigner coefficient and an ordinary Wigner coefficient in 
R3 space is possible. Note that it is unnecessary an~ 
indeed redundant to fix the phase for the SU 3 ::::> R3 Wlgner 
coefficients independently of that already chosen for the 
SU 3 ::::> SU 2 xU 1 reduction. The orthonormality of the 
transformation coefficients between the two schemes 
guarantees a unique solution. In effect the choice is made 
by selecting positive roots in Eq. (6). 

4. CONJUGATION AND SYMMETRY PROPERTIES 

Since the S U 3 ::::> R 3 reduction is linked to the S U 3 ::::> 
S U 2 X U h reduction via the transformation coefficients 
of Eq. (24), it suffices to make a determination of the 
conjugation relationship and all symmetry properties for 
the S U 3 ::::> S U 2 X U 1 reduction only. The corresponding 
SU 3::::> R3 results follow from known relationships among 
the transformation coefficients between the two schemes. 

A. State conjugation 
The transformation coefficients (G I (GE)J<:LM) are the 

elements of a real unitary (hence orthogonal) matrix if 
I G) = (1)"1+":3 I (hi~»' where the I (hij» are st~l.tes .of the ~e 
defined by Moshmsky in terms of polynomIals m creatIon 
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operators acting on the vacuum.24 [The choice (it 2 I (hij» 
as suggested in Ref. 23 is also acceptable. In this case, 
however, the states would not transform according to 
conventional phasing under the <R2"' operation (1T-rotation 
about the 2 axis x time reversal) as defined by Bohr and 
Mottelson.25] The results given in Appendix A2 of Ref. 19 
for the adjoint irreducible representation can then be 
used to show that26 

IG)* = (- 1)p-r lG>, 
1 = J.L, jj =;\., 

P J.L q I E=-E q;:;\.=p =:> A=A 
r = p + J.L - q - r MA = - MA 

(32) 

Note thatp - r = t(;\. - J.L) - h - MA = r - P. The sign 
of MA differs from that of Hecht due to the choice MA = 
r - A of Eq. (1). [This choice allows the more natural 
correspondence (zxy) '" (312) rather than (zxy) '" (321) to 
be made between body-fixed axes x,y,z and the i,j 
labels of the Gel'fand scheme.] For G = GE Eq. (32) im
plies that in addition to;\. and J.L interchanging roles r = 
1 - I and J = 1 - J, where I and J are as defined by 
Table I; that is, under conjugation HW~LW and LW~ HW. 

To discover the conjugation properties of the 
I (GE)J<:LM) it suffices to know in addition to Eq. (32) the 
symmetry properties of the (G I (GE)KLM). By straight
forward but tedious substitution it can be shown that for 
the inner product of I G') with a state I (G)MLM') [de
fined by Eq. (3)], 

1. (G'I (G)MLM') * = (G'I (G)MLM'), 

2. (G'I(G) -M,L,-M') 

= (- 1)":3-n~+M-M'(G' I (G)MLM'), 

3. (G'I (G)MLM') = (- 1)n3-n3+M-M'(G I (G')M'LM), 

4. (C'I(G)MLM') = (G'I(G)MLM'), 

5A. (G'I (G)ML, - M') = (- 1)ni-n3+L+M(G' I (G)MLM'), 

5B. (G'I (G) - MLM') = (- 1tr ":i+L+M'(G' I (G)MLM'), 

6A. (G'(M.o1 (G)MLM') = (- 1)A'+M'/2(G'(- M,OI (G)MLM'), 

6B. (G'I (G(MA»MLM') = (-1)A+MI2(G'1 (G(-MA»MLM'). 
(33) 

Since J<: = K + 2n where n is integral, the symmetries 
apply directly to the (G I (GE)J<:LM) as well as the 
(G I (GE)KLM). Property 6 together with property 1 in
sures that the (G'I (G)MLM') vanish for either 2A' + M' 
or 2A + M odd. Properties 1, 5A, 4 can then be used to 
show that 

I (GE)J<:LM) * = (- W ... ,.,+L-M I (OE)J<:L, - M). (34) 

Note that GE = GHW (GLW) implies Eq. (4a) [Eq. (4b)] 
applies on the left whereas Eq. (4b) [Eq. (4a)] applies on 
the right. But since;\. and J.L also interchange roles, J<: is 
left invariant. 

B. Symmetry properties 

In Sec. 3 a prescription is given for a unique deter
mination, including phase, of all SU 3 ::::> SU 2 XU 1 Wigner 
coefficients. In terms of cp = ~1 + ~2 - ~3 + J.L1 + J.L2 - J.L;3 
which is even or odd as (~1 + ~2 - ~3 - J.L1 - J.L2 + J.L3)!3 
= P1 - r 1 + P2 - r 2 - P3 + r3 is even or odd, the corres
ponding symmetry properties are: 

Symmetry Properties of the SU 3 ::::> SU 2 x U 1 Wigner 
Coefficients 
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1A. (G1;G2IG3)p 

= (- 1)<P+P2-"2~dim(A3f..13)/dim(A1f..11)(G3; GZIG1)p' 

2A. (G1;GzIG~p = (-1)<P+T)max-P(Ol;Gz IG3)p, 

3A. (G 1;Gz IG 3) = (-1)<P(G Z;G 1 IG 3) ('I1max = 1 only), 

lB. (G 1;Gzll G3)p 
= (_ 1)<p+i(i'2-1'2>-i<2+Aa- Al 

x .Jdim(A3f..13)(2A1 + 1)/dim(A1il1)(2A3 + 1) 

x (G 3;G'zIlG3)p, 
2B (G l' G II G ) = (- l)<p+1)max-p+Al+~-Aa(G . G II G ) 

• ,Z 3 P 1> Z 3 p' 

3B. (G 1 ;Gz IIG 3)p = (-1)<P+Al+A2-Aa(GZ;G1I1G3) 

('I1max = 1 only). (35) 

Among these, the most important is Symmetry 1. Ex
pression (20) satisfies this relation, from which it 
foll~s that it holds for the coefficients (G 1 ; Gzi G 3) and 
(G3;Gz IG 1)p' A comparison of the expression for p 
(G 1 ; Gzi G 3)p ~iven by the right-hand side of Eq. (13) with 
that for (G 3 ; Gzi G 1) given by the right-hand side of Eq. 
(13') then sufficies by induction to establish the relation
ship for the general case. The validity of Symmetry 2, 
apart from phase, is a direct consequence of the sym
metric nature of the formulation under the operation of 
conjugation. The appearance of the phase factor in this 
case, however, is by no means obvious. The factor (- 1)<P 
is a direct consequence of Eq. (32). But, as already 
suggested,Z6 consistency requires an additional phase, 
~ = ± 1. ItJlas been determined that (G 1 ; Gzi G 3) = 
(- l)<P(Ol;GzIO~.I" i.e., g = + 1 for this special tariety. 
The general result, ~ = (- 1) nmax-P, then follOWS from re
cursion relation (13). An arbitrary resolution of the 
multiplicity would, in general, require a linear trans
formation among the p-Iabels on the right-hand side of 
each of Eqs. (35). The Significance of the "canonical" 
decomposition manifests itself in Symmetry 1 and Sym
metry 2, where such a transformation does not appear 
and the multiplicity label p is the same on both sides of 
the equations. This, however, is not the case for Sym
metry 3 because of the unsymmetric treatment of G1 and 
Gz and accounts for the restriction 'I1ma = 1, i.e., multi-
pliCity free couplings only. x 

Practical considerations may favor adopting a different 
phase convention.Z1 But doing so requires a modification 
in the phases for the symmetries of Eq. (35). For 
example, under the convention adopted by Hecht, namely 
requiring «(A 1f..11)LW; (AzJ.LZ)EZAz II (A3f..13)LW) > 0, the max p 
results can be summarized as follows: 
Symmetry 1 remains unChanged, Symmetry 2 holds with 
'I1max replaced by Pmax , Symmetry 3 is valid for Pmax = 1 
only. That is, in this particularly Simple case all that is 
required is for 'I1max to be replaced by Pmax throughout. 

The symmetry properties of the S U 3 ::J R 3 Wigner co
efficients can be obtained from those given above by 
using the results of Eqs. (33) together with Eq. (34). 

Symmetry Properties of the SU 3 ::JR3 Wigner Co
efficients 

1A. «(GlE )3<\ L1M 1; (G 2E)J<: zL zM zl (G 3E)J<:3L~ 3)P 
f.{J+A. +J.l +L +MJ • = (- 1) 2 2 2 2vdlm(A3f..13)/dim(A 1f..11) 

X «(G3E)J<:3L~ 3; (G2E)J<: zL z , - Mzl (G3E)J<:3L 3M 3)p 

2A. «G lE)J<: 1 L1M 1; (G 2E)J<:2 L ZM zl (G 3E)J<:3L # 3) p 
= (_ 1)<p+1)max- P+Ll+ L2- La 

X «(GlE)J<:lLl'- M 1; (G 2E)J<: zL z , - M 21 (G 3E)J<:3L 3' - M 3)P' 
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3A. «(G lE)J<:1 L1M 1; (G 2E)J<: zL zMz l (G 3E)J<:3L 3M 3) = (- 1)<p 

X «(G 2E)J<: zL zM z; (GlE)J<:1L1M d (G3E)J<:3L # 3) 

('I1max = 1 only), 

lB. «(G lE)JC 1L 1; (G 2E)J<: zL 2 11 (G3E)J<:3L~p 
= (_ 1)<P+A2+1'2+Ll+L2-La 

X )dim(A3f..13)(2L 1 + 1)/dim(A1il1)(2L3 + 1) 

«(G 3E)J<:3L 3; (OzE)J<:zLzll (G lE)J<:lL l)P' 

2B. «(GlE)J<:lL 1; (G2I)<"~zLzll (G3E)J<:3L3)p = (- l)<f+1)max-P 

X «(GlE)J<:lL1; (G2E)J<:zLzll (G3E)J<:3L3)p, 

3B. «(GlE)J<:lL 1; (G 2E)J<: zL z ll (G 3E)J<:3L 3) = (- 1)<P+Ll+L2-La 

X «(G2E)J<:2LZ; (GlE)J<:lL111 (G3E)J<:3L3) 

('I1max = 1 only). (36) 

Again, under the convention of Hecht, these relations hold 
if TJ max is replaced by Pmax throughout. 

5. CONCLUDING REMARKS 

The techniques described above developed as an out
growth of the need for an advanced S U 3 technology in 
shell model calculations for light nuclei assuming 
general two-body effective interactions.Z7 Machine codes 
based on the results are therefore available. Z8 They allow 
a numerical determination of S U 3 ::J S U 2 X Uland S U 3 

::J R 3 Wigner coefficients as well as S U 3 Racah co
efficients to be made for arbitrary couplings and multi
plicity. 

Although the emphasis in the present article has been 
on the practical aspects of calculating SU 3 Wigner and 
Racah coefficients, it is quite pOSSible, and indeed likely, 
that the build-up process using the group generators can 
be applied to the r s Wigner operators of Biedenharn and 
Louck and co-workers for the couplings (A1J.Ll) x (~2jlZ) 
~ (A3f..13)' P = 1,2, .•. ,Pmax to obtain the full set of 
Wigner operators for the coupling (A1J.Ll) x (AzJ.LZ) ~ 
(A3f..13)' Because of nonorthogonality, however, it is not 
clear that a simple interpretation of the structure of the 
operators in terms of geometrical properties of the so
called arrow patterns will be possible. Nevertheless, 
since our purpose in the present article is to avoid the 
luxury of mathematical sophistication the validity of such 
conjectures must be relegated to a later work. 
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Linear integral transformations generated by the 
three-dimensional neutron transport kernel 
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Two theorems are established by which the theory of linear integral transformations in a Lebesgue 
space L p(D), p ~ I, can be appropriately extended to solve linear integral equations with kernel of 
nonfinite double norm with respect to the considered L /D). An application of these theorems to a 
physical problem of three-dimensional neutron transport theory is illustrated. 

1. INTRODUCTION 

Letx,y == (xl>'" ,xn;Yl>'" ,Y n) ED, where D is a 
Lebesgue measurable domain (of infinite or finite mea
sure) of the Euclidean n-dimensional space R n , with 
Lebesgue measure dx = dx l " ·dxn • 

We consider the linear integral equation 

f(X) =g(x) + 1 k(x,y)f(y)dy, 
D 

where f(x), g(x), and k(x,y) are Lebesgue measurable 
functions on D, D, and D x D, respectively. 

(1) 

It is well known (see, for instance Ref. 1) that the 
existence and the uniqueness of the Neumann series 
solution j(x), of Eq. (1), can be proved by resorting to 
the theory of linear integral transformations in a 
Lebesgue space Lp(D) (p .. 1), provided the free term 
g(x) E L p(D) and k(X, y) is an element of the Banach 
space Np(D), that is,k(X,y) is of finite double norm 
III K Ilip with respect to the same Lebesgue space L p(D) 
which g(x) belongs to. The double norm is defined as l 

III k IIlp = II II k(x,y)llqllp ={ 1n[~ I k(x,y) IqdY] P/qdX}l/P (2) 

for any pair of real numbers p, q .. 1 such that 
I!P+l!q=1. 

In this paper we study Eq. (1), where the free term 
g(x) is still taken to be of class Lp(D), in the anomalous 
case when the kernel k(x,y) is not any longer of finite 
double norm with respect to Lp(D). Our theory does not 
exclude however the case when the kernel k(x,y) is of 
finite double norm with respect to a Lebesgue space 
L p ,(D), whose index P' is different from the index p of 
the space L p(D), which the free term g(x) belongs to. 

The main feature of the theory is to replace the hypo
thesis that the kernel k(x, y) of Eq. (1) is of finite double 
norm by imposing on it appropriate sufficient conditions. 
These conditions constitute the body of two theorems, 
by which the nature of the transformation 

Tf = 1 k(x,y)f(y)dy, 
D 

(3) 

generated by the kernel k(x, y) of Eq. (1), can be explici
tly investigated. Thence it can be shown that the exis
tence, the uniqueness, and other properties of the solu
tion of Eq. (1) can be again established via the Neumann 
series representation, as usually done in the case when 
both the free term and the kernel of Eq. (1) belong to 
Banach spaces of same index p . 

We shall present at the end of the paper an applica
tion of the theory to a problem drawn from three
dimensional transport theory for monoenergetic neu
trons. 
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2. A FIRST THEOREM 

We suppose that the kernel k(X,y) and its adjoint 
k*(X,y) = k(y,x) are of finite double norm with respect 
to Lao (D), that is we have 

1I k (x,y)ldX:SA<00 
D 

(4a) 

for almost every y ED, and 

1 I k(x, y) I dy :s B < 00 
D 

(4b) 

for almost every xED. 

Then the following theorem holds. 

Theorem 1: The transformation 

T f = 1 k(x, y)f(y)dy, 
D 

(3) 

whose kernel satisfies the conditions, Eqs. (4a) and (4b), 
is a linear integral transformation of Lp(D) into Lp(D), 
and it is bounde~and therefore continuous-with 

IITllp:S Al/PB1-l/P, 

for any 1 :s p :s 00. 

Proof: We consider first the case that p = 1. If 
f(X) ELl (D) we get 

IITflll:s 1 dX 11 k(x,y)1 lj(y)1 dy 
D D 

(5) 

= jlf(.Y)1 dy 11 k(x,y)1 ax :s Allfll l , (6) 
D D 

where the change of the order of integration is permis
sible by Fubini's theorem for measurable nonnegative 
functions. 

We consider then the case that p == ce. If fix) E Lao (D) 
we get 

II Tflloo = ess. sup. I Tf I :s ess. sup.jl k(X,y) I I f(y) I dy 
xED xED D 

:s Ilfll ess. sup. 1 I k(x,y) I dy :s Bllfll , (7) 
ao xED D ao 

where by the essential supremum we mean the upper 
bound of a function apart from a set of zero measure. 

We turn now to the general case 1 < p < 00. If 
f(x) E L p(D) and q > 1 is a real number such that 

I!P+1!q=1, 

we rewrite Eq. (3) as 

(8) 

I Tfl:s 11 k(x,y)ll/plf(y)1 I k(x,y)ll/qdY. (9) 
D 

We realize that I k(x,y) Il/p I f(y) I is p-summable on D, 

Copyright © 1973 by the American Institute of Physics 1913 
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as it can be deduced from the preceding case p = 1, 
whereas I k(x, y) III q is, by definition, q- summable on D. 

By HOlder's inequality we thus obtain 

I Tfl '" Bl/q ~ I k(x,y)1 I f(y) IPdY] lip (lOa) 

for almost every XED, and then 

II Tfllp '" B1Iq[~ dX ~ I k(x,y)1 If(Y)IPdY] lip 

"'B1Iq[~lf(Y)IPdY ~lk(x,Y)ldX TIP 

'" A11PB11qllflip' (lOb) 

Combining the result of Eq. (lOb) with those of Eqs. (6) 
and (7) shows that the transformation T is a linear 
integral transformation of L p(D) into L p(D) for any 
1 '" P '" ex). 

Furthermore, for f(x) is arbitrary, from Eqs. (6), (7), 
(8), and (lOb) there follows that T is bounded, according 
to Eq. (5). As a function of 1 '" P '" ex;, the norm II T II P 
is always bounded by Ao = max{A,B}. 

If the kernel k(x,y) of Eq. (1) is self-adjoint, then 
A = B. As a consequence of this theorem we have: 

Corollary: Every kernel k(x, y) satisfying condi
tions (4a) and (4b) has the property (P) with respect to 
Lp(D), with 1 '" P '" ex;, that is 

(11) 

for every f(x) E Lp(D). 
The proof of the corollary is trivial. 
We recall that! the property (P) guarantees the exis
tence of the iterated kernels 

kn(x,y) = Iv k(x,z)k n_1(z,y)dz (n = 2,3,···) (12a) 

with k 1 (x, y) = k(x, y), each of them having the property 
(P) with respect to L p(D), and, furthermore, 

(12b) 

How Theorem 1 can be generalized is next shown. 

3. A SECOND THEOREM 

We suppose now that for some real number P' > 1 
the kernel k(x, y) of Eq. (1) is such that 

for almost every y ED, and 

[Iv I k(x,y) I P'dY] lip' '" B p' < ex) 

for almost every XED. 

(13a) 

(13b) 

We notice that, if D is of finite measure, Eqs. (13a) 
and (13b) are conditions sufficient for the kernel k(x, y) 
and its adjoint to be of finite double norm with respect 
to Lq ,(D), with q' = p '/ (p' - 1). 

The following theorem is in order. 

Theorem 2: For any real number p such that 

lip + lip' ;:. 1, (14) 
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the transformation 

Tf= Iv k(X,y)f(y)dy, (3) 

in which the kernel k(x, y) obeys conditions, Eqs. (13a) 
and (13b), and fix) E L p(D), is a linear integral transfor
mation of Lp(D) into Ly(D), with 

l/r = l/p + l/p' - 1. (15) 

There results also that 

(16) 

Proof: We consider first the case thatp' = 1. Then 
r = p and Theorem 1 applies. 

When l/p + lip' = 1, r = ex) and q' = p. Then 

IITfll = ess sup I Tfl 
00 xED 

'" es~ sup 11 I k(x,Y)IP'dY] l/P:[1 I f(y) I q'dyl1/q' 
xED [D D J 

(17) 

When p' = ex), we have p = 1 according to Eq. (14). Then 
the result is still given by Eq. (17), with p' = ex; and 
p=1. 

Thus there remains to consider the case that 
1 < p' < ex), l/p + l/p' > 1, from which 1 < r < ex). We 
rewrite Eq. (3) as 

I Tfl ~ 11 k(x,y)lp'lrlf(y)lplY 
D 

I k(x,y) I p'(llp'-l/r) I f(y) I P(l!P- 1/ r )dY. (18) 

We realize that I k(x, y) I p' I y I f(y) I pi y is r- summable 
on D by virtue of Theorem 1, whereas I k(X,y) I p'(1lp'-l/r) 
and I f(y) I p(lj p-1/r) are, by definition, (1/ p' - 1/ r)-L 
sum mabie and (l/p - l/r)-Lsummable on D, respec
tively. Now 

1 + -.!.. - 1. + 1 _1 = 1 (19) 
r p' r p r 

as follows from Eq. (15). 

Then, by a two-fold application of HOlder's inequality 
we get 

I Tfl '" B$;(1!P'-1/ r )lIfll$(1IP-1/ r ) 

x [fv I k(X,Y)lP'lf(Y)IPdY] 1/r (20a) 

for almost every xED, and then 

IITfily '" B$;(1!P'-1/r)lIfIW1IP-1/r) 

[~ I.t(y) I Pdy Iv I k(x, y) I P'dX] 1/ r 

'" A$;lrB}~p'lrllflip. (20b) 

Combining the result of Eq. (20b) with those expressed 
by Eqs. (17) and (18) proves the tlieorem. 

Examples of known kernels which satisfy conditions, 
Eqs. (13a) and (13b), are the following ones: 

(i) The convolution kernels, that is, kernels of the type 

k(x,y) = ko(x - y), (21a) 
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where k rJx) is a function p' - summable on D, being D the 
entire space Rn· 

In fact, 

We observe then that the convolution kernels are not of 
finite double norm. 

Theorems for the existence of convolution integrals 
as 

(21c) 

can be found in Ref. 2 for various specializations of 
the functional spaces which koex) andj(x) may belong to. 

(ii) The kernels with weak singularity, that is, kernels 
of the type 

k(x,y) = t(X,y)/1 x - y la. (22) 

Now D is a domain of finite diameter t:.., t(x,y) is a 
function which is bounded almost everywhere on D x D, 
with I t(x, y) I <s C, and a is a real number smaller than 
n. In fact, 

[1 1 k(x, -) I p' dX]l! p' <s C [1 1 dX]l! p' 
D Y dy D I x-51 lap' dy 

<s cis 1
1!p' [fa t::. r n- 1- ap 'dr] 1! p'. (23a) 

where I S 1= 21T n!2/r(n/2) is the surface area of the 
hyper sphere S with radius unity. If now n - 1- ap' > 
- 1, that is, p' < n/ a, then Eq. (23a) reduces to 

[l lk (x,Y)IP' d:]l!P' <s CiS 1 1!p,[t:..
n

-
ap

']1!P', (23b) 
D dy n-ap' 

which shows·that the kernels of the type as in Eq. (22) 
belong to the class of kernels satisfying conditions 
(13a) and (13b) when 

1<sp'<n/a. (23c) 

4. AN EXAMPLE 

As an example, we pass now to consider a three
dimensional problem of monoenergetic neutron trans
port theory. 

In this problem the unknown f(x) of Eq. (1) is the 
neutron total flux in a body occupying a measurable 
domain D c R3 of finite diameter t:... 

If the material the body is made of is inhomogeneous, 
that is, its total and scattering-fission macroscopic 
cross sections 1: and 1: sf' respectively, are bounded 
real nonnegative measurable functions of the point 
51 E D at which neutrons are isotropically produced 
by scattering and fiSSion, then for the kernel k(x,y) 
of Eq. (1) we have 

_ _ _ e-T (x.y) 
k(x,y) = 6 s f (y) 1_ -1

2
' (24) 

41T x - y 
where 

lx- yl ( x - y ) 
r(x,y) = 10 6 '.'¥ - I x _ y I u du (24') 

is the optical distance between x and y. 
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The unsymmetric function k(x, y), Eq. (24), represents 
thus a kernel with weak singularity, according to the 
definition of Eq. (22). 

For the free term g(x) of Eq. (1) we may write 

e- T (X. xl) 
= Q1 , 

41T I x - X 112 
(25) 

if we refer to the case when an isotropic delta-like 
source of intensity Q 1 is localized at the point xl ED. 

We observe that g(x) is a real positive measurable 
function on D, and it is bounded in any subset of D which 
does not include the point xl. 

The problem [Eqs. (1), (24) and (25)], which accounts 
for the mathematical constraints due to both the nuclear 
heterogeneity of the body and the singularity of the 
source, has not been investigated up to now in all its 
implications. How the theory of Secs. 2 and 3 succeeds 
in treating this typical problem of neutron transport 
is now shown. It is first recognized that the free term 
g(x), Eq. (25), belongs to L'p(D), with 1 <s p < 3/2, where
as the kernel k(x,y), Eq. (24), belongs to Np,(D) with 
p' > 3, as it is of finite double norm III Kill p" Eq. (2), 
with respect to L p,(D) with p' > 3. (For the details of 
these calculations compare Ref. 3). 

We are thus led to consider the case-mentioned in 
the Introduction-when the free term and the kernel of 
Eq. (1) belong to Banach spaces with different indices 
p and p'. If P and p' are taken to be such that 1/ p + 
1/ p' = 1, the spaces L p(D) and L p,(D) are then com
plementary. 

The situation now to be faced is that the application 
of the transformation T with kernel k(x, y) E N p' (D) to 
a function h(x) E Lp(D) no longer guarantees in general 
that the resulting function will still be of class L p(D). 
The solution of Eq. (1) via Neumann series representa
tion then becomes impracticable. 

But this difficulty can be overcome by straightforward 
application of Theorems 1 and 2. We begin with Theorem 
1. The kernel k(£,y), Eq. (24), satisfies all the hypo
theses of Theorem 1. In fact, by overestimating the 
function k(x, 51) by means of the inequalities 

6 Sf(£) <s 6~:x < 00,' 6(X) '" ~min '" 0, 

we get 
-1: . t::. 

1- e mIn 
A =B = 6~;X =----'-----

6 min 

for 6 min > 0, and 

A =B = 6~~xt:.. 

(26) 

(27a) 

(27b) 

for 6 min = 0. There results thus for the norm of the 
transformation T, defined by Eq. (3), 

(28) 

for any 1 <s P <s 00. 

Then Tg is of the same class Lp(D), with 1 <s p < 3/2, 
which g(x), Eq. (25), belongs to. The same is true for the 
general term Tng, with n > 1, where Tn denotes the 
linear integral transformation defined by Eqs. (12). 
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We can then build up the Neumann series associated 
to Eq. (1), namely 

00 

f*(x) = g(X) + S Tng, 
n=l 

(29) 

whose convergence in norm of L p(D), for any index 
1 ,;;; p < 3/2, is guaranteed, according to the Riesz
Fisher theorem, by the completeness of the Lebesgue 
spaces, once the Cauchy condition 

~ 
lim II S Tngll p = 0 (30) 

k.I-OO n=I+1 

is satisfied. 

By using well-known inequalities, Eq. (30) can be 
rewritten as . 

k k 
lim II S Tngllp';;; lim S /lTngllp 

k,I-OO n=I+1 k.l-oo 11=1+1 
k 

,;;; lim S II Tnllp/lgll p 
k.I"'oo n=I+1 

" ,;;;lIgll p lim S IITII~, (31) 
k.I-OO 11=1+1 

where 1 ,;;; p < 3/2, as required in the present context. 
From Eq. (31) we infer that the Cauchy condition, Eq. 
(30), is satisfied if 

II TIIp < 1, (32) 

which thus represents the condition. sufficient for the 
Neumann series

7 
Eq. (29), to converge in the mean of 

index 1 ,;;; p < 3 2 to a function f*(x) E L p(D). 

This sufficient condition is satisfied a fortiori for 
any 1 ,;;; P < 3/2 when 

-~ . t:" 
A = L)max 1-e nun < 1 

sf L)min 

for L) min > 0, or when 

A = L)~~x ~ < 1 

for L)min = O. 

(33a) 

(33b) 

Equations (33) relate thus the convergence of the 
Neumann series to the nuclear and geometrical charac
teristics of the body under examination. 

That j*(x), Eq. (29), is a solution of Eq. (1) follows 
from the continuity of the transformation T. Apart 
from a set of zero measure it is also the unique solu
tion of Eq. (1). In fact, if f**(x) were another solution 
of Eq. (1), one may write 

f* - f** = T(f* - f**) 

and, therefore 

(1- IITllp)iif*- f**lIp';;; 0, 

which implies 

IIf* - f**llp = 0, 

according to Eq. (32). 

(34a) 

(34b) 

(34c) 

The results quoted above for the existence and for 
the uniqueness of the solution of Eq. (1) via Neumann 
series representation hold also when the free term 
g(x), Eq. (25), is generalized as 
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that is, when a finite number N of isotropiC delta-like 
sources-of intensity Q1' ••• ,Q n-are localized at the 
points xl' ... , X n in the interior of D. 

The specialization to the case of a homogeneous body, 
that is, when cross sections are independent of position, 
is also immediate. In this case the kernel k(X, y), Eq. 
(24), becomes Simply 

-~IX-yl 
k(- -)' '" __ e __ --:

x, Y = LJ sf 41T I X _ Y 12 ' (36) 

which is a self-adjoint kernel with weak Singularity, 
according to the definition of Eq. (22). It is not a kernel 
of convolution type like in Eq. (21l1,), as the domain D is 
not coincident with R 3 • 

The free term g(X), Eq. (25), becomes instead 

-~I:t-Xll 
g(x) = Q

1 
_e __ _ 

41T 1 x - x 112 

As a comment on the application of Theorem 1 we 
underline the following two points: 

(37) 

(i) For the case of the homogeneous body, that is, for 
the problem represented by Eqs. (1), (36) and (37), an 
alternative to the present method is the one proposed 
in a previous paper, 3 where the domain D is specialized 
as a sphere, cylinder or parallelepiped, and consists 
of subjecting both sides of Eq. (1) to a three-dimension
al infinite Fourier transform of vector 13. To do this 
the original domain D is first mapped into the three
dimensional Euclidean space R3~by supposing that the 
body is surrounded by a purely absorbing material 
occupying the residual infinite space R~ - D. The 
macroscopic absorption cross section D! of this 
external material is taken to be equal to the total mac
roscopic cross section L) of the body. 

The details of this procedure can be found in Ref. 3 
(for a similar approach see also Refs. 4 and 5). This 
procedure amounts just to a sort of regularization of 
E~ (1), as it can be verified that the Fourier transform 
g(B) of g(x), Eq. (37), and the kernel f(B,I3') of the result
ing transformed equation for the transform fCB) of the 
solution f(X) of Eq. (1) belong to L p(R 3 ) and N p(R 3 ) with 
the same index p > 3, respectively. 

Thus the theory of linear integral equations with 
kernel of finite double norm can be exploited for proving 
the existence and the uniqueness of f(B) via Neumann 
series representation. Then one is left with the task 
of casting f(13) in a form suitable for the final inver
sion.3 

(ii) For the case when the source is not any longer. an 
isotropiC delta-like source, but it is distributed through
out the inhomogeneous body and is represented by a 
bounded real nonnegative measurable function Q(f) for 
xED, the free term g(f), Eq. (25), becomes 

-T (X,y) 

g(x) = Iv Q(y) 4: I x _ Y 12 dy, (38) 

which is bounded on D and belongs to any Lebesgue 
space L p(D) with p "" 1. 

In this case the problem [Eqs. (1), (24) and (38)] can 
again be handled in the frame of the usual theory of 
linear integral equations with kernel of finite double 
norm. There results that the conditions sufficient for 
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the Neumann series to be convergent are just the same 
as the ones already expressed by Eqs. (33a) and (33b), 
and the solution f(x) of Eq. (1) is bounded on D.3 More
over, the solution can be given a practical representa
tion by resorting to a suitable polynomial degeneration 
of the kernel kVi, y), Eq. (24). 

It is then understood why the problem, Eqs. (1), (24) 
and (25), requires a treatment ad hoc, as worked out in 
the present investigation. In fact it is at once realized 
that: 

A Fourier transform regularization like in the 
homogeneous case (i) cannot be performed because of 
the functional structure the kernel k(x,y), Eq. (24), 
assumes as a consequence of the nuclear heterogeneity 
of the body; 

As will be shown later on, the solution fVi) of Eq. (1) 
is not any longer bounded on D, as in case (ii) of a dis
tributed source, because of the singularity of the free 
term gVi), Eq. (25). We know only that f(x) is L p(D) 
with 1 .;; p < 3/2. This latter circumstance prevents 
for now constructing a practical solution of Eq. (1) via 
kernel degeneration. 

We conclude by turning to Theorem 2. We see that 
k(x, y), Eq. (24), satisfies conditions, Eqs. (13a) and (13b), 
with 

1.;; p' < 3/2 

as follows from Eq. (23c). Then 

4/3 < l/p + lip' .;; 2 

and thus, from Eq. (15), 

1.;; r < 3. 

(39a) 

(39b) 

(39c) 

Hence Tg, where g is L p(D) with 1 .;; p < 3/2, belongs 
to Ly(D), with r given by Eq. (39c). 

By repeated application of Theorem 2 it is easily 
inferred that: 

T2g is Ly(D), with 1 .;; r < <Xl; 
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T 3 g and furthermore continuous on D, as 
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the kernel, Eq. (24), is completely continuous 
in the Mikhlin sense, if ~ (y) and ~ 8f(Y) 
exhibit at most a finite number of disconti
nuity surfaces.3 

If we recall that the general term Tng of the Neumann 
series represents the flux of neutrons which have under
gone n collisions in the interior of the body before 
reaching the point x, it is clear that the effects of re
peated application of the transformation T to the virgin 
flux g(x) amount-as physically expected-to equalize 
the neutron distribution and to smooth out rapid fluc
tuations starting from the singularity g(x) shows at the 
point at which the source is localized. 

The Neumann series is thus verified to converge in 
the mean of index r to a functionf(x) E Lr(D), with at 
most 1 .;; r < 3/2, which is the unique solution of Eq. (1), 
whenever Eq. (33a) or Eq. (33b) is satisfied. 

By the same procedure the series 
00 

hVi) == S Tng 
n=4 

(40) 

is seen to converge uniformly to a bounded continuous 
function, as II T 1100 < 1 according to Eqs. (33) and (28). 
The solution fix) of Eq. (1) is then the superposition of 
h(x), Eq. (40), and of the function g + Tg + T2g + T3g , 
which belongs only to a Lebesgue space L p(D), with 
1 .;; p < 3/2, and is not bounded on D. 

The solution f(x) of Eq. (1) is thus no longer continu
ous and bounded on D. 

1 A. C. Zaanen, Linear Analysis, (North-Holland, Amsterdam, 
1964). 

2 U. Neri, "Singular Integrals" in Lecture Notes in Mathematics 
(Springer-Verlag, Berlin, 1971). 

3 V. C. Boffi, F. Premuda, and G. Spiga, Math. Phys. 14, 346 (1973). 
4 K. M. Case and R. D. Hazeltine, Math. Phys. II, 1126 (1970). 
5 K. M. Case and R. D. Hazeltine, Math. Phys. 12, 1970 (1971). 
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A proof is presented that a nontras1ationally invariant system of classical n -dilUensional spins 
approaches in the limit n ... ao a suitable generalized spherical model. 

1. INTRODUCTION 

It has been observed 1 that the spherical model2 can 
be considered as a limit of infinite spin dimensionality 
(n ~ cx:). A rigorous proof of this fact was recently given 
by Kac and Thomson,3 who showed, moreover, that the 
result was independent of the order in which the thermo
dynamical limit (number of spins, N ~ 00) and the infinite 
spin dimensionality limit are taken. Their analysis is 
restricted, however, to translationally invariant inter
actions. 

In the present note it is shown'that an analogous 
theorem can be proven for nontranslation invariant 
interactions. It turns out that the limiting model in 
this case is not the usual spherical model but is, rather, 
a more general model with multiple spherical con
straints. In the case of periodic interaction this model 
is similar to the so- called "m - spherical model" dis
cussed by Mazo. 4 The proof that will be given is essentially 
an adaptation of the proof of Kac and Thomson to the 
present case, parts of their proof have, however, been 
Simplified. 

Situations in which the present result may be of in
terest include the study of finite size effects and impuri
ties. Recent results 5 indicate that there is a discre
pancy between the shifts in critical temperature due to 
a finite size when calculated respectively for "fixed 
spin" models or for the spherical model. The present 
result suggests that this discrepancy might well dis
appear if the shifts were calculated for the generalized 
spherical model considered here. 

Another instance in which the present results apply 
is that of an antiferromagnet in a staggered magnetic 
field. The properties of the generalized spherical 
model obtained in this case have been explicitly cal
culated.6 

2. INFINITE SPIN DIMENSIONALITY LIMIT 

Consider a lattice of N spins, interacting through a 
coupling - p;)N). Assume that the eigenvalues of these 
matrices are uniformly bounded in N. In the case of a 
nontranslation invariant interaction we extend the notion 
of a spherical model in the following way. Define a 
partition function Q N by 

Q N{f3; Z l' " ., Z N) == f .~. f 
-00 

exp(~ «(3p, .(N) - <'5. ·z .)5 s.) d5 I" • d5N • (2.1) 
. .~.) 1..) I 1,. J 
',) 

This definition applies, of course, only in a region D 
where the H spherical fields" z. are large enough to 
ensure that the quadratic form) in the exponent is strictly 
negative definite. The spherical fields are then to be 
determined by the individual spherical constraints, 
which are 
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The following argument shows that these equations 
indeed determine the spherical fields uniquely as a 
function of (3 and N. Consider the function 

F N{f3;zl' ,,,,ZN) == InQN + ~ z·. (2.3) 
j ) 

Some reflection shows that this function approaches 
+ 00 everywhere at the boundary of its definition region 
D. Moreover, the function is jointly convex in the Zj 

and everywhere differentiable with nonconstant deriva
tives. Consequently, it has a unique minimum which is 
just determined by the relations (2.2). 

Upon denoting the solutions of (2.2) by z1{f3), we may 
define the limiting" spherical" free energy density by 

f(j3) = limN-IF~; zf«(3), ••• , z~(3». (2.4) 
N-oo 

In view of the discussion above, one can equivalently 
write 

j{f3)=limN-l min FN{f3;zl> ... ,zN)' (2.5) 
N-OO {z.L"",zN}ED 

We stress that the minimum is to be taken before the 
limit N ~ 00. 

In the case of a periodic interaction it is clear from 
the uniqueness that it suffices to satisfy (2.2) for the 
spins of a unit cell, hence reducing the number of inde
pendent spherical fields drastically. One can then use 
the periodiCity of the interactions to obtain a partial 
diagonalization of the quadratic form. This leads (for 
the periodic case) to a proof of the existence of the 
limits (2.4) or (2.5) showing, in fact, that the processes 
of taking the limit and finding the minimum may be 
interchanged in (2.5). The proof rests essentially on 
the observation that the conditions (2.2) prevent the 
spherical fields from approaching the boundary of the 
region D too fast in the limit N ~ 00. We shall omit 
the details of the proof since it is not directly relevant 
for the rest of our discussion. 

Notice further that, for a periodic interaction, one 
can also write (2.2) equivalently as 

( 6 5~\ =::: N p , for all P, 
jEP )1 

(2.6) 

in which the sums are to be taken over sublattices P 
of sites equivalent under the periodicity. Evidently, 
N P is the number of those sites in a sublattice. In this 
way the spherical constraints involve averages of 
macroscopic quantities. It can thus be demonstrated2 - 4 

that in the thermodynamic limit one can equally well 
replace these average constraints by the strict con
straints 

~ S~ =Np , for all P. 
jEP J 

(2.7) 

These remarks apply also for the systems of finite 
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thickness, treated by Fisher and Barber, 5 since these 
can be considered as a special case of periodicity. 

The theorem we want to prove can now be formulated. 

Theorem: Let the partition function of a system of 
n- dimensional spins of length n 1/2 be defined by 

Z'!l(j3) := J .. • J exp(~ (3p;./N)S;· Sj\dS 1" ·dSN, (2.8) 
ISjl~nl/2 1.1 ') 

then, with f((3) as in (2.4), one has 

lim (Nn)-l lnZ~((3) == f(J3), (2.9) 
N, n-.o<J 

whenever the limit (2.4) defining the spherical free 
energy exists. This is true independent of the order in 
which N and n tend to infinity. 

To prove this result, notice first that the addition of 
a constant times the unit matrix to the interaction 
merely results in the subtraction of (3 times this con
stant from both sides of (2.9). In view of the lower 
bound that we assumed on Pi .. (N) one can always choose 
this constant so that the resulting matrices become 
positive definite. In the following we can, without loss 
of generality, hence assume that p;)N) is positive 
definite. 

It is useful to define a more general form of the 
partition function for a system of n-dimensional spins 
by 

Z'!l((3; Al> ... , AN) := J ••• J 
ISj 1= n1l'iAj 

xexp(~ (3p;)N)S;,Sj\dS 1"'dSN• (2.10) 
1,1 ') 

Direct calculation yields 

J.:. J[Z~((3;Al>'" ,AN) exp(- i nZlr)]aA1" ·dAN 

= n-N/ 2Q N((3; Z l' ••• , Z N)n. (2.11) 

By a trivial regrouping of terms this can also be written 
as 

J.:. J [Z1.((3;A1>'" ,AN) exp (- i nZJAr)] 

x exp(- (1T/2) i Ar) dA 1" • dAN 

== n-N/2QN((3;Z1>'" ,zN)n, 

in which z; == Z j - (1T/2n). 

(2. 12) 

When the term inside the braces is replaced by its 
maximum the remaining integral is unity and one con
cludes 

n-N/2QN((3; Z l' ••• , Z N)n 

:s max [Z'MfJ;A 1, ••• ,AN) 
O~\ ..... AN<ao 

x exp(- n i ZJAr)] . (2. 13) 

Upon taking logarithms one obtains 

-< max (Nn)-11nZ1.((3;A1, ••• ,AN) 
0-\ ..... AN<OC) 

- N-1 L) Z .A? + 1T(2nN)-1 L) A2 
j 1 1 j j 

+ (2n)-1 Inn) 2: N-1 lnQN((3; Z l' .•. , Z N)' (2.14) 
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By adjusting Z 1> ... , Z N the maximum can be made to 
occur at any set of positive values of AI' •.. , AN' Speci
fically one can find values zl, ... ,z~ for the spherical 
fields such that the maximum occurs at the point 
Al == 1, .•. , AN = 1. The value of the maximum at this 
point is a finite number; consequently, QN((3; zt, ... , zX,) 
must be finite and hence zl, ... ,zll ED. For these 
special values the inequality takes the form 

(Nn)-l lnZ~((3) + En 2: N-1 lnQN((3; zt, ... , Z~) 
+ N-1 L) zj, (2.15) 

in which 
1 

(2.16) 

The result of taking the minimum of all allowed Z j 

values on the rhs can only be the sharpening of this 
inequality. Together with the definition (2.3) this yields 

(Nn)-llnZ~) + En 2: min N-1FN((3;zl' ""ZN)' 
{zl· .. ··zN}ED 

(2.17) 

Notice that, by taking n large, En can be made arbitrarily 
small uniformly in N. 

The next step is to prove a similar but reversed in
equality. In order to do this, consider the well- known 
identity 

exp ((3 ~ p;)N)S;.S; 
1,1 1) 

== [detp . . (N)]-n/2 (21T)-Nn/2 J. ':'. J dx ..• dXN 1.1 _OC) 1 

X exp(- ~ ~ [Pij(N)xi'xjT+ ((2f,) ~ Si·x0, 
•• J I ') 

(2. 18) 
which is valid for any positive definite p(N) and n
dimensional vectors Sj' With the help of this relation 
one can rewrite the formula (2.8), defining Z~, in the 
form 

Z1.((3) == [detp;,/N)]-n/2(21T)-Nn/2 J. ':'. J dX1" ·dxN -OC) 

x exp[- ~ H(P;j(N) - 6;,j/ Z j)X i ' xJ7 <P j «v'2I3)Xj ), 

(2.19) 
in which 

<Pj(Y):= J exp(S·.y)dS.exp(-y2/4z
j
). (2.20) 

lSI = nl!2 

The diagonal terms which have been added to p-1(N) 
are compensated by the exponential factor in the defini
tion of <P j' By passing to polar coordinates the integral 
defining <P j can be written 

An { exp(n1/2y cose)(sin28)ln/2)-ld8, (2.21) 

where An is the surface area of a (n - I)-dimensional 
sphere given by 

An == 2(1Tn)(n-1)j2/r(~- ~). (2.22) 

Replacement of the integrand in (2.21) by its maxi
mum, which occurs at a point 80 given by 

n 1/2y cos8 0 == (n/2 -1){- 1 + [1 + 4ny 2/(n - 2)2]1/2}, 

(2.23) 
yields the upper bound 

<p/y):s A nexp(n/2-1)(-1 + ln2 + [1 + 4ny 2/(n - 2)2]1/2 

- In{l + [1 + 4ny2/(n - 2)2]1/2}) - y2/ 4z j ]. (2.24) 
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Calculation of the maximum over all y of this bound 
readily yields an overall majorization on <I> j' namely 

(2.25) 

where 

E} == n-1(2 + 2 In2z j)' (2.26) 

Replacement of <I>j by this bound in (2.19) reduces the 
integral to a simple Gaussian integral. Some reflection 
shows that the quadratic form P ij(N) - 0 i. /3/z i is posi
tive definite whenever (3pi)N) - 0 i.jZ j is negative de
finite. Consequently, the integration can be carried out 
for all Z JED, yielding the upper bound 

Z~(J3):s; [defpijN)]-nI2{det[PijN)-1- 0i,;/Zj]}-n/2 

x (An)N exp (n/2) i (2z j - 1 - In2z j + Ej~. (2.27) 

Taking logarithms and multiplying the determinants 
yields 

(Nn)-l InZ~(J3) :s; - (2N)-1 In{det[ Z jO i,j - (3pi)N)]} 

+ N-l ~ Zj - ! - ! In2 + n-1 lnA n + (2N)-1 ~ E). 
J 1 

(2.28) 

We may use Stirling's formula for An to obtain for 
large n the result 

Calculation of the Gaussian integral defining 
Q N(J3; Z l' ••• , Z N) in (2.1) reveals that the logarithm of 
this integral is given by the first two terms of the rhs 
of the inequality above. On further recalling the defini
tion (2.3) of F N' the inequality takes the form 

(Nn)-l InZ~(J3) :s; N-IF N(J3; Z l' ••• , Z N) + (2N)-1 BE;. 
j 

(2.30) 
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Since this inequality applies for all Zj ED, one also 
has 

(Nn)-lInZ~) :s;N-l min FN(J3;zl''' "ZN) 
{zl·····zN}ED 

+ (2N)-1 B E~. (2.31) 
j J 

Consider now the expression (2.26) for the errors Ej 
calculated for the values of z· minimizing F N' i.e., 
Zj == zf(J3). From the fact thai PijN) is positive definite 
one easily derives the following lower bounds on F N: 

N-IF N(J3; zf(J3), ••• , z~(J3» 2: N-l ~ [z.f(J3) - ! Inzf(J3)] 
) 

> N-l ~ Inz.(V(J3). (2.32) 
j J 

The lhs of these inequalities converges by assumption 
when N -7~. Consequently, the rhs has to be bounded in 
N. It follows then that also (2N)-1~ j E:j is bounded in N 
and that in fact, since each term contains a factor n-1 , 

this sum can be made arbitrarily small for large n, 
uniformly in N. 

Combination of the inequality (2.31) with its reversed 
form (2.17) proves then the theorem. 
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Probability density function and moments of the field in 
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The problem of a plane wave normally incident on a slab of one-dimensional random medium is 
studied. The refr/lctive index variations of the random medium are taken to be a stationary 
Gaussian-Markov process. By employing an invariant imbedding technique and by using the Markov 
property of the refractive index variations, two cascaded diffusion equations are obtained for the 
probability density function of the reflection coefficient and the field in the slab. These equations are 
then solved approximately for small refractive index fluctuations and an expression is obtained for 
mean intensity in the slab interior. 

1. INTRODUCTION 

This paper is a study of wave propagation in a slab 
of one-dimensional random medium. The slab has width 
L; the medium inside the slab has a refr~ctive index 
variation n(x) = [1 + E~(x)]l/2, O:::s X:::S L .. We assume 
that ~(x) is a stationary Gaussian-Markov process with 
zero mean and exponential correlation l (Ornstein
Uhlenbeck proce~) and that E is a small parameter. 
The regions x > L and x < 0 are homogeneous regions 
with unit refractive indexes; and a plane wave is nor
mally incident on the slab from the region x > L. 

This problem has been the subject of a number of 
investigations which have appeared in the literature. 
The investigators have directed their efforts toward 
finding approximate expressions for the moments of 
various statistical quantities associated with the slab 
such as reflection coefficient, transmission coefficient, 
and the field. Gertsenshtein and Vasil'iev2 considered 
a medium composed of discrete random inhomogenei
ties. They found an expression for the mean square 
reflection coefficient in the limit as their discrete 
medium approached a continuum. Gazaryan,3 again 
using a discrete model, found expressions for the mean 
field and intensity of the field in the continuum limit. 
The problem was then treated by a number of investiga
tors who used a continuum model of the random medium 
directly instead of first considering a discretized me
dium. Kupiec, et aZ., 4 found an expression for the mean 
field by applying the method of smooth perturbations to 
the Dyson equation. Papanicolaou5 and Morrison, 
Papanicolaou, and Keller6 have found expressions for 
the probability density function (p.d.f.) of the trans
mission coefficient and from this have calculated the 
mean squared transmission and reflection coefficients. 

In this paper we employ the medium model used by 
Morrison-Papanicolaou-Keller and find the p.d.f. of 
the reflection coefficient and the field inside the slab. 
From these p.d.f.'s we obtain an expression for the 
mean intensity in the slab and, in addition, recover the 
results of Refs. 4,5, and 6. Our expression for the 
mean intensity is similar to Gazaryan's, however, his 
result has been obtained by using different methods 
and a different model. 

In Sec. 2 we start by reformulating the original prob
lem as a boundary value problem over the interval 
[0, L]. The boundary value problem is then imbedded 
in two cascaded initial value problems by employing 
an invariant imbedding technique. 7 ,8 The solution to 
the first initial value problem will be called the gene
ralized reflection coefficient r. This solution provides 
initial conditions for the second initial valu~ problem 
whose solution yields the desired field u. 
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The probabilistic nature of the problem is introduced 
by first representing r in terms of its amplitude and 
phase, i.e., r = p expi¢ and then recognizing that 
X = (p, cp, ~) is a vector Markov process. As a result, 
a forward Kolmogorov equation can be written for the 
p.d.f. of X. In a similar manner, one finds that the 
second initiai value problem generates a vector Markov 
process Y = (v, e,p, cp, ~). Here v and e are the log 
amplitude and phase of the field u, respectively. A 
second forward Kolmogorov equation can then be written 
for the p.d.f. of Y. The initial distribution of the random 
variable Y is obtained from the solution of the first dif
fusion equation. Thus the original stochastic problem 
for the field u has been replaced by the deterministic 
problem of solving two cascaded diffusion equations. 

In Sec. 3- 5, we find approximate solutions to the diffu
sion equations for small E. Our perturbation method 
follows the one that Morrison- Papanicolaou- Keller 6 used. 
Once approximate expressions for the p.d.f.' s of X and 
Y have been developed, the moments of the reflection 
coefficient and field are calculated. 

2. FORMULATION 

We consider a plane wave which is normally incident 
on a slab of one-dimensional random medium. The field 
u obeys the one- dimensional wave equation 

d2u - + K 2n2 (x)u = 0 - 00 < x < 00, 
dx2 ' 

(2. 1) 

where we require that du/ dx be continuous. Here we 
take K to be the free space wavenumber and n(x) to be 

1
1 ,x < 0, 

n(x) = [1 + E~(x)]1/2, O:::s x:::s L, 

1 ,x> L. 
(2.2) 

If we assume that the process Hx) has a correlation 
length Z and if we define 

x = x/Z, L = L/Z, k = ZK, )leX) = ~(x), (2.3) 

then (2.1) can be put in the following normalized form: 

d2u - + k 2 [1 + EJ.L(X)]U = 0, 
dx2 

O:::s X:::S L, 

in the slab region. Outside the slab, the normalized 
solution can be obtained explicitly. It is 

{ 

e-ik(x-L) + Re +ik(x-L), 

u(x) = 
Te- ikx , 

x~ L, 

x:::s 0, 

Copyright © 1973 by the American Institute·of Physics 
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Here R and T are called the reflection and trans
mission coefficients of the slab. 

The problem on the infinite interval can be reformu
lated in terms of the following problem on the finite 
interval: 

d2u(x) 
d;2 + k 2[1 + EI-L(X)]U(x) ::::: 0, 0 :$ X:$ L, (2.6a) 

du(O) 
-- + iku(O) ::::: 0, 
dx 

du(L) 
-- - iku(L) ::::: - 2ik. 

dx 

(2.6b) 

(2.6c) 

The boundary conditions have been obtained by using 
(2.5) along with the continuity of u and du/dx at x::::: L. 
We also find that 

R ::::: u(L) - 1, T ::::: u(O). (2.7) 

Next we convert the boundary value problem (2.6) to 
an initial value problem. This is accomplished by using 
an invariant imbedding procedure. 7 ,8 To apply this pro
cedure, we exhibit the dependence of the field u on the 
slab width L explicitly, i.e., u ::::: u(x, L). Next we replace 
L by the variable t, 0:$ t:$ L, and riote that u(x, t) satis
fies (2.6) with L replaced by t. Thus we have 

( 

d2 
- + k 2[1 + EI-L(X)] u(x, t) ::::: 0, 
dx2 

0:$ x, t :s L, 

~ u(O, t) + iku(O, t) ::::: 0, 
dx 

~ u(t, t) - iku(t, t) ::::: - 2ik. 
dx 

(2. Sa) 

(2. Sb) 

(2. Sc) 

In Appendix A, we convert the above differential equa
tion in x with t as a parameter to two cascaded initial 
value problems in t with x as a parameter. These initial 
value problems are: 

Problem 1: 

dr(t) 
-- ::::: 2ikr(t) + tiEkl-L(t)[l + r(t)]2, 

dt 

r(o) ::::: 0, 0 :s t :$ Xj 

Problem 2: 

du(x, t) 1 

-- ::::: iku(x, t) + "2iEkI-L(t)[l + r(t)]u(x, t), 
dt 

u(x, x) ::::: 1 + r(x), 

dr(t) 
-- ::::: 2ikr(t) + ~EkI-L(t)[l + r(t)]2, 

dt 

r(t) I t~x ::::: r(x), x :s t :s L, 

(2.9a) 

(2.9b) 

(2. lOa) 

(2. lOb) 

(2. 11a) 

(2.l1b) 

The solution to the first problem obeys a Ricatti 
equation. We will call this solution, r(t), the generalized 
reflection coefficient since r(I,) ::::: R as is shown in 
(A7) of Appendix A. Once r(t), O:s t:s x, is determined, 
it provides the initial conditions for the second problem. 
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The solution to the second problem provides us with 
u(x, t), .. x :$ t :s L, and thus we have the solution to the 
original boundary vaIue problem (2.6) by setting t ::::: l
in u(x, t). 

Since I-L(t) is a Gaussian process, it can be specified 
completely by its first two moments. They are 

(2.12) 

where the brackets indicate the expected values of the 
quantities enclosed. It is also noted that the process 
p.(t) can be generated from the Ita stochastic differen
tial equation9 , 10 

(2.13) 

where (3(t) is the standard Brownian motion process. 
The distribution of I-L at t ::::: 0 is taken to be (21T)-1/2 x 
exp(- 1-L2/2). 

Equations (2.13) and (2.9) can be solved simultane
ously. Before doing this, however, we rewrite r in 
terms of its amplitude and phase, i.e., 

r ::::: pe i¢, 0 :s p :$ 1, - 1T < rp :s 1T. (2.14) 

Upon substituting (2.14) into (2.9a) and equating real 
and imaginary parts to zero, we obtain two equations 
involving p and rp. When these two equations are con
sidered along with (2.13), we have the following system 
of stochastic differential equations: 

d(~ {~::'~:k~~:)+~¢+ p-') COS¢~dt + fi~D' 
o :s t :s x. (2.15) 

The initial conditions for the above system are: 
p ::::: 0 with probability one; rp is distributed uniformily; 11 

and u has the initial distribution associated with (2.13). 
Noting that the initial data is independent of the Brown
ian increments, d{3, 0:$ t :$ x, one can show that (2.15) 
generates a three-dimensional Markov process, 
X::::: (p, rp, I-L) and that the P.d.f.P1(X' t) obeys the for
ward Kolmogorov equation10 

(2.16) 

where 

(2.17) 

and 

L<p::::: kl-L {(p2 -1) sinrp ~ - [2 + (p + p-1)COSrp] ~ 
2 3p arp 

+ (3p + p-1) sin¢}. (2. IS) 

The initial data for (2. 16) is given by 

(2. 19) 

where 6(p) is tpe Dirac delta function. By using p 1 eva
luated at t ::::: L one can calculate the moments of R, but 
to obtain the moments of u(x, L), one must consider the 
diffusion equation associated with Problem 2. 
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With this aim in mind, we introduce (2.14) and 

u=eik(t-x)ev+i6, -~< v<~, -1T<e::S1T, (2.20) 

- 2-1ke/J.P sinq, 

2-1kef..L(1 + p cosq,) 

= 2-1kef..L(1 - p2) sinq, dt + ...fi d 

2k + 2-1kef..L[2 + (p + p-l) cosq,] 

-f..L 

The solution to (2.21) generates a five-dimensional 
Markov process, Y = (v, e, p, <p, f..L), since the initial dis
tribution of Y at t = x is independent of d{3, x::s t ::s L. 
Therefore the p.d.f'P2(Y' x, t) satisfies the following 
forward diffusion equation: 

ap 2 at = L 2P2, L 2 :::= L(R) + EL(~), (2.22) 

where L(~) = L(~), which is defined in (2.17), and where 

L(P = L(y> + kf..L (p sinq, l... - (1 + p cosq,) l...) 
2 \ av ae 

(2.23) 

with L (}> being given by (2.18). 

The initial distribution of Y at t = x is obtained by 
using PI (X, x) along with (2. lOb) and (2.20). The result 
is 

P 2 (Y, x, x) = PI (X, x)o[ V - f(p, q, )]o[ e - g(p, q, )], 

where 

f(P, q,) = t In[1 + p2 + 2p cosq,], 

g(p, q,) = tan-1[p sinq,/ (1 + P cosq, )]. 

3. PERTURBATION ANALYSIS OF PROBLEM 1 

(2.24) 

(2.25) 

(2.26) 

We will now find solutions to (2.16) for small E. We 
start by representing P 1 (X, t) in terms of the eigen
functions of the operator L 1 , Le., 

P1(X,t) = ~ aqe>..qtVq(X), 
q 

where the eigenfunctions satisfy the equation 

(3.1) 

(3.2) 

Since Ll is a three-dimensional operator, it should be 
noted that index q is also three dimensional. 

Because the eigenfunctions Vq are difficult to obtain, 
we take advantage of the fact that Ll is composed of a 
sum of an operator L (~), whose eigenfunctions are 
readily obtainable, plus a small operator EL <i). Ex
panding 

(3.3) 

in a power series in E, then plugging (3.3) into (3.2) and 
equating equal powers of E, one obtains an infinite set of 
perturbation equations. The solution to the first of 
these equations yields ~(o) and its corresponding eigen
values A ~o). Higher order v~n) are then found by suc
cessively solving the higher order perturbation equa
tions. The A (~), n = 1,2, ... , are obtained by requiring 
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into (2.10) and (2.11). This results in four real equa
tions for v,e,p,and q, to which we append (2.13). The 
resulting system of stochastic differential equations is 

x::s t::s L. (2.21) 

that the Vq(n) , n = 1,2"", by periodic in q, over [0, 21T]. 
This procedure for determining the A (q) eliminates 
secular terms in t from occurring in the perturbation 
expansion ofPl()(,t). 

By employing these approximate eigenfunctions and 
eigenvalues in (3.1), we have 

. (>..(0) (1) 2,(2) 
P

1
(X, t) :::= ~ aqe q +t>.. q +< " q)tV (~)(X) + O(e), 

q 

O::s E3t < 0(1). (3.4) 

Since the calculation of ~(o) and A~n), n :::= 0,1,2, is 
similar to the calculation that has been performed in 
Ref. 6, we will not include it here. Once these quantities 
have been found the a q in (3.4) can be computed by using 
the initial data given by (2.19) and the orthogonality 
properties of the eigenfunctions. Next we integrate out 
the f..L dependence from PI (X, t) since it will not be re
quired. We finally obtained 

:::= (211)-1(z - 1)1/2(z + 1)3/2 (3.5) 

O::s e3t < 0(1). (3.6) 
where 

Z :::= (1 + p2)(1 - p2)-I, 

AO(S) :::= - 8-1 (1 + 4k2)-lk2(4s2 + 1) (3.7) 

with X :::= (p, q,). In the above Pn(z) is the Legendre poly
nomial of order n. The fact that the expressi0.!l for PI 
is correct to O( E2) instead of 0 (E) is because PI is an 
even function of E whereas P 1 is not. 

The approximate p.d.f. given in (3.6) can now be used 
to find moments of the reflection coeffiCient by setting 
t :::= L. Because the approximate expreSSion for PI given 
by (3.6) is independent of q" one immediately finds 
(Rn) = O(e2), n :::= 1,2,···. In addition, the mean square 
reflection coefficient (I R2 I) and the mean square trans
mission coefficient (I T 12) :::= 1 - < 1 R 12) can be found by 
employing (3.6). The expressions obtained agree exactly 
with those given in Refs. 5 and 6. 

4. PERTURBATION ANALYSIS OF PROBLEM 2 

In order to calculate moments of u(x, L), the prob
ability density functionP2(Y'x, t) will be needed. This 
p.d.f. satisfies the diffusion equation (2.22) with initial 
condition (2.24). The solution to this equation will now 
be found for small E. 

Before doing this, we simplify (2.22) by expanding 
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P2(Y'X, t) in terms of the eigenfunctions exp(in6 + iwv), 
n = 0, ± 1, ± 2, ..• , - co < w < co, i.e., 

+00 +00 

Pz(Y,x, t) = L; L"" Qn(w,X,x, t)ei(wv+n6)dw. (4.1) 
n ::::-00 

Using (4.1) in (2.22) and the orthogonality properties 
of the eigenfunctions, we have 

aQn ~ 
-L Q at - 2 n' 

where L(~) is defined in (2.17) and where 

(4.2) 

£<2) = L(1) + tklJ{iwp sin¢ - in(1 + p cos¢)] (4.3) 

with L(}> being given by (2.18). The initial condition for 
(4.2) can be obtained by inverting (4.1) with t = x, using 
(2.24), (2.25), (2.26) and Simplifying. We have 

Qn(w,X,x,x) 

= (21T)-2(1 + pe+ i ¢)-(n+iw)/2(1 + pe-i¢)(n- iw)/ZP1(X,x). 

(4.4) 
Since (4.2) is similar to the diffusion equation treated 

in Sec. 3, we again employ the perturbation procedure 
used there. By using this method we Wid an approxi
mate expression for Qn(w,X,x, t) which is similar to 
(3.4). Putting this in (4.1), we obtain an approximate 
expression for the p.d.f'P2(X,x, t) over the interval 
x ::s t ::s L. Then integrating out the iJ. dependence, we 
finally obtain 

P2(Y'X, t) = j +00 P2(Y,x, t)diJ. 
-00 

(4.5) 

+00 +00 

- "\' j 7\ (w X x t)e in6 + iwvdw - L.J \t"n" , , 
n =-00 _00 . 

(4.6) 

where 

Q (w,X,x, t) = j +00 Qn(w,X,x, t)diJ., 
n -00 

(4.7) 

with Y = (v, e, p, ¢) and X = (p, ¢). The expression for 
Q n is given by 

~ (~ ~. <I> 100 
( ) ( ) Qn w,X,x, t) = L1 e,m hmn(s)Mmn z P::'1/2+iS Z 

n =-00 0 

x e'l-2imk+Ymnt2 ] (t-x)ds + O(£Z), x::s t::s L, (4.8) 

where 

M (z) = (z - 1)1/2+m(z + 1)(3+iw-4m-4)/2 
and mn 

'Ymn = 8-1 (1 + 4k2)-lk2[(2is + 2m + n)2 

- 1 - 2(2m + n)2 + 4ik(2m + n) 

- 2(2m + n)2(1 + 4k2)]. 

(4.9) 

(4.10) 

In the above z is given in terms of p by (3.7) and 
~~(z) is the associated Legendre function of degree II 

and order iJ.. The coefficients hmn(s) appearing in (4.8) 
are found by setting t = x and inverting this expression. 
We find 

hmn(s) = Jm(s) j+1f 100 

[Mnm(z')]-l 
-1f 1 

X pm . (z')e-im¢'Q~ (w X X x)dn-'dz' (4.11) -liz +, s n , " 'I-' , 

where 

J (s) = (21T 3)-1/2s sinh1Tsr(t - m + is)r(~ - m - is). 
m (4.12) 
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The initial data Q(w,X,x,x) is obtained by integrating 
both sides of (4.4) with respect to iJ., then using (4.7) 
(3.5) and (3.6). 

Although the expression derived above for fi 2 (X, x, t) 
is fairly complex, we will see that expression for speci
fic moments are much simpler. 

5. MOMENTS OF u(x, L) 

The mean (u(x, L» and intensity ( 1 u(x, LJ 122 will be 
calculated to O( £2) from our knowledge of P2 (X, x, L). 
We first consider the mean of u(x, L). Using (2.20), we 
have 

(u) = e ik(L -x)(e v + W) 

= eik(L-~) j e v+i6 P2&'X, L)ctY. 

(5.1) 

(5.2) 

Substituting (4.6) with t = L into (5.2) and integrating 
with respect to v, e, and w gives 

(5.3) 

We now use (4.8) and (5.3) and then we perform the 
¢ integration. After this we change integration variables 
from p to z with the aid of (3.7). The result is 

00 100 (u) = (21T)3e ik(L-x) ~ 0 h O._1(s) 

2 
X P . . (z)e t Oo.-l(s)(L-X)dzds + 0(£2) (5.4) -1/2+.s , 

where 

h _ (s) = s tanh1Ts 100 1"" s' tanh1Ts' 
o. 1 (21T)3 1 0 

and 

X P -1/2 +is (z ')P -1/2 + is ,(z ') 

x eAo(S')t2Ldz'ds' 

00._I(S) =- 8-1(1 + 4k2)-lk2[(2s + i)2 

(5.5) 

+ 3 + 4ik + 2(1 + 4kZ)]. (5.6) 

The double integrals appearing in (5.5) and (5.4) are 
evaluated in Appendix B using properties of the Mehler 
transform. We use (B5) to evaluate the double integral 
in (5.5). This result is then used in (5.4) and that 
double integral is evaluated with the aid of (B6). We 
find 

(u) = eik(L-X)+t2oo._1(-;/2)(L-x)+t2Ao(-i/2)t2L + 0(£2). 

(5.7) 
Now using (5.6), (3.7) and introducing the unnorma

lized variables in (2.3), we obtain 

(5.8) 

where 

This result has been obtained by Kupiec, et al. 4 when 
they applied the method of smooth perturbation to the 
Dyson equation. It should be noted that our K is the 
complex conjugate of their K. This is because 01,lr 
waves are incident from opposite sides of the slab. 

The intensity (I u(x, L) 12) can be evaluated by using 
(2.20) and p.d.f.Pz' We have 

(luI2)={e2v ) =jezvp2 {Y,x,L)dY. (5.10) 
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Substituting (4.6) with t = L into (5.10) and integrat
ing with respect to v, e, and w gives 

(I U 12) = (21T)2 J Qo(2i, X,x, L)dX. (5.11) 

We use (4.8) in (5.11) and then we evaluate the cf> 
integral. Following this, the p integration variable is 
transformed to z with the aid of (3.7). We obtain 

(I u 12) = (21T)3 100 100 ho.o(s) p . (z)e Ao(S)E
2
(L-X) dzds 

1 0 1 + Z -1/2 HS 

+ O( £2), (5.12) 

where 

h () 2s tanh1Ts 100 100 
I t h( ') Ip ( ') o 0 s = s an 1TS z -1/2 +ts Z . (21T)3 1 0 

X P_1I2+iS.(zl)eAo(s.)<2Ldzlds' (5.13) 

with AO(S) given in (3.7). The recurrence relation12 

(5. 14) 

for the Legendre function P v(z) can be used in (5.13). 
Two double integrals result which are given in (B7) and 
(B8) of Appendix B. We obtain 

ho.o(s) = [tanh1Ts/(21T)3][(2s - i)e AO(S-i)E
2
X 

+ (2s + i)e AO (S+i)E
2
X]. (5.15) 

Now by putting (5.15) into (5.12) and evaluating the 
z integral with the aid Of13 

100 

(z + 1)-lp_1/2+ is (z)dz = 1T sech1Ts, (5.16) 

the desired expression for (I u 12) is obtained. This 
result is then expressed in terms of the unnormalized 
variables by using (2.3). We find 

L 100 tanh1Ts . - - 2-<I U 12) = 1Te 4i - --- [smSxs + 2s cos8xs]e- 4s Lds 
o cosh1Ts 

o $ x $ 1, (5.17) 
where 

x = dE2X, L = d E2I, 

(5.18) 

2.0 

1.0 C = .05", 

.1 .2 .3 .4 .5 .6 

FIG. 1. Intensity vs xl L with l as a parameter. 
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Since we have not been able to evaluate this integral 
in terms of known functions, it has been evaluated 
numerically for various slab widths. These graphs 
are shown in Fig. I. For small and large L we find 
that (5.10) simplifies to 

<luI2)=1+0(£2), o$;$L, L«l 
<I U 12) = erfc[L1I2(1- 2i/ L)] + 0(£2), (5.19) 

o $ ; $ L/2, L » 1, 

= 2 - erfc[];1/2(1 - 2x/L)] + 0(E2), L/2 <; < L 
(5.20) 

where erfc(z) is the complementary error function of z. 
The approximate expression for large L was obtained 
by using the saddle point method to evaluate (5.17). 
The complementary error function arose because of 
the presence of a pole near a saddle point. 

As a check of the consistency of the result (5.17), we 
find (I T 12) by evaluating < 1 u 12) at X = O. The expression 
for < 1 T 12) obtained agrees with that obtained in Ref. 6. 
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APPENDIX A 
To derive (2.9)- (2.11) from (2.8), we first take the 

derivative of (2.8) with respect to t and interchange 
orders of differentiation. We obtain 

( 
'02 ~ au(x, t) 

- + k 2 [1 + EfJ.(x)] -- = 0 ax2 at' 

(~ + ik\ ~ u(O, t) = 0, 
ax J at 

a2u(t, t) 02u(t, t) au(t, t) au(t, t) 
---:c-- + --- - ik --- - ik --- = O. 

ax2 axat ax at 

(AI) 

(A2) 

(A3) 

We denote alf,/ ox and auf of as the partial derivatives 
of u with respect to the first and second arguments of 
u respectively. 

.7 .8 
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An inspection of (AI), (A2), (2. 8a), and (2.8b) shows 
that u and ou/ at obey the same equation and the same 
boundary condition at x == O. Thus we conclude that 

au (x , t) 
-- == C(t)u(x, t). 

at 
(A4) 

Now using (2. 8a) and (A4) with x == t in (A3), we ob
tain 

C(t) == ik{l + h/J.(t)[l + r(t)J} (A5) 

with 
iku(t, t) + (%x)u(t, t) 

r(t) == • 
iku(t, t) - (o/ax)u(t, t) 

(A6) 

We shall call r(t) the generalized reflection co
efficient since from (A6), (2. 6c), and (2.7), we see that 

() 
iku(L, L) + (%x)u(L, L) 

rL == ==u(L)-l==R. 
iku(L, L) - (%x)u(L, L) (A7) 

An equation for r(t) can be obtained by taking the 
derivative of (A6) with respect to t and then using (2. 8a), 
(A4) with x == t and (A6) in this expression. We find 

dr(t) 1 dt == 2ikr(t) + 2ik €/J.(t)[1 + r(t)]2, (A8) 

where r(O) == O. The above equation is a Ricatti equa
tion. An equation of this type was found for the reflec
tion coefficient in Ref. 5. The initial condition is found 
by making use of (2. 8b) and (A6) with x == t == O. 

The reflection coefficient of the slab can thus be 
found by solving (A8) over the interval O::s t::s L. The 
field u(x, L) can be found by first solving (A8) in the 
interval 0 ::s t ::s x and then solving (A4) and (A8) simul
taneously in the interval x ::s t::s L. The initial condi
tions for the system of equations (A4) and (A8) are 

r(t) I t~x == r(x), 

u(x,x) == 1 + r(x). 

(A9) 

(AIO) 

Here r(x) is the solution to the Ricatti equation in the 
interval O::s t ::s x With t == x. The initial condition (AIO) 
is obtained by making use of (2. 8c) and (A6) with t == x. 

APPENDIX B 
The purpose of this appendix is to evaluate several 

double integrals that appear in the text. We start by 
considering the identity 

S tanh1Ts er(s) == S tanh1Ts ~"" P_ 1/2 +is (z)q(z)dz, 

o ::s S ::s co, (Bl) 
where 

q(z) == 1"" P 1/2+is'(Z)[S' tanh1Ts'er(S')]ds'. (B2) o -

Here r(s) is a second degree polynomial in s with 
complex coefficients, i.e., 

where we assume 0 > Rea2 > Ima 2 • 

(B3) 

The identity (Bl) follows immediately from the fact 
that we are taking the inverse Mehler transforms of 
the Mehler transform 14 of s tanh1Tse r (s). 
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Simplifying (Bl), we have 

er(s) = ~"" P_1/ 2 + is (z)q(z)dz. (B4) 

One can now show that both sides of equality (B4) can 
be analytically continued into an infinite strip in the 
complex s plane bounded by the lines s == ± 2i. The 
analytic continuation is dependent on the fact that q(z) 
must decay rapidly enough as z -) co so that the integral 
in (B4) is uniformly convergent. We find q(z) has this 
property when 0 > Rea2 > Ima2 • 

We now use (B4) to evaluate the integrals of interest. 
The functions AO(S) and 00,_l(S) used below are given 
in (3.7) and (5.6) respectively. 

Case 1: Let r(s) == AO(s)€2L: 

e Ao(-il2)€2L == 1"" 1"" s'tanh1TS'P . (z') 
1 0 -1/2 HS 

A (s,)€2L 
X P- 1/2 + is ,(z')e 0 dz'ds. (B5) 

Case 2: Let r(s) == 00,-1 (s)€2(L - x) + Ao(s)e2L with 
s ==- i/2: 

Here Po(z) == 1 was used. 

Case 3: Let r(s) == AO(S) e2 L and replace s by S - i 
in (B4): 

e AO(S-i)€2 L == 1"" 1"" s' tanh1TS'P . (z') 
1 0 1/2 +IS 

X P . (:Z')eAo(S,)€2Ldz'ds' (B7) 
-1/2 +lS" • 

Case 4: Let r(s) == AO(S)€2L and replace s by S + i 
in (B4): 

e AO(S+i)€2 L == 1"" 1"" s' tanh1Ts' P . (z') 
1 0 -3/2 +IS 

X P . (z ')e AO(S ,)€2 L dz 'ds' (B8) 
-1/2+,s' • 
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It is shown that the free and periodic boundary conditions are completely equivalent for the ice
rule (six-vertex) models in zero field. With an external direct or staggered field, we establish that 
in an ice-rule model the free and periodic boundary conditions are equivalent, and also equal to 
some special boundary conditions, either at sufficiently low temperatures or with sufficiently high 
fields in the appropriate direction. Regions of constant direct polarization are found. We also 
establish the existence of the spontaneous staggered polarization in an antiferroelectric using the 
Peierls argument. 

I. INTRODUCTION 

We consider in this paper some outstanding unsolved 
problems in the vertex models in statistical mechanics. l 
One problem whose solution has proven to be elusive in 
the past is the proof of the equivalence of the free and 
periodic boundary conditions for the six-vertex (ice
rule) models. In the solution of the ice-rule models 
obtained by Lieb,2 it is crucial that a periodic boundary 
condition is used. Attempts in trying to show that the 
free boundary condition would yield the same solution 
have not succeeded.3 Another problem which has not 
been considered before is the proof of the existence of 
a long-range order in an antiferroelectric. Such a proof 
is useful and desirable, especially since the onlyavail
able calculation is that of the F model and is based on 
assumptions that appear to be difficult to justify. 4 In 
this paper we consider both of these problems. 

In Sec. TI we define the various vertex models and 
standardize the notation to be used in the ensuing 
proofs. The equivalence of various boundary conditions 
for the six-vertex models is considered in Sec. TIl using 
the weak-graph expansions. In particular, it is estab
lished that with no external field the free and periodic 
boundary conditions are completely equivalent. With an 
external direct and staggered field, we establish that the 
free and periodic boundary conditions are equivalent, 
and also equal to some special boundary conditions con
sistent with the energetically favored configurations, 
either at sufficiently low temperatures or with suffic
iently high fields. These results, while expected, have 
not previously been proved. In Sec. IV, using the Peierls 
argument, we establish the existence of the spontaneous 
staggered polarization in a general antiferroelectric, 
including the F model. Several challenging unsolved 
problems related to the F model are presented in Sec. V. 

II. BASIC DEFINITIONS 

Let L be a two-dimensional square lattice of N = n x 
n vertices, with n even. The lattice edges of L which 
terminate in two vertices of L are called interior edges 
and those terminating in one vertex called exterior. A 
vertex which is the terminus of one or more exterior 
edges is called a boundary vertex and the set of such 
vertices is called the boundary of L. The vertex model 
is defined by placing arrows on the edges of L. 

We follow the notation of Ref. 1 in defining the vertex 
models. The most general vertex model that can be 
defined on L is the 16-vertex model. The 16 arrow 
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configurations that can occur at a vertex are shown in 
Fig.!. 

Let e t be the energy associated with the vertex of 
type H = 1,2, ... ,16) and Hi) be the type of configura
tion of the ith vertex. The partition function of the 16-
vertex model is 

N 
Z = ~ [1 Wt(i) (1) 

i=l 

where wt = exp(- et/kT) is the Boltzman factor and the 
summation is extended to all arrow (or bond) configura
tions subject to a given boundary condition. 

If all 16 w's are nonzero, we have a 16-vertex pro
blem. Otherwise we have an eight-vertex model if W is 
nonzero for ~ = 1,2, ... ,8 only, and a six-vertex prob
lem if wt "" 0 for ~ = 1,2, ... ,6. Some physical proper
ties of the six-vertex models appear to be rather dif
ferent from the corresponding eight- or 16-vertex ones, 
and it is the main purpose of this paper to stress and 
discuss them. 

We study a general six-vertex model defined byl 

e l = El - (h + v), e 2 = El + h + v, 

e3 =E2 -h +v, e 4 =E2 +h-v, 

e 5 = E3 + s, es = E3 - s for vertices on (2) 

sublattice A, 

(I) (2) (3) (4) (5) (6) (7) (8) 

++++++++ 
---f---+ ---t---+ ---t- -1--- -t--- --+-

(9) (10) (II) (12) (13) (14) (15) (IS) 

++++++++ 
---t--- -1--- ---t--- ---~ + ---t-+ -t---
FIG. 1 . The vertex configurations of the l6-vertex model and the 
associated bond configurations using the convention C 2' 
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e 5 = £3 - s, e 6 = £3 + s for vertices on 
sub lattice B, 

other ef = co. 

The electric fields included are the horizontal and 
vertical direct fields h and v, and the staggered quad
rupole field s. 

The general KDF model is defined by 

(3) 

In the absence of any field, the ground state configura
tions are Xl and X 2 , which correspond to complete fil
ling of the lattice with vertices ~ = 1,2,respectively. 
An equivalent definition is £1 > £2' £3> £2' with 
ground states X 3 and X 4' 

The general F model is defined by 

(4) 

For sufficiently small direct fields and without stag
gered field, the ground state configurations are X56 and 
X 65 , where X56 is given by 

W) = 5, 

W) =6, 

i on sublattice B, 

ion sublattice A. 

X65 is obtained from X56 by interchanging 5 and 6. The 
same ground states are found for the generalization of 
the F model to the 16-vertex antiferroelectric 

e 5 =e 6 =0, et>O forall~~5,6. 

We shall study the dependence of the free energy 

If = - kT lim (liN) InZ 

(5) 

(6) 

on the boundary conditions. A boundary condition (BC) 
on the finite lattice L is expressed by a restriction on 
the arrow directions on the exterior edges of L. We 
speak of free boundary conditions (FBC) if there is no 
restriction, of periodic boundary conditions (PBC) if 
the two sets of horizontal (resp. vertical) exterior 
edges have identical arrow configurations. If the direc
tions of the arrows on the exterior edges are all speci
fied, we have a special boundary condition (SBC). We 
shall use SBC Scx' 0' = 1,2,3,4,56, 65;to denote the 
boundary condition fitting to the configuration X cx' In 
Figs. 2a, b, S 1 and S 5 6 are pictured. The boundary con
dition under which If is defined will be denoted by the 
subscript F,P,or 0'. 

As a consequence of the ice rule, the SBC S cx' 
0' = 1, ... ,4, completely determines the configuration 
X cx in the interior of L. Therefore, if the free energy (6) 
satisfies 

I I I I 
I I I 1 __ +_L _L + __ 

---: 1---
__ -' L __ 

I I 
--+-,-,-+--

I I I 1 
I I I I 

(a) (b) (e) 
FIG. 2 . Special boundary conditions {or a 4 x 4 lattice. 
(a) sse S1' (b) sse S56' (c) sse Sa The upper left vertex 
belongs to sublattice B. 
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for 0' :::;:: 1, •.• ,4, then the system is in the frozen. state 
X cx; in particular, the direct polarization is saturated in 
the corresponding direction. 

Furthermore, the SBC S56 and S65' which allow equal 
numbers of in and out arrows along the exterior rows 
and columns, only permit configurations in L with total 
direction polarization zero. Indeed, by the ice rule the 
vertical polarization is conserved from row to row, the 
horizontal from column to column. Therefore, if 

lfF = lf56 or lf65' 

in some region in (h, v), the direct polarization is zero 
in that region. 

Since the free energy is different for the different 
frozen states, we already see that the free energy cannot 
be independent of the BC. This difficulty disappears as 
soon as the weights satisfy 

W1"'" Ws > 0, w g , ••• , w16 2: O. (7) 

In that case, a volume n x n with any BC can be im
bedded in a volume (n + 2) x (n + 2) with any other BC, 
the energy difference being of the order of n. This im
plies then that the limiting free energy (6) does not 
depend on the BC (see, e.g., Ref. 5, Lemma 2.2.1). 

It is useful to introduce representations of the vertex 
configurations in terms of bond graphs. The bond graphs 
in Fig. 1 are obtained by drawing bonds for each ~ and.J. 
arrow. Under this conventiotl, which we shall call C2 , 

vertex 2 becomes the one with four bonds, configuration 
X 2 becomes X B with bonds everywhere,and SBC S2 
becomes SBC S B with bonds on all exterior edges. 
Analogously, we have the convention C cx' 0/. = 1, ... ,4, 
56,65, which carries X cx over into X B and Scx into S B. 6 In 
the bond language we also meet SBC SH' Fig.1c, in which 
no bonds (holes) appear on all exterior edges. In Sec. 
III the bond representations are used, together with the 
weak graph transformation, to prove the equivalence of 
boundary conditions in various cases. 

In Sec. IV we use a representation of the arrow config
urations in terms of closed polygons. For the 16-vertex 
antiferroelectric (5). we prove the existence of the spon
taneous staggered polarization 

p _ (05') 
0-- as s=(}I-

(8) 

for suffiCiently low temperatures. For the F model we 
also find equivalence of FBC to SBC S56 or S65' which 
gives regions, where the direct polarization is zero and 
the staggered polarization is independent of the direct 
field. 

III. EOUIVALENCE OF BOUNDARY CONDITIONS 
FOR THE ICE-RULE MODELS 

Our proof is based on the application of the weak
graph expansion. 7 It was first shown by Nagle S that 
under the weak-graph expansion the six-vertex KDP and 
F models are transformed into eight-vertex models. 
For a general lattice model the weak-graph expansion 
will lead to a 16-vertex model. If all the transformed 
vertex weights are positive,one can then establish the 
equivalence of the boundary conditions as indicated 
above. The crux of matter is therefore to find a weak
graph expansion which will generate positive weights. 
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It will be convenient for our discussions to first re
view briefly the formulation of the weak-graph expan
sion. For simplicity we shall use bond graphs. For 
each edge connecting vertices i and j we introduce a 
matching factor 

-H1 + Cij(~i)cij(~j)] = 1, if ~i and ~j are compatible, 

= 0, otherwise, (9) 

where 

Cij(~i) = Cji(~i) = 1, if ~i has a bond on edge ij, 

= - 1, otherwise. 

Then the partition function takes the form 

(10) 

16 N 

Z=2) n. ~[1 +CiJ(~i)Cij(~j)] n W(~i)' (11) 
'i=1 matchmg i=1 

edges 

For FBC there are 2n(n - 1) matching (interior) 
edges and for PBC there are 2n 2 , and for SBC SB' 
2n(n + 1). Note that the matching factors for the ex
terior edges in the case of SB have the form 
-H1 + Cij(~i)]' 

Next we expand the product of the edge factors. Each 
term in the expansion is now a product of many 
Cij(~i)cij(~j) factors which can be conveniently repre
sented graphically by drawing bonds between the con
nected vertices i and j. After rearrangement, (11) can 
be rewritten as 

(12) 

where the summation is extended to all bond graphs G, 
the constant C = 1 for PBC, C = 22n for FBC and 
C = 2-2n for SBC SB' 

The summation inside the square bracket in (12) can 
be conSidered to be some new vertex weights w~ defined 
by the bond graphs G. Since the bonds in G are drawn 
only on the matched edges, which include the exterior 
edges for SB and do not include them for FBC, we find 

Zp(W) =Zp(w'), ZF(W) = 22nzH(w'), 

Z B(W) = 2-2nZ ,,(w'). (13) 

The new weights are 

w'(~i) = t 2) W(1Ji) n Cik(1Ji)' (14) 
~i k 

ik in Ej 

Detailed expression of this linear transformation can 
be found in Eq. (408) of Ref. 1 and will not be reproduced 
here. 

If the transformed weights W ~ satisfy (7), then the 
thermodynamic limit (6) is independent of the BC. For 
the original weights W f we have then, by (13), 

Let us apply this basic idea to various six-vertex 
models. 

(15) 

(i) General six-vertex model in zero field: Here we 
show the equivalence 5'p = 5'F for the general six-vertex 
model in zero field. Let u i = exp(- f./kT), i = 1,2,3. 
Further, we take the fields h = v = s = 0 in (2). With 
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convention C 2 , the weak-graph expansion leads to the 
eight-vertex problem 

wi. = Wz = ~(ul + u2 + u3), 

w; = Ws = HUI - u2 + u3)' 

other w~ = O. 

W3 = w4 = ~(Ul +u2 -u3)' 

w 7 = Wg = ~(Ul -u2 -u3)' 

(16) 

Some of these weights may be negative, but if n is 
even the partition functions for PBC and SBC SH are in
variant under the reversal of sign of these weights. 9 

Then we conclude from (13) that 

at all temperatures. strictly speaking, the above reason
ing does not hold for the special temperature, where two 
of the transformed weights are zero; but there the result 
follows by continuity of the free energies in the tempera
ture. The equality of 5'p and 5'F to 5'B does not follow 
generally, because the FBC partition function of the 
transformed weights is not invariant under the reversal 
of sign. For T < T c we also establish in the following 
that 5'p(w) = 5'F(W) = 5' .. (W) , where X" is the ground state 
configuration. 

(ii) General six-vertex model in direct and stagggred 
fields: For the general six-vertex model in nonzero 
fields, we now show that 5'F = 5'p = 5'", 01 = 1,2,3,4, 
56,65, provided that the direct or the staggered field 
is large enough in the appropriate direction. 

Consider the general six-vertex model (2). We put 
H = h/kT, V = v/kT, t = s/kT. With convention C2 , 

the weak-graph expansion leads to the weights 

wi., ... ;wg :::: -Hul cosh(H + V) 
± u2 cosh(H - V) ± u3 cosht], 

Wg, ... ,wi.6 :::: -H- u 1 sinh(H + V) 
± u 2 sinh(H - V) ± u3 sinht], (17) 

each combination of the signs occurring twice. The 
transformed weights w'satisfy the positivity condition 
(7) if 

U 1 cosh(H + V) > u 2 cosh(H - V) + u3 cosht, 

- u 1 sinh(H + V) '2: u2 sinh IH - vi + u3 sinh 1 t I. (18) 

This may always be satisfied at a given temperature 
by taking h Ro V « - 1 s I, independent of the other para
meters. So then we have 

(19) 

By using the convention Sex, 01 = 1, ..• ,4, we find in the 
same way that 

5'F(W) = 5'p(w) = g'o:(w) (20) 

if the direct field is large enough in the appropriate 
direction. The system is then in the frozen state Xo: 
with saturated direct polarization. Similarly if the 
vertex (2) is favored,i.e.,e 2 < e .. ,01 ~ 2,then (18), 
and hence (19), are always satisfied at sufficiently low 
temperatures. The same conclusion holds for (20) 
from which we conclude that if the vertex energies are 
such that the vertex (01),01 = 1, ... ,4, is favored, the 
system is in the frozen state Xa at sufficiently low 
temperatures, a result borne out by the exact solution.l 

In the case that the configuration 56 is favored, we 
use the convention C 56 so that the weak-graph trans
formation gives the weights 
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wi., ... ,Wg = t[U3 cosht ± u1 cosh(H + V) 
± u2 cosh(H - V)], 

WS' ••• ,w16 = HU3 sinht ± u1 sinh(H + V) 
± u 2 sinh(H - V)]. (21) 

Using (7), this leads to the conditions 

u 3 cosht> ul cosh(H + V) + u 2 cosh(H - V), 

u3 sinht 2: u1 sinhlH + vi + u2 sinhlH - vi. 
(22) 

By taking the staggered field s » 1 hi f':J 1 vi, at a given 
temperature, this can always be satisfied. Then 

5'p(W) = 5'p(w) = 5'56(w), 

With convention C 65' we find that 

5'F(W) = 5'p(w) = 5'65(W) 

(23) 

(24) 

if s « - 1 hi f':J - 1 v I. In both cases, the direct polariza
tion is zero. Similarly if the vertex energies are such 
that the configuration 56 is favored and s > 0, then (22), 
hence (23), is always satisfied at sufficiently low tem
peratures. Likewise, we find (24) to hold at sufficiently 
low temperatures and s < 0 if the configuration 65 is 
favored. The proof breaks down for s = 0 and h or v*,O 
(the F model in a direct field). Fortunately an alternate 
proof, which is valid for the F model with arbitrary s, 
exists. For continuity or reading, details of the latter 
proof will be given in the Appendix. We remark that, 
under (23), (24), or (AI), the free energy is independent 
of the direct field h and v. It follows that, in particular 
from (AI), Po is independent of hand v. 

(iii) The KDP and F models: While the results in 
(ii) above are sufficiently general, it is illuminating to 
specialize these conclusions to some special cases: 

KDP model in zero field: The exact transition 
temperature Tc is known to be given by u 1 = u 2 + U3; 
hence the condition (18) corresponds to T < Tc' We 
conclude that the system is in a frozen state for T < Tc ' 

a result known from the exact solution. 1 More generally 
we have 

(25) 

where X a , Q' = 1,2,3,4, is the ground state configuration. 

KDP model in a vertical field: -The condition (18) 
for the system to be in a frozen state X 2 becomes 

u1 coshV> U2 coshV + u3' v ::s O. (26) 

It can be easily checked that the temperature given 
by (26) is lower than the exact transition temperature 
T c [cf. (327) in Ref. 1]. Consequently the conclusion deri
ved here is somewhat weaker than the known exact 
result1 which states that the system is frozen for 
T < Tc' 
F model in a zero field:we conclude that 

T< Tc. 

where the transition temperature T c is given by the 
relation u3 = U1 + u 2 •1 

(27) 

F model in a staggered field: For s > 0 we find from 
(22) that (23) holds if 

We conjecture that (28} yields a lower bound on the 
exact transition temperature for a nonzero staggered 
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field. If also a direct field v is present, Eqs. (18), (22), 
and (A2) determine regions of constant polarization 0, 
± 1 in the (v, T) plane, which have the same qualitative 
shape as the regions found for s = 0 (Ref. 1, Fig. 31). 

IV. EXISTENCE OF Po 

In this Section we use Peierls argument10 to estab
lish the existence of the spontaneous staggered polar
ization Po in the general antiferroelectric (5),11 We need 
only to show the existence for the SBC S56' For the 
eight- and 16-vertex models the result is independent 
of the BC. For the F model, we then use the equivalence 
of SBC S 56 with other BC established in Sec. III in con
junction with the standard concavity argument12 to ex
tend the existence of Po to FBC and PBC. 

The first step of our proof is to introduce for a ver
tex model a graph representation consisting of closed 
contours. Consider a lattice L' composed of all lattice 
points of L and also the intersecting points of the dia
gonals in L. The edges of L' are the half-diagonals in 
L. An example of L' and its relationship with L is 
shown in Fig. 3 for a 4 x 4 lattice. Consider the four 
quadrants belonging to a vertex of L. If a quadrant is 
bounded by two arrows pointing in or by two arrows 
pointing out, we draw a bond along the half-diagonal 
bisecting the quadrant. Then one can easily see that 
there are always an even number of bonds meeting at 
any interior vertex of L'. This is also the case on the 
boundary of L', as illustrated in Fig. 3, if one assumes 
SBC S56 or S65 in L. The result is then.a one:to-one 
correspondence between the arrow conjzguratzons on L 
(assuming S56 or S65) and the closed-polygonal con: 

figuration on L' 13 This correspondence holds even If 
some of the vertex energies of L are + co such as in the 
F model. This only restricts the allowed contours on 
L' and will not affect the following discussions. 

With these preliminaries, it is now relatively easy 
to formulate the Peierls argument. Since our proof 
follows closely the standard argument,12 we shall only 
point out the essential pOints. From (8) we have 

Po = lim (l/N)(n+ -nJ, 
n-+OO (29) 

where n 5 B denotes the number of (5) vertices on sub
lattice B,etc., and ('j is the thermal average. Den.ote 
the vertices of n+ by" +" and n_ by "-", as shown m 
Fig. 3, then the contours on L' separate seas of "+" 
from "seas" of "-1'. In fact, the contours go through all 
vertices except (5) and (6). Furthermore, the boundary 
of L' cannot be "-1'. Let 

E = min{e1, ... , e 4 , ~e7' ~e8' e 9 ,··· ,e16} >~. (30) 

Then each bond segment on L' has a weight of at most 
exp(- E/2kT). The standard argument then gives 

(l/N)(nJ ::s ~ (b/4)2 3b- 1e- b</2kT. (31) 
b"'4 

Similarly the average fraction of vertices other than 
(5) and (6) is bounded by 

1 - (l/N)(n+ + nJ::s ~ 3b - 1e- b<i2kT. 
b"'4 

The right-hand sides of (31) and (32) can be made 
arbitrarily small at sufficiently low temperatures. It 
follows then (l/N)(n+ - nJ is nonzero and hence 
Po> 0 exists. This completes the proof. 

(32) 
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V. DISCUSSIONS 

Our methods are especially suited for discussion of 
the low temperature properties of the vertex models. 
They do not allow us to establish the equivalence of 
FBC and PBC for the six-vertex models at high tem
perature, except in the case of zero field where the ex
istence of extra symmetries permits us to complete 
the proof. 

We wish to point out that it is a mere consequence of 
the ice rule that the six-vertex model can be put in a 
frozen state X ex' CY. = 1,2, 3,4, if the vertex CY. is favored. 
This frozen state disappears as soon as the ice rule is 
violated. Indeed, another way to state these properties 
is to say that the free energy is not a strictly convex 
function of the direct fields h and v at sufficiently low 
temperatures. However, it has been shown14 that the 
eight- or the 16-vertex model in a direct field h, v and 
a staggered field is equivalent to an Ising model on a 
square lattice with finite, but short-ranged, interactions. 
Recently, Griffiths and Ruelle 15 have shown that the 
free energy of such lattice system is a strict convex 
function of the translationally invariant interactions. 
Since the translationally invariant interactions of the 
corresponding Ising model depend linearly on h and v, 
the free energy of the eight- or 16-vertex models will 
be a strictly convex function of hand v. This then 
rules out the occurrence of the frozen states in these 
models. 

To conclude our discussion, we list some unsolved 
problems related to the F model which appear to be 
particularly challenging: 

(i) Are g: F and g: p analytic in s near s = 0 at suf-
ficiently high temperatures? We note that Baxter 16 has 
shown g: p is singular at s = 0 when T = 2 T c' 

(ii) What is the decay of the correlation functions? 
Is it exponential like in an ordinary lattice gas with 
short-ranged interactions? 

(iii) We expect Po = 0 for T > T c and a rigorous 
proof of this fact appears to be lacking. 

(iv) In the F model, like in an antiferromagnet, the 
translational invariance is broken at low temperatures 
and under small direct fields. In the (v, T) plane, for 
example, we then expect a boundary B 1 which separates 
the regions where Po = 0 and Po -;t 0, as in an ordinary 
antiferromagnet. Does this boundary coincide with the 
boundary B2 separating the region of vertical polariza
tion y = 0 and y -;t 0 ? Note that B l' but not B 2' disappears 
if there is a nonzero staggered field. On the other hand, 
as discussed in the above, it is B 2' not B l' which dis
appears when one goes over to an eight-vertex case. 

(v) Does the staggered susceptibility diverge along 
the boundary B1 separating regions of different long
range orders. Here we note that Baxter found that the 
staggered susceptibility diverges at T = 2T c ! 
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APPENDIX 

In this appendix we prove the following result for the 
F model specified by (2) and (4): 

g: F(S) = g: p(s) = g:56(s), S 2: 0, 

= g:65(s), s ~ 0, (AI) 
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FIG. 3 . Relationship between the lattices Land L'. Arrow configurations 
on L are mapped into closed-polygonal configurations on L'. The map
ping is one-to-one if L assumes the SBe 8 56 as shown here. The poly
gons on L' separates the + and - vertices on L and the upper left 
vertex belongs to sublattice B. 

provided that 

T ~ min{Tc ' (E + Is i)/ln3}. (A2) 

Here T c is the transition temperature of the F model 
in zero field, and E is the minimum vertex energy 
defined by (29). First we establish the following lemma: 

Lemma: 

Z562:Z 65 , 

Z652: Z 56' 

Proof: The partition functions Z 56 and Z 65 are in
dependent of h and v. Consider Z 56 and Z 65 as functions 
of the complex variable z = exp(s7kT). The boundary 
condition S 56 can be simulated by taking z = ex) at the 
boundary of the volume. It then follows from the work 
of Suzuki and Fisher 17 (see also Chang et al. 18), that 
the partition function belongs to the Lee - Yang class 
(Ref. 17 ,Def. 1) for T ~ T c' so that then we have 19 

Izl2: 1. 

Also by arrow reversal we have, for all z, 

Z56(Z) =Z65(z-1), 

which says that, for I z I = 1, 

Z56(Z) =Z65(z*) =Z65*(Z). 

Hence the function 

j(z) == Z65(Z)/Z56(z) 

(Aa) 

(A4) 

(A5) 

is analytic in z for I z I 2: 1 (z = ex) included) and satis
fies 

I j (z ) I = 1 for I z I = 1. (A6) 

The maximum modulus principle then gives 

Ij(z)l~ 1 foralllzl2: 1. (A7) 

In particular this leads to the first part of the Lemma. 
The second part is obtained by symmetry. 
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Now we proceed to prove (A1). First consider s ~ O. 
Using the notation of Sec. IV, we note that with FBC on 
L the contours can terminate at the boundary of L'. So 
any configuration can be described in terms of con
nected paths i\k beginning and ending at the boundary 
together with closed contours. The paths i\k divide L 
into subvolumes Aj which have the BC S56 or S65 
(adjacent subvolumes have opposite BC). Since the poly
gon-to-arrow-configurations correspondence is two-to
one, then to each path {i\k} on L' there correspond two 
terms of the form 

n e -,. (AW
lkT n Z a(A

J
) (A8) 

k j 

in the partition function Z F(L). Here Ci stands for either 
56 or 65 and u(i\J is the sum of the vertex energies 
along the path i\k' Thus, by the lemma just proved, an 
upper bound on Z ~L) results for s ~ 0 if we replace 
all Z a in (A8) by Z 56' Furthermore, we note that 

SIAkl/kT 
Z 56(L) ~ ~ e ~ Z 56(Aj ) (A9) 

since every term on the right-hand Side of (A9) appears 
in Z 56(L) but not vice versa; here I i\k l is the number of 
vertex pOints along i\k' Using (29), we have also 

u(i\k) ~ E 1 i\k I. (A10) 

Combining (A8)-(AIO) and replacing Z a by Z 56 in 
(A8), we then obtain the bound 

ZF ~ Z56D , 

where 

s ~ 0, 

D = z::: e-(€+S)IAkllkT. 

{A,.} 

(All) 

(A12) 

Now each i\k must pass through at least one pOint on 
the boundary, we obtain 

4n+4 (4n+4) ( ) D ~ z::: . L; 3 be -b(£+s)/kT a 

a = 0 a b;;;,1 

= (1 + z::: 3 be - b(£+ S)lkT) 4n+ 4, 
b;;;,1 

(A13) 

where 4n + 4 is the number of vertices on the boundary 
of L'. The series in (A13) converges if 

kT < (e + s)/ln3. (A14) 
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On the other hand, we have generally1 

(A15) 

Thus we deduce the first statement (s ~ 0) of (A1) on 
taking the thermodynamic limits of (All) and (A15). The 
statement with s ~ 0 can be Similarly obtained or by 
symmetry considerations. 

We remark that the result (A1) is valid for arbitrary 
s. Furthermore, for small 1 s 1 , the temperature bound 
(A2) is better than the one obtained in Sec. lIT using the 
weak-graph expansions. 
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An exact, closed-form, static spherically symmetric solution to the field equations of a scalar-tensor 
theory is given. This is compared with the series solution given previously. Also, an analysis is made 
of the geodesics of the theory. 

1. INTRODUCTION 

Recently a new scalar-tensor theory l.2 of gravitation 
was proposed by one of the present authors. A formal 
series solution of the static spherically symmetric case 
was also given at the same time. In the meantime 
Halford3 has given a closed-form solution in isotropic 
coordinates, and also analyzed the autoparallels of the 
affine connection. He concluded thereby that the theory 
predicts the same effects, within observational limits, 
as the Einstein theory. We pointed out, 1 however, that 
in this theory the geodesics of the metric are not iden
tical with the autoparallels of affine connection-they dif
fer in the numerical values of some of the coefficients 
involved in the two equations. Since it is more natural 
to assume that test particles follow geodesics rather 
than autoparallels, it seems worthwhile to analyze the 
geodesics also. In this paper we give an exact closed
form solution in the standard Schwarzschild coordinates 
and compare with the previously given series solution. 
We also analyze some of the geodesics. 

2. AN EXACT STATIC SPHERICALLY SYMMETRIC 
SOLUTION 

We shall follow the notations of Sen and Dunn'! The 
field equations (in vacuum) are 

R 8 - !. g: R + w(xO)-2x O xo + (w/2)(xO)-2g xO xO.u == 0 
ex 2 ,as , ex ,B etS ,U ( ) 

2.1 
where w == 3/2. 

In the static spherically symmetric case, we have 

(2.2) 

where 

X = X(r), v = vCr), xO = xO(r). 

Equation (2.1) thus reduces to the following equations 

e U = D + Ccp(r), (2.3) 

e A = Ar4 [cp'(r)]2/[D + Ccp(r)], (2.4) 

xO = const expj{- [(4/wr 2) + (2/wr)(cp"/cp')]} 1/2dr, 
(2.5) 

where cp satisfies the following differential equation: 

(D + Ccp)(1 + rcp"/cp') + Ar4 cp'2 - Crcp' = O. (2.6) 

Here A, C, D are integration constants. Our main 
purpose is to solve (2.6). If we make the substitution 
v = rcp' /(D + Ccp) in (2.6) we have v' /v 2 = - Arcp' = 
2Arcp - (r 2cp)' and thus 

(C/2)(- v-I + Ar2cp)' = CArcp (2.7) 
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and 

(- v-2/2 + ~ADr2)' = - CArcp. 

Adding (2.7) to (2.8) we get the first integral 

1 + Cv - (ADr2 + Acr2cp - K)v 2 = 0, 

(2.8) 

(2.9) 

where K is an integration constant. Consider first two 
special cases. 

C= 0: 

From (2.9) we have 

cp' = ± D/r(ADr2 + K)l/2. 

Substituting in (2.3), (2.4),and (2.5) we get 

e V == D, e A == ADr2/(ADr2 + K), 

xO = const expj(- 2K )1/2 dr. 
wr 2(ADr2 + K) 

(2. 10) 

(2. 11) 

(2.12) 

Intejratjg (2.10) we find that cp(r) == - (1/J- K) 
sin- 1[ - K A(I/r)l if D = 1. This agrees with the series 
solution given by Sen and Dunn l for r> IK/A 1112. As 
far as we know, this solution has no analogue in the 
Brans-Dicke4 theory. 

K == 0: 

From (2.9) we have v = 1/(Ar3cp' - C), which to
gether with (2.7) gives CP' = K2/r2, cp = - K2/r + K 3 , 

where AK~ = (D + CK3 )K2 in view of (2.6). Thus xO = 
const and we obtain the Schwarz schild case. 

C ;: 0, K ;: 0: 

From (2.7) we have rv'/v = -Ar3 cp'v which on sub
stitution in (2.9) gives - dr/r = dv/v(1 + Cv - Kv 2) or 

r = L [exp(- jdv/v(1 + Cv - Kv 2 )], (2. 13) 

where L is an integration constant. And 

cp = [M(expC Jt- dv/(1 + Cv - Kv2]) - D]/C. (2.14) 

Equations (2.13) and (2.14) give implicitly the exact 
solution of (2.6). They can be Simplified in certain 
cases. For example, if K < 0, C2 + 4K> 0, we have 

cp == (MX2J1+1 -D)/C, (2.15) 

where sL(a_ - aJx" - ra+X + ra_ = 0, 

n = ~(C/JC2 + 4K - 1), a± = (- C ± -./C2 - 4K)/2K, 

s = sgn[(a+ - aJ/(1 - X)]. In evaluating (2.15) from 
(2.13) and (2.14) we had put X = (v + a)/(v + aJ. 
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FIG. 1. 

From (2.13) and (2.14) one can show that there exists 
a number ro such that the series expansion cp(r) = 
:B:'=oa .. r-" is valid for r > ro and which agrees with 
the one previously given. 

_ Note that in this_theory ds2 = (xO)2 g ll),dxlldxA = 
gilA dXildxA, where g)JA = (XO)2~IlA' It is possible to cal
culate the first few terms of goo, for example. We have 

goo = 1 - (Ic va + ..rarw .J- K/A)(l/r) + 0(I/r2). 
(2.16) 

3. GEODESICS 

The geodesics are given by 

J (. dx)J d'XK) 1/2 
Il \(XP)2g )JK diJ diJ du = O. (3.1) 

For time-like geodesics u would be the proper time s. 
Equation (3.1) has as a first integral (dXJ1./dIJ = XIl) 

K1 = (xO)2[e ll(r)t2 - e A(r).y2 - r2iJ2 - r2 sin2e<t>]. (3.2) 

For motion in the equatorial plane iJ = 0, e = 1T/2. 
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The relevant Euler-Lagrange equations are then 

[(xO)2ev(r)if = 0, (3.3) 

[(XO)2r 2 sin2 e<i>J" = 0 (3.4) 
or 

(3.5) 

where C 1> C 2 are constants. 

Substituting in (3.2) we get 

.y2 = e-A(r)[Q/(xO)4e2v(r)_ Cy(xO)4r2 - Kl/(xO)2J 

or (3.6) 

IJ - U o = Je A(r)!2xodr/[CIl(xO)2e211(T) 

- C~/(xO)2r2 - Ktl 1 / 2 • (3.7) 
Also from (3.5) 

f 
eA(r)!2 

cP - <Po = C2 --[Crr2 - e-211{r) - C~ r 
- Kl (xO)2r2)1!2dr. (3.8) 

Consider now the special case C = 0, D = 1. Then 

i = C/(XO)2, <t> = C 2/(xO)2r2, e = 1T/2 (3.9) 

and 
C2adr 

<P - CPo = f [_ Kl (xO)2r2 + qr2 _ qp/2(Ar2 + K)1/2 
(3. 10) 

The null geodesics are given by Kl = O. If we assume 
that cr./- q = A/K, we get 

and 

f Q'dr 
CP-CPo= r 2 +K/A 

{ 
Q' tanh(Q(CP - CPo» 

r = Q' coth(Q(CP - cP 0» 
if r < (- A/K)-1/2 

if r > (- A/K)-1/2' 
(3.11) 

where Q, Q' are constants. Fig. 1 shows the trajectory 
of light rays in the e = 1T/2 plane. 

*Supported in part by the National Research Council of Canada. 
ID. K. Sen and K. A. Dunn, J. Math. Phys. 12, 578 (1971). 
2D. K. Sen and J. R. Vanstone, J. Math. Phys. 13,990 (1972). 
3W. D. Halford, J. Math. Phys. 13, 1699 (1972). 
'c. Brans and R. H. Dicke, Phys. Rev. 124,925 (1961). 
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Invariance implies that the momentum operator should oe represented by the covariant derivative. 
For a general dynamical system, both covariant canonical and path integral quantization yield in 
the Schrodinger equation a correction term proportional to the curvature. Earlier erroneous calcula
tions are hereby corrected and reconciled. 

I. INTRODUCTION 

De Witt! and, more recently, Cheng2 have shown that 
the SchrOdinger equation for a general dynamical sys
tem contains an additional term. This term is propor
tional to the scalar curvature, R, of the Riemannian 
configuration space whose metric is defined by the 
kinetic energy. When the curvature is not constant this 
term changes the energy spectrum. 

The curvature term has been quite a puzzle. "Usual" 
quantization through commutation relations and "Feyn
man" quantization through path integrals3 have so far 
yielded different and rather ambiguous results. 

In this paper we endeavor to reconsider the question. 
We will show that a careful analysis leads to the same 
answer in both aforementioned cases. 

The tensorial concepts and notations will lean heavily 
on Schouten 4 and Veblen,5 which should be consulted. 

II. COVARIANT COMMUTATION RELATIONS 

We will show that, in a curved space, Po:' the canonic
ally conjugate momentum operator to the coordinate 
qo: must be taken as - i1iV 0:' where V 0: is the operator 
of covariant derivation. 

On the baSis of classical mechaniCS, we postulate 
validity of the canonical commutation relations and 
deduce the correct form of P 0:' 

The commutation relations are 

[qo:, qB] = 0, (la) 

(lb) 

(lc) 

where qO:,PB are canonical coordinates and momenta, 
Ig is the unit tensor, and brackets denote the commuta
tor. 

It is understood that: 

(A) The q's and the P's are linear operators on a 
Hilbert space of functions 1/1 and so are their commuta
tors. 

The wave function 1/1 is defined on the (n+1)-dimen
sional state space {qO:, t 10/ = 1, ... , n} (where t is time) 
which is assumed to be Riemannian. Then 1/1 = 1/1 (qO:, t) 
must be a density of weight 1/2 in the Riemannian con
figuration space {qO:I 0/ = 1, ... , n}. Indeed, the volume· 
element 

do = E dqO:) dqO:n 
i\ .0:

1
", O:n ••• (2) 

is manifestly a capacity (density of weight - 1); here 

E ~ + 1 v1, .... n , (3) 
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is the Levi-Civita capacity. But 1/I*l/IdfJ must be a scalar. 
Hence 1/1 must be a density of weight 1/2; we shall call it 
a "half-density" for short. 

The commutation relations (1) together with the postu
late (A) imply that 

Po: =- inDo:, (4) 

where the operator Do: stands for some kind of deriva
tive with respect to qa. In Euclidian space and Cartesian 
coordinates (c) it is Simply the partial derivative, 

D=iJ~-iJ-. 
C C iJqC 

(5) 

However, given any vector vO: in a more general space, 
iJo:vB won't be a tensor. Yet,po: is manifestly a covector 
in {qo:}, whence po:v B must be a tensor. Consequently, we 
must postulate that: 

(B) The operator Po: has the properties of a co
vector when applied to a tensor. 

This leaves us no choice but to identify Do: with the 
covariant derivative V 0:' Thus, we find 

It must be remarked that the coordinates qo: are not 
the components of a vector. Neither are they genuine 
scalars. But the covariant derivative of the geometriC 
object q 0: is a tensor, namely 

This is the reason tHat it is unusual to write V a qB • 
It must be kept in mind, however, that the covariant 
derivative has been originally introduced to be consis
tent with (7). 

Also, it is important to remember that the explicit 
form of the operator V 0: depends on the kind of geo
metric object it is applied to. 

III. LAGRANGIAN FORMALISM 

We define the Lagrangian 

(7) 

(8) 

where the generalized mass tensor Io:B, the vector poten
tial A 0:' and the scalar potential V are functions of the 
points (q 0:, t) of state space, while the velocities are 
functions of time, t. 

Introducing 

ds 2 = I rxBdqaaq8 (9) 

as the fundamental metric form in configuration space 
{q o:} the latter becomes a Riemannian space with 10:8 as 
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metric tensor and lrxB as its inverse, which will be as
sumed to exist. The notation is motivated by the identity 

(10) 

whence it is seen that the metric tensor and its inverse 
are, in essence, the unit tensor with both indices lowered 
or raised, respectively. 

The momentum is by definition 

(11) 

Hence, the metric allows us to pass from the 4' s to 
the P' s. In fact, qrx and p rx - A" become the vector and 
covector components of the same object. 

From (8) the Hamiltonian becomes, as usual, 

H = t(lCLKP K - Arx)l"s(lS>p A - AB) + V 

= tpi"sps - A "Prx + ~'''A" + V, 

where 

The potential terms in L and H are irrelevant for 
our purpose and will be henceforth omitted. 

IV. CURVATURE TERM BY CANONICAL 
QUANTIZATION 

(12) 

Now, we take the Hamiltonian and replace the momen
ta p rx by the operators (6) 

H = tPj"SPs =- ~2 Vcl"&v s =_1i; laBvrxVs ' (14) 

The last equality is valid because laS is covariant 
constant: 

ValSY = O. (15) 

In order to write out explicitly the expected extra 
term in the Hamiltonian we introduce new differential 
operators called extensions. 4 •5 At the point q = q of 

o 
configuration space we introduce normal coordinates 
(i) with q as origin (q i = 0) and t as a parameter. In 

o 0 
normal coordinates, the affine connection r'Cl vanishes 
at the origin while its partial derivatives behave as 
tensors: 

(16) 

(17) 

Now,N jI •.. kl ":' can be transformed back to general co
ordinates (a) by 

N o=li1 .• ·j,..klo N . . m. (18) 
"1···",.. By· "'1··· "',..Bym 'r .. ',..kl. 

N j ••• j kl":' is called the rth normal tensor; it is intimate
ly bonnected with the curvature tensors up to the rth. 

Any quantity can be H extended" by taking its partial 
derivative in normal coordinates (i) and afterwards 
transforming back to general coordinates (a) by a ten
sor transformation. For instance, if v'" is a vector, its 
rth extension is 

(19) 
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The extensions differ from the covariant derivatives 
by terms containing only the quantity itself and powers 
of the normal tensors. The first extension is, of course, 
identical with the covariant derivative, but this is not 
true for the higher extensions. 

After this digression, we are ready to evaluate H as 
given by (14). We apply the second covariant derivative 
V rxB to the wave function l/-' 

V"Bl/-' = V,,(oBl/-' - trel/-') 

= o"Bl/-' - tlf/o",rB - trBoal/-' 

- r~BoKl/-'- traoBI/! + tr:'.BrKl/-' + ir",rBI/!, 

where 

r a ~ r~K = !oa lng, 

is a density of weight 2. 

In normal coordinates the rfi vanish, Hence, 

V",Bl/-' = {;5.l~B{Oijl/!- !I/!Ojrj } 

= ..fAI.~{Ojjl/!- tNjjl/!} 
* 1 = VaBI/! - "2 N aBl/-' , 

where 

to ~ det(Ir), 

NaB ~ Na/3K~· 

We have 

N o-:'R 6 "By. - 3 ,,(By).' 

where Raf,y ~ is the (first) curvature tensor. In a 
Riemannian space 

is the Ricci tensor. 

Thus, we derive 

* 1 Vasl/! = V"BI/! + aRaBI/!· 

Finally, for the Hamiltonian (14) we obtain 

~2 n2 * n2 
HI/! = - 2 laBV rxal/! = - 2" laf,V rxal/! - 12 Rl/-', 

where 

is the scalar curvature. 

V. CURVATURE TERM BY PATH INTEGRATION 

We consider the evolution of a dynamical system 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(29) 

(30) 

(31) 

from time t = to - T up to time to- We wish to apply 
Feynman's method of path integration to a curved space. 
In doing so extreme care must be taken to keep all inte
grands scalars. Otherwise the integrals are not valid. 
Since the wave function l/-' is a half-density one has to 
multiply it by factor g-1/4 in order to obtain a scalar. 

We introduce the abbreviations 

1 & j(q(t), t), 10 ~ j(q(tJ, to)' (32) 
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The correct expression representing the evolution of 
the system becomes now 

1/1 = Agl/4 i exp{iS/1i} (1/Ig-1/ 4)(g1/2dq), 
o 0 {q} 

where S is the classical action 

t 
S £ S(q,q) £ minl° L(q(s),q(s»ds, 

o t 

with boundary conditions 

q(s=t)=q, q(s = to) = q. 
o 

A is a normalization factor to be determined later. 
Since L is a constant along a geodesic line, we have 

S = LT = LT = tI cxBqaqB T• 
o 000 

(33) 

(34) 

(35) 

(36) 

In the limit T ~ 0 (33) yields the Schrodinger equation. 
The integrals appearing in (33) are generalizations of 
the Gauss integral: They take the form6 

.F'l·· ' CX 2m 

:@:fOdql ••• fo dqn exp(~ I BqaqB) (qCX1 • • • qCX2 m) 
-00 -00 2hT cx 

== (27Tih)n/2(i1iT)mg-l/2 (2m - I)!! 

(37) 

Integrals with an odd number of qCX's vanish, of course. 
Clearly, only a hyper sphere of radius (nT/ g)1/2 around 
the origin contributes to these integrals. Thus, one can 
expand the integrand around q as a power series in 
qCX_ qcx. 0 

o 

The expansions are best performed in normal co
ordinates (i) with origin qi == O. Then we have 
qi(t) == qit and4 0 

+ Nnmkliiqnqmqkql + ... }qiqi 
o 

=~{I'i + Nkt""qkql + ... }qiqi 
2T oj 0 J' 

(38) 

We will expand only up to the second term. However, 
we will show qualitatively how the higher terms enter 
into the Schrodinger equation. 

For the wave function in normal coordinates we have 
the expansion 

1/1 = I/I(q, t) + ~qiV.1/I + ~ qiqiV .. 1/1 + '" 
o 1! 0' 2! 0 J' 

==I/I(qo,t) + qia,l/I + tqiqi(aii- tNii)l/l +. ", (39) 
000 

while gl/4 is constant in these coordinates. 

We now substitute the expansions (38), (39) into (33). 
We leave the first term of (38) in the exponential and 
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expand the rest. In Eq. (33) we expand 1/1 o,evaluate the 
integrals on the rhs and determine the normalization 
factor A. This procedure yields 

t/I + /01/1\ + ... = t/I + tt'hTrfi(a]l" - tN .. )t/I 
,at} J' 

- fi,IITI(lkri;)N1ki,l/I + "', (40) 

where we have already omitted the subscript O. 

Now we apply (26), (27), and (31) to replace the nor
mal tensors by curvature, transform Eq. (40) back to 
general coordinates, and, after multiplication by in/T 
we finally obtain the Schrodinger equation, 

al/l 1i2 * 1i2 
in- =- _IcxBV BI/I- - RI/I. 

at 2 cx 12 

The equation is manifestly invariant. Clearly, the 
Hamiltonian is identical to that given by (30) which was 
obtained by canonical quantization. 

VI. CONCtUSIONS AND OUTLOOK 

For a generalized dynamical system, i.e., one whose 
kinetic energy form induces a nonvanishing and variable 
Riemannian curvature in configuration space, the 
Schrodinger equation contains an additional term pro
portional to the scalar curvature R. This curvature 
may be due to curvature of space-time or constraints. 
We have shown that both canonical and path integral 
quantization yield the same result, namely + -n2R/12. 
This was achieved by making sure that the path integral 
(33) was invariant. This point was overlooked in previ~ 
ous calculations aJld was the source of errors and in-. 
consistencies. It should be emphasized that the correc
tion is of a kinematic nature and belongs to the kinetic 
energy. Therefore, it does not show up in the Lagrangian 
with reversed sign. 

In most cases the curvature term will be insignificant. 
It might be interesting for highly condensed matter such 
as neutron stars. Of course, in this case the validity of 
the Schrodinger equation itself is questionable. Yet, if 
R is induced by constraints the term might well be 
significant and change the whole spectrum of the dyna
mical system. That may happen, for example, in a solid 
if a continuous mass distribution is taken into account. 

If the expansion is carried further, additional correc
tions might appear. From eqs. (37) through (40) it can 
be seen that the odd corrections always cancel out. The 
next term will contain the fourth derivative of the wave 
function, the second derivative with a coefficient of 
order R, and the wave function multiplied by a co
efficient containing the second covariant derivative of 
the curvature tensor and contractions of the curvature 
itself. Thus, the next correction will be altogether of 
order 1i3TR2, hence vanishingly small. 

'B. S, De Witt, Rev. Mod. Phys. 29, 377 (1957). 
'K. S. Cheng, J. Math. Phys. 13, 1723 (1972). 
3R. P. Feynman, Rev. Mod. Phys. 20, 327 (1948). 
4J. A. Schouten, Ricci-Calculus (Springer, Berlin, 1954), 2nd ed. 
'0. Veblen, Invariants of Quadratic Differential Forms, (Cambridge 
D.P., Cambridge, 1962). 

6In Ref. 2 the factor 2 is missing from the rhs. The error, however, 
cancels out by repeating it in the normalization factor. 
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We prove several theorems about quantum-mechanical entropy, in particular, that it is strongly 
subadditive. 

1. INTRODUCTION 

In this paper we prove several theorems about quan
tum mechanical entropy, in particular, that it is strongly 
subadditive (SSA). These theorems were announced in 
an earlier note,1 to which we refer the reader for a 
discussion of the physical significance of SSA and for 
a review of the historical background. We repeat here 
a bibliography of relevant papers. 2 - S 

The setting for these theorems is as follows: 

(a) Given a separable Hilbert space H and a posi
tive, trace-class operator, p, on H [i.e:, p 2: 0 means 
It/l, pt/l) ~ 0 for all t/I in H], the entropy of p is defined 
to be 

00 

S(P) == - Trp lnp = - ~ A; InAi' (1. 1) 
;=1 

where Tr means trace, the A; are the eigenvalues of p, 
o InO == 0, and we permit the possibility S(p) = co. In 
physical applications one also requires that Trp = 1, 
in which case p is called a density matrix. 

(b) If H 12 = H 1 181 H 2 is the tensor product of two 
Hilbert spaces and P12 is a positive, trace-class opera:
tor on H 12' we can define a positive, trace-class opera
tor,P1' on H1 by the partial trace, i.e., 

P1 == Tr2P12 

by which we mean 
00 

(CP,P1t/1) =~ (cp 181 e;,P12[t/l18I e;]) 
;=1 

(1. 2) 

(1. 3) 

for all cp, t/I in H 1 and {e;} ;~1 any orthonormal basis in 
H2 • We shall denote S(P1) by S1' etc. In like manner 
one can have H 123 = H1 181 H2 181 H3, and P123 a positive, 
trace-class operator on H 123 , and define P12 on H12 == 
H1 181 H2, P1 on H 1, etc. by partial traces. When no con
fusion arises, we shall frequently use the symbol P1 to 
denote the operator P1 181 12 on H 12' 
Our main results are the following two theorems. 

Theorem 1: Let H 12 = H 1 181 H 2' Then the function 

(1. 4) 

is convex on the set of positive, trace-class operators 
on H 12 • 

Theorem 2 . (Strong Subadditivity): Let H 123 and 
P123 be defined as in (b) above. Then 

(i) S123 + S2 - S12 - S23 ::s 0 (1. 5) 

and 
(ii) S1 + S3 - S12 - S23 ::s O. (1. 6) 

In the next section we prove these theorems in the 
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finite-dimensional case. In Sec. 3 we elucidate the con
nection between these two theorems and give some 
related results. Sec.4 contains the proofs for the infin
ite-dimensional case and is based on the appendix 
kindly contributed by B. Simon, to whom we are most 
grateful. 

2. PROOFS OF THEOREMS 1 AND 2 IN THE 
FINITE-DIMENSIONAL CASE 

Proof of Theorem 1: The theorem states that 

(S1 - S12)(P12) ::s a(S1 - S12)(P~2) 

+ (1 - a)(S1 - S12)(P12) (2.1) 

where P12 = aP12 + (1 - a) p'12' 0 ::s a ::s 1, and P~2 
and P'~2 are any positive, trace-class operators on H 12 • 
We shall assume that both P~2 and p'12 are strictly 
positive and appeal to continuity of P H S(p) in the 
se midefinite case. Letting 

A = a Tr12p~2 (-lnp12 + Inp~ + lnp12 -lnP1) 

and 

r = (1 - a) Tr12P12 (-lnp12 + InPl + InP12 -lnP1)' 

one sees that (2. 1) is equivalent to A + r ::s O. We now 
use Klein's inequality 7,10: 

Tr(-A InA + A InB) ::s Tr(B -A). (2.2) 

(Alternatively, one could use the Peierls-Bogoliubov 
inequality in a similar way.2) We first apply (2.2) to A 
with A = P~2 and B = exp(lnp~ + lnP12 - lnP1) and then 
similarly to r. Then 

A + r ::s a Tr12 [exp(lnpl + Inp12 -lnp1) - P12] 

+ (1 - a) Tr12[exp(lnpl + Inp12 -lnP1) - P12] 

::s Tr12 [exp(lnP1 + InP12 -lnp1) - P12] = O. 
(2.3) 

The second inequality in (2.3) follows from the concav
ityll of C H Tr[exp(K + lnC)] for positive C applied 
to P1 = ap~ + (1 - a)Pl with K = Inp12 -lnp1' Q.E.D. 

Proof of Theorem 2: It has already been pointed 
out 2 that (1. 5) and (1. 6) are equivalent; however, we 
shall prove each statement separately. 

(i) Proof of (1.5): We use Klein's inequality, (2. 2), 
with A = P123 and B = exp(-lnP2 + Inp12 + lnP23)' One 
finds 

F(P123) == S123 + S2 - S12 - S23 

::s Tr123 [exp(l.np12 -lnP2 + Inp23) - P123]' 

Copyright © 1973 by the American I nstitute of Physics 1938 



                                                                                                                                    

1939 E. Lieb and M. B. Ruskai: Strong subadditivity 

We now apply a generalizationll of the Golden~ 
Thompson inequality, Le., 

Tr[exp(lnB - InC + InD)] 

;:S Tr J; B(C + x 1)-1 D(C + x n)-1dx. (2.4) 

Thus 

F(P123) ::s Tr123cr; P12(P2 + xt)-1 

X P23(P2 + xt)-1dx - P123) 

= Tr 2 f; P2(P2 +xl)-1p2 (P2 +xl)-1dx - Tr123P123 

= Tr2P2 - Tr123P123 = O. Q. E. D. 

(ii) Proof of (1 . 6): Call the left side of (1. 6) 
G(P123)' Note that S1 - S12 is convex in P12 by Theo
rem 1; since P12 is linear in P123' S1 - S12 is convex in 
P123' Thus, Glp123) is convex in P123' In the convex 
cone of positive matrices, the extremal rays consist 
of matrices of the form P = aP where a ~ 0 and P is a 
one-dimensional projection. If P123 is extremal, then 
(see Ref. 2, Lemma 3) 8 1 = 8 23 and S3 = S12' so that 
G(P123) = O. Every positive matrix P123 can be 
written as a convex combination of extremal matrices; 
it then follows from the convexity of G that G(P123) ::s O. 
Q.E.D. 

3. REMARKS AND RELATED RESULTS 

We have already noted in the proof of (1. 6) that 
Theorem 1 implies Theorem 2. We now note that the 
converse is also true and give several alternative proofs 
of Theorems 1 and 2. We then show that F(P123) is not 
convex and give a corollary to Theorem 1. 

(A) To show Theorem 2 implies Theorem 1 it suffices 
to note that [apart from the trivial interchange of the 
subscripts 1 and 2 in (2. 1)] (1. 5) is identical to (2. 1) 
for a special choice of P123,Le"P123 = api2 18i E3 + 
(1 - a)p~2 I8i F 3 where H 3 is chosen to be two-dimen
sional and E3 and F 3 are orthogonal, one-dimensional 
projections on H 3' 

(B) Uhlmann9 has shown that (1. 5) follows from the 
concavity of C H Tr exp(K + InC). This has been 
shown to be true by Lieb,ll and an alternate proof was 
later found by Epstein.12 Therefore, Uhlmann's 
remark gives an alternate proof of (1. 5). 

(C) The proof of (1. 6) shows that Theorem 1 implies 
Theorem 2. However, (1. 6) is not equivalent to (1. 5) in 
other contexts .13 [In fact, (1. 6) is false in the classical 
continuous case. 5 ] Therefore, it is instructive to note 
that one can show that Theorem 1 implies (1. 5) directly 
without using (1. 6). Baumann and JOSP,5 have shown 
that a spe£ial choice of pi,;l and P~2 in (2.1) implies 
that Tr fo A*(C + xn)-1A\C + xl)-1dx is jointly convex 
in (A, C) Where A and C are matrices with C > O. Lieb 
has then shownll that this implies C H 

Tr exp(K + inC) is concave in C. The last statement was 
used to prove ll (2.4) which, as we have already seen, 
implies (1. 5). Alternatively, we have already noted in 
(B) above that concavity of C H Trexp[K + InC] 
implies (1. 5). 

(D) We have already shown that the left side of (1. 6), 
G (p 12 3)' is convex. One might wonder, therefore, if the 
left side of (1. 5), F(PI23)' is also convex. In fact, it is 
not. If it were, one could choose H 2 to be one -dimen
sional so that 
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would have to be a convex function of P13' Take HI and 
H 3 to be two-dimensional and choose P13 and P13 to be 
the following orthogonal, one-dimensional projections: 

Pi3(il' i3; jl> h) = ~15(il> i 3)15(j1> h) 
and 

where 15 is the Kronecker delta. Then pi = pi = ~11' 
P3 = P; = ~13' and E(pi3) + E(P'{3) - 2E(~pi3 + ~P'{3) 
= - 2 In2 < 0, which is a contradiction. 

(E) It was pointed out in Ref. 11 that if f(A) is a con
vex function from the set of positive matrices into R, 
and if it is also homogeneous [Le.,f(M) = \f(A) for all 
A> 0], then 

~f(A +xB)! == limx-l [j(A +xB) -f(A)] ::sf(B), 
dx x;O XtO 

whenever A, B are positive matrices and the above 
limit exists. The function (SI - S12)(PI2) has these 
properties. To apply (3.1) we compute 

~S(p + Xy} = - ~ Tr[(p + Xy) In(p + xy)] 
dx dx 

= - Try In(p + Xy) - Try. 

Using this in (3.1) we conclude 

(3.1) 

Corollary: Let Y12 and P12 be pOSitive, trace-class 
matrices on H 12' Then 

Tr12YI2 Inp12 - Tr l YI InPI 

::s Tr12Y12 InY12 - Tr1Yl Inyl , (3.2) 

Le., for each fixed Y12' the left side of (3.2) achieves its 
maximum when P12 = Y12' 

4. EXTENSION TO INFINITE-DIMENSIONS 

We can use Theorem A2 to extendTheorems 1 and 2 
to infinite dimensions. For Simplicity, we confine our 
discussion to Theorem 1 where H 12 = H ~ I8i H 2' The 
extension of Theorem 2 is similar and we point out the 
necessary changes at the end of this section. 

Let ET{i = 1,2 and n = 1,2,"') be sequences of 
increasing, finite -dimensional projections on Hi' con
verging strongly to the identity, and define 

and 

En =Ell8i E~, 

pb = E npl2En , 

(4.1) 

Since the spaces ETH; are finite dimensional, Theorem 
1 is satisfied by p12 on E1H 1 I8i E~H 2 for each n. Thus, 
it suffices to show that the sequences of matrices 
{Ph}:;1 and {Pl}:;1 satisfy the hypotheses of Theorem 
A2 so that, e.g., lim S(P12) = S(PI2) = S12' 

n .... OO 

To show that {P12}:;1 satisfies Theorem A2, we first 
note that En ~112' If14 the sequences A ~ A and 

s s n 
En""--? B,thenAnBn ""--?AB. Consequently,p12 con-
verges to P12 strongly, and therefore weakly. It follows 
from the Ritz principle (see Proposition A1) that 
pb = E np12En 1: En+lp12En+l 1: P12' with 1: as defined 
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in the Appendix. Therefore, the hypotheses of Theorem 
A2 are satisfied and 

(4.2) 

To s1.!.ow that {pq}:=l also satisfies Tl.!.eorem A.2, 
define P~ = Tr2E~PI2E~. Then pi = E~p~E~. To show 
t..hat P~ converges to PI weakly, it suffices to show that 
p~ converges to P~ strongly. (In fact, it converges uni
formly.) To do this we can assume, without loss of gen
erality, that E~ projects on the space spanned by 
e i ,·· en where {ei:i = 1,2, .•. } is an orthonormal basis 
in H2 • Then 

n 

(1/J,P~1/J) = L: (1/J i8I ei ,PI21/J i8I ei ) 
i= 1 

for all1/J in HI' and it follows that 

(4.3) 

and 
00 

lim (1/J, (PI - P'i)1/J) = lim L: (1/J i& ei'P121/J i8I e;) = 0 
n-+oo n-+oo n+1 . (4.4) 

Since p~ is a monotone sequence of positive opera
torsJ (4.4) implies that p~ ~ PI and therefore 
p~ -Pl. ~urther,it follows from (4.3),Le.,the mono
tonicity of pi, that 

p~ <I: Erlp~Erl 
~ Er 1iJr lE r i = pr l <I: Pl' 

Thus, Theorem A2 implies 

lim S(p~) = S(P1) = Sl' 
n-+OO 

The analysis for Theorem 2 is similar. One defines 

and 

En = E1 i8I E~ i8I E§, 

P123 = E npl23En , 
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APPENDIX: CONVERGENCE THEOREMS FOR 
ENTROPY By B. Simon § 

We discuss a variety of convergence theorems which 
are useful in extending entropy inequalities from finite 
dimensional matrices to infinite dimensional operators 
on a Hilbert space. 

- Definition: Let A be a positive compact operator. 
Ilk(A) denotes the kth largest eigenvalue of A counting 
multiplicity. 

by 
Definition: Let s(x) be the function on [0,(0) given 

~
-x lnx 

s(x) = o 
if x ~ 0 

if x = O. 
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If A is positive and compact, we set 
00 

S(A) = L: S(f.Lk(A», 
k=l 

the value infinity being allowed. 
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Definition: Let A and B be positive, compact opera
tors. We write A <t B if and only if Ilk(A) ~ Ilk(B) for 
all k. 

Definition: Let {An}:=l and A be positive, compact 

operators. We write An -4 A if and only if 
Ilk(An) ----+ Ilk(A) for each fixed k. 

-Remarks: (1) The topology defined by f.L-conver
gence is, of course, non-Hausdorff. (2) The order <t is 
useful because of the following consequence of the Ritz 
principle: 

Proposition AI: Let A be a positive, compact 
operator and let P be a projection. Then PAP <t A. In 
particular, if P and Q are projections and P ~ Q, then 
PAP<t QAQ. 

The above is false if <t is replaced by ~. 

Theorem Al (Basic Convergence Theorem): Let 
B be a positive, compact operator with S(B) < 00. Sup
pose {An} and A are given positive, compact operator.s 
with 

(1) An.J:.... A, 

(2) An <t B for each n. 

Then, lim S(An) = S(A). 
n-+OO 

Proof: The proof is based on the fact that s is 
monotone in [o,e- l ]. Since B.is compact, f.Lk(B) ---+ O. 
Suppose IlN(B) ~ e- l • By (1) and the continuity of s, 
s(llk(An» - S{llk(A», each k, and by (2) and the mono
tonicity of s in [0, e-1], S(llk(An» ~ S(llk(B» for k ~ N, 
each n. Thus by the dominated convergence theorem for 
sum!?,L: k?:.N S(1l (An» ---+ L: k?:.N S(llk(A». Since 
L:ksN-IS(llk(An)J certainly converges,the theorem is 
proven. Q.E.D. 

For applications of Theorem A1, it is convenient to 
have statements expressed in a more usual form than 
Il-convergence. 

Theorem A2-: Let {An} and A be positive, COmpact 
operators. If 

(1) w-lim An = A 
n-+oo 

and 

(2) An <t A for all n, 

then lim S(An) = S(A). 
n-+OO 

Proof: We first prove that An ~ A. Fix k and E. 

By weak convergence and the min-max prinCiple, it is 
easy to find a k-dimensional space, V, and an N such 
that 

if 1/J E V and n ~ N. But then Ilk(An) ~ Ilk(A) - E if 
n ~N. Since Ilk(A) ~ Ilk(An) by (2),this means 
I Ilk(A) - Ilk(An) I < E if n ~ N and hence An .J:.... A. If 
S(A) < 00, the theorem then follows from Theorem Al. 
If S(A) = 00, for any M we can find an L such that 
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6;=1 s(J1.JA» > M. However, for L sufficiently large, 
SCAn) ~6i=lS(J1.k(An)) and,since tLk(An) -+ J1.k(A),the 

latter sum can be made arbitrarily close to M. Thus 
SCAn) - co. Q.E.D. 

Theorem A3: (Domi'Y/llted Convergence Theorem for 
Entropy): Let {An}' A and B be positive, compact opera
tors and suppose that 

(1) S(B) < co, 

(2) w-lim An = A, 
n-"" 

(3) An::::: B (operator inequality!). 

Then, 
lim S (An) = SeA). 
n_OO 

Proof: Since B is compact, for any E> 0 we can 
find a finite-dimensional subspace K C H such that 
(u,Bu) = IIB1/2UIl < Ellull for u E L, where L is the 
orthogonal complement of K. Since An ::::: B, II A;/2ull = 
(u,Anu)::::: (u, Bu)::::: Ellull for all u in L. Since An ~ A, 
A::::: B, and IIA1/2UII::::: Ellull for all u in L also. We now 
show An - A uniformly. Recall that IIAn -All = supp 
{I (cp, (An - A)I/I) I: CP,I/I E H, II cpli = 111/111 = 1}. Now 
write cp = f + u, 1/1 = g + v where f,g are in K andu, v 
in L. Then 

(cp, (An -A)I/I) = «(f + u), (An -A)(g + v» 
::::: (f, (An -A)g) + IIA;/2fll 1/2I1A;/2VII 1/2 

+ IIA1/2.t111/21IA1/2VI1 1/ 2 + IIA;/2UII 1/21IA;/2gll 1/2 

+ IIA 1I2U111/211A 1/2gI11/2 + IIA;/2ull 1/21IA;/2vll 1/2 

+ IIA 1/2uI1 1/21IA 1/2vI1 1/2, 

which can be arbitrarily small since An - A uni
formly on K,A;/2 and A1/2 are bounded on K, 
IIA;/2ull < E, IIA1/2UIl < E, etc., and Ilfll::::: Ilcpll,etc. 
Thus I (cp, (An - A)I/I) 1 can be made arbitrarily small 
independent of cp, 1/1 (for all cp, 1/1 with II cp II = 111/111 = 1) 
and thus IIAn - A 11---.. O. By the min-max principle, 
I J1.k(An ) - f.Lk(A) I ::::: IIAn - A II. Thus An ~ A, and (1) 
implies that Theorem A1 is applicable. Q.E.D. 
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Example: Let {An},A and B be the follOwing opera
tors on H, where {CPn} is an orthonormal basis for H: 

each k, 

AnCPk = (jnke-1cpn' 

B =A1 • 

Then An 1: B, A - A strongly, but SCAn) does not 
converge to SCAr. This example shows that::::: and not 
1: is needed in Theorem A3. 
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Statistical theory of effective electrical, thermal, and 
magnetic properties of random heterogeneous materials. 
II. Bounds for the effective permittivity of statistically 
anisotropic materials 

Motoo Hori 
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(Received 22 May 1973) 

Upper and lower bounds are derived for the effective permittivity of random heterogeneous materials 
that are statistically homogeneous but not necessarily statistically isotropic. As trial functions in 
standard variational principles, we use modified perturbation expansions for the electric field aild the 
electric displacement. The bounds are expressed in terms of the many-point correlation functions of 
the spatial variation of permittivity. For a wide class of random multiphase materials called cell 
materials, explicit calculation is performed taking account of the three-point correlation effects. 

1. INTRODUCTION 

In a previous paper,1 hereafter referred to as I, a 
general perturbation formulation was developed for the 
effective permittivity of random heterogeneous materials 
which are statistically homogeneous but not always 
statistically isotropic. EspeCially, the second-order and 
third-order perturbation terms were explicitly deter
mined on the basis of the modified cell model. The pur
pose of the present paper is to derive upper and lower 
bounds on the effective permittivity of such inhomo
geneous anisotropic media, by utilizing as trial functions 
the perturbation series obtained in I. 

As for bounding effective physical constants of statis
tically isotropic materials, a considerable amount of 
work has been done since the pioneering research of 
Wiener.2 Hashin and Shtrikman3,4 improved Wiener's 
bounds with the aid of some variational principles. Their 
results were expressed in terms of the one-point 
moments of the permittivity field or the volume fractions 
of the constituting phases. Brown,5 Beran,6 and Beran 
and Molyneux 7 gave more restrictive bounds which in
volved such additional statistical information as three
point correlation functions. Miller8,9 and Beran and 
Silnutzer10 showed that for the so-called cell materials 
the effects of third-order correlations may be repre
sented by means of the shape.factors of cells. In this 
article, the variational techniques developed by Beran6 

will be extended to treat the statistically anisotropic 
case. 

2. BASIC CONCEPTS AND VARIATIONAL PRINCIPLES 

Let us consider a heterogeneous material of volume V 
and surface S whose local permittivity E can be regarded 
as a random function of pOSition r. The material volume 
V is taken to be infinite. Suppose that the medium is 
statistically homogeneous, that is to say all correlation 
functions of E(r) are independent of absolute positions. 
Then, the n-point moment (E(r1)E(r2)'" E(rn » becomes 

(2.1) 

where the brackets ( ) indicate the ensemble average 
and r ij de·signate the relative positions r j - r;. In con
nection with the assumption of statistical homogeneity, 
we make an ergodic hypothesis such that the volume 
average equals the ensemble average in the limit as 
V~ 00. 

We shall confine ourselves to the case where a con
stant-average electric field is applied to a statistically 
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anisotropiC medium. The effective permittivity tensor 
E;; is defined by the relation 

(2.2) 

Here E; and D; are the ith components of the electric 
field and the electric displacement, respectively, and the 
summation convention has been employed. Since <j is a 
symmetric tensor of rank two, there exist three prmcipal 
values E;, E;, E;. When the coordinate axes are chosen 
to coincide with the principal axes, we have 

(2.3) 

the parentheses around the index i implying no summa
tion on i. 

The ensemble average of the electrostatic energy 
denSity for the material with Ei ; may be written as 

Alternatively, if we denote the inverse matrix of 
* b * Eij Y Kij , 

(2.4) 

(u) == ~(D;(r)Di(r)/E(r» == ~Ki;(Di)(Dj)' (2.5) 

Along the principal axes Eqs. (2. 4) and (2.5) reduce to 

The ergodic hypothesis enables us to recast Eqs. 
(2.4) and (2.5) as 

(2.6) 

(u) == ---.l. J, E(r)Ei (r)Ei (r)dw, (2.8) 
2V v 

(u) == -1-1 Dj(r)Di(r) dw, (2.9) 
2V v E(r) 

where dw represents a volume element of Vat r. 

The standard variational principles established by 
Beran6,11 are as follows: 

Principle 1: Let Ei (r) be a statistically homogeneous 
vector field. The integral 

(E(r)Ei(r)Ei (r» == l f E(r)Ei(r)Ei (r)dw V v 

subject to the subsidiary condition 

Copyright © 1973 by the American Institute of Physics 

(2.10) 
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E ( ) 
_ a<I>(r) 

- r - a 
1 xi 

is stationary and a minimum for 

a -a -[E(r)Ej(r)] = O. 
Xj 

(2.11) 

(2.12) 

In Eq. (2. 11) <I>(r) is a scalar field; instead of a 
boundary condition we impose the requirement that any 
trial function Ej(r) must have the same average as the 
true function. 

Principle 2: Let D j (r) be a statistically homo
geneous vector field. The integral 

(
Dj (r)Dj(r) \ = ~ 1 Dj (r)Dj (r) dw 

E(r) / V v E(r) 

subject to the subsidiary condition 

oAk(r) 
D- (r) = e- -k --, '1 a 

Xj 

is stationary and a minimum for 

a Dk(r) 
e- -k-- --- = O. 

I) ax j E(r) 

(2.13) 

(2.14) 

(2.15) 

In Eqs. (2.14) and (2.15), Ak(r) is a vector field and 
e j -k is the third-order alternating tensor of Levi-Civita 
(e~ -k = 1 or - 1 according as i,j ,k is an even or odd 
pe~mutation of 1,2,3; otherwise ejj k = 0). Instead of a 
boundary condition we impose the requirement that any 
trial function D; (r) must have the same average as the 
true function. 

The simplest assumption we can make is to take the 
correct averages as trial functions. By using the mean 
electric field (E j ) as an admissible field for Principle 
1, we obtain 

(Ejl - (E»(E)(E) $ O. 

The inequality (2. 16) is equivalent to 

(E(~> - (E})(Ei)(E;) $ 0, 

(2.16) 

(2.17) 

provided that the principal axes are parallel to the co
ordinate axes. In order that the quadratiC form on the 
left be nonpositive definite, it is necessary and sufficient 
that 

(2.18) 

Similarly, choosing the mean electric displacement 
Wj } as an admissible field for Principle 2, we get 

(2. 19) 

Combination of the above two inequalities yields 

(2.20) 

which is an extension of Wiener's elementary bounds to 
heterogeneous media with statistical anisotropy. 

3. DERIVATION OF UPPER BOUNDS 

According to the perturbation theory described in I, the 
electric field in a statistically homogeneous and aniso
tropic material can be expanded in a series of the form 
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E j (r) = (Ej ) + EP> (r) + EF'> (r) + ..•. (3.1) 

The nth-order perturbation term Eln)(r) is given by 

X x 12. j x 23,k 

r~2 r~3 

an E '(r 2)E '(r 3)' •• E '(r n+1) 

OX 12, k OX23,h ••• OXn, n+1;j 
(3.2) 

where E'(r) = E(r) - (E). Needless to say,Ej(n)(r) is of the 
same order of smallness as [E'(r)/(E}]n and satisfies 
(Ei(n)(r)} = O. Convergence of the series (3.1) is assumed 
but not proven if (I E'n I) I( E}n « 1. 

Similarly, it was pointed out in I that the effective 
permittivity tensor Eil may also be expressed as 

* _ ( ) (" _ ~ (_ l)nA(n) (E,n») 
Ejj - E Vjj L.J jj () , 

n=2 En 
(3.3) 

OJ - denoting the Kronecker delta. The nth-order pertur
b~tion coefficient A~j) is related to the normalized n
point correlation function of E(r), 

by 

X X 12,j x 23,k 

r~2 r~3 
. (3.5) 

Furthermore, we postulate that all of the tensors A~) 
must possess common principal axes. In fact, for a cell 
material composed of uniformly oriented ellipsoidal 
cells, it can be shown that the principal axes of AP) and 
AW coincide with the axes of the ellipsoids. ) 

As an admissible solution for use in Principle 1, we 
will adopt a modification of the perturbation expansion 
(3.1) that is obtained by the inclusion of a set of multi
plicative constants. Namely, we intend to introduce the 
trial function of the form 

EN,; (r) = (E;) + A1E?)(r) + A2Ep)(r) + ... + ANE~) (r), 
(3.6) 

which obeys the condition (EN,j(r» = (E;). The multi
plicative constants An are to be chosen to minimize the 
upper bound on the effective permittivity, when this sum 
of a finite number of terms is used as an admissible 
solution. If an infinite number of terms were considered, 
we would have An = 1. In the case of N = 0, we of course, 
find the elementary bound presented in Eq. (2.18). 

Substitution of the admissible field E N,j (r) into the 
variational integral yields 

E 7j (Ej}(E) $ (E(r)EN, j (r)E N,j (r~ 

= (E)(E j )2 + 2 (E j ) ~ A .. (E' Ej(n» 
n=l 

N N 
+ (E) ~ ~ AnAm (Ej(n)Elm)} 

n=lm=l 
N N 

+ ~ ~ -\nAm (E'E;(n)E}m». (3.7) 
n=lm=l 

In Appendix A we show that under appropriate boundary 
conditions 
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(E;&')Elm» = (- l)n+mA~rm)«€'n+".)/(€)n+m)(Ej)(Ek)' 
(3.9) 

(€'EiW Elm» = (- 1)n+mA~+m+1)( (€'n+m+1»/(€)n+m)(Ej )(E
k
), 

(3.10) 

In view of the theory of quadratic forms, it follows 
from the above inequality that for E7 

( 
N (E'n+1) 

E * :S (€) 1 + 2E(- l)n>- A (11+1) -'----'-
, 1 n' (€ )n+1 

N N (€,n+m) + ~E(- l)n+mA A A(n+m)-,--~ L:f 1 n m { ( € )n+m 

+ EE(-l)n+mA A A(I'+m+1>(€,n+m+1») 
1 1 n m, (€)n+m+1' (3.12) 

where A (II> indicate the eigenvalues of the symmetric 
second-~rder tensors AVi>. For later convenience, we 

'J rewrite Eq. (3.12) as 

( 
N+1 (€'n) 

€.*:s (€) 1 - E (- 1)nAn_1(2 - A1)Afn> -( -)-
'n=2 € n 

2N+1 ( 'n\ - E (- l)nA A,vA(II> -' €_I 
n=N+2 n-N-1, (E)n 

N N (€'n+m») + E E(-l)n+mA (A -A _l)A(II+m)--- • n m m , (€)n+m 
n=1 m=2 (3.13) 

We first consider the case when N = 1. Setting An = 0 
for n 2: 2, we have 

€* :s (€)[1 - A1(2 - A1)A~>(€f2)/(E)2 + A~AP>(E'3)/(€)3]. 
, , (3.14) 

In order to obtain the best upper bound f.o~ €;, the . 
right-hand side of Eq. (3.14) must be mlnimlZed wlth 
respect to Al' By the way, Eqs. (3. 9) and (3.10) lead to 

(EEp>EP» = (€)(El(1)EP» + (€'EP>EP» 

= (€) (A<2) (E'2) + A<~>(€'3»)(Ej)(Ek) 2: 0, 
Jk (€)2. J (€)3 (3.15) 

so that 

A}2>(€'2)/(€)2 + AP>(€,3)/(E)3 2: O. (3.16) 

Therefore, the expression on the right-hand side of 
Eq. (3.14) is found to have a minimum. As a final result 
we obtain 

(3.17) 

When the medium is statistically isotropic, the tensors 
E.* and Af1> reduce to scalars E* and A&'>, respectively. 
Thus, the upper bound in ~q. (3.17) becomes 

(3.18) 

J. Math. Phys., Vol. 14, No. 12, December 1973 

1944 

considering that A (2) = t. The third-order perturbation 
coefficient A (3) is defined as 

with 

!(r2 l> r23) = (E'(r1)E'(r2)E'(r3»/(E'3) 

= (E'(0)€'(r21)E'(r23»/(E'3). (3.20) 

Under boundary conditions as stated in I [see Eqs. 
(2.57) and (2.58) in I], Eq. (3.19) may be transformed to 

1 r J X21,k x 23,k a2!(r21>r23 ) 
A(3)=--J,dw21 dw 23---- • 

(411')2 v v r~1 r~3 aX21.iax23,(i> 

(3.21) 
This means that the upper bound (3.18) is in agree
ment with the result reached by Beran.6 

Next, let us discuss the case of N = 2. Then Eq. (3.13) 
reduces to 

Et:s (E}[l - A1(2 - A1)A}2> (E'2)/(E}2 

+ (A~ - 2A1A2 + 2A2)AP>(E
f
3}/(€}3 

- A2(2A1 - A2)A/4> (E'4)/(€}4 + A~Af5>(€'5)/(E)5]. 
(3.22) 

We notice that there exists a minimum of the right
hand side of the inequality (3.22), provided that 

(A$(€'2)/(E)2 + ~W(E'3}/(E}3)(Af4>(E'4}/(E}4 
+ A<5> (€'5}/(E}5) 2: (tI!3l(e 3}/(€}3 + Afi~l(€'4}/(E}4)2. 

, "(n (3.23) 
The above requirement is certainly fulfilled; for one 
has 

(3.24) 

which follows directly from Schwarz' inequality. The 
best bound is given by 

E* -< ( ) ( _ F«E'2}/(E}2, (E'3)/(E}3, (Ef4}/(E}4,(E'5)/(E)5»), 
i - E 1 G«(E'2}/(E)2, (E'3)/(E}3, (E'4)/(€)4,(E'5)/(E)5) 

(3.25) 
where 

F(~2' ~3' ~4' ~5) = (AlN~2)2(A\4>~4 + Af5>~5) 
- 2~W~2·Af.3f~3(AP>~3 + A;(4)~4) 
+ (Am ~3)2(A~2>~2 + A}J> ~3)' (3.26) 

G(~2' ~3' ~4' ~5) = (~w ~2 + AfN ~3)(A/4> ~4 + A}5) ~5) 
- (Af.3f~3 + AfN~4)2. (3.27) 

It is extremely difficult to derive the best bound for 
arbitrary N. Hence we make a simplifying assumption 
that A1 = A2 = ... = >-N = 1, although it does not pro
duce the best bound. From Eq. (3.13) we easily find 

(3.28) 

The right-hand side is nothing but the perturbation 
expansion of E~ up to (2N + l)th order. It is worth 
while to note that a finite perturbation series terminated 
at odd order provides an upper bound. This result 
corresponds with the nonnegative property of .even-order 



                                                                                                                                    

1945 Motoo Hori: Statistical theory. II 

perturbation coefficients A}2m.) , which is an immediate 
consequence of Eq. (3. 9). 

4. DERIVATION OF LOWER BOUNDS 

Proceeding in the same way as we did in the foregoing 
section, we shall seek a lower bound for €t. By the 
analogy of Eq. (3. 1) we write 

(4.1) 

where Di(n)(r) is of order [€'(r)/(€)]n and satisfies 
(Di(n)(r» = O. The relationship of E/n)(r) and Di(n) (r) can 
be expressed by 

X X 12,i x 23•k 

rX2 '13 
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ax 12. k ax 2 3.h ••• ox,,-l,n;j 
(4.8) 

As demonstrated in Appendix B, it turns out that under 
usual boundary conditions 

(4.9) 

(K'E{n) E{m.» = (- l)n+m B.(n+m+1.n+l) , , if<-

X «K'€'n+m)/(€)n+7II)(Ej )(E
k
). (4.10) 

On the other hand we can deduce a recurrence Nn)(r) = (€)Ei(nl (r) + €'(r)Ei(n-1) (r) - (€'E;'n-l» 

= (€)HiSn) (r) (Ej ). (4. 2) formula 

Equation (4.2) applies even to the case n = 1, if we 
interpret D/O)(r) as <n). The trial function introduced 
for Di(r) is 

DN.i(r) = Wi) + 1J-1 Di(1)(r) + 1J-2Dp)(r) + ... + IJ-NDiN)(r), 

(4.3) 
which includes adjustable constants IJ-n and meets the 
condition (DN,i (r» = Wi)' 

Making use of Principle 2, we have 

€.*(E.)(E.) :s jDN.i(r)DN'i(r») 
'J , J \ €(r) 

(4.4) 

(4.5) 

When the coordinate axes are taken to be parallel with 
the principal axes of €:j' it holds that 

(4.6) 

This is just a fundamental inequality for determining 
a lower bound on €:. Putting N = 0 in Eq. (4. 6), we 
arrive at the elementary bound given by Eq. (2. 19). 

Now let us define a new type of normalized n-point 
correlation function as 

gl(r12 , r 13,···, r 1n ) 

= (€'(r l)€'(r 2)' •• €'(r 1_1)K'(r l)€'(r 1+1) 

• "€'(rn»/(K'en- 1), (4.7) 

where K'(r) = K(r) - (K) = l/€(r) - (1/€). The tensor 
quantity corresponding to A~) is 
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~'€'n) = _ [(K'en-1) + (€'n) + 
(K)( €)n (K)(€)n-1 (€)n 

~ 1) (€,n-l)] \1 - (K)(€) ~)n-1 • 

For n = 1 we get 

Repeated application of Eq. (4.11) yields 

~'en) = _ (en) __ 1_ £" (_ l)n+l (€,l) 
(K)(€)n (€)n (K)(€) 1=2 (€)l 

(4.11) 

(4.12) 

+ (- l)n (1- _1_). (4.13) 
(K)(€) 

Consequently, <JIj(n) /€) and <JIMH/m.)/€) appearing in 
Eq. (4.6) are represented as functions of A~2), Af3), ... , 
BP,l), Bp·l) , ••• , (€) , (K), (€'2), (€'3) , •••• 

We shall again begin with the case N= 1. In this case 
Eq. (4. 6) is Simplified to 

K: :s 1- 2(€~ IJ- (1- B.<2.1» (1- _1_) + (€) IJ-) 2 
(K) €': 1, (K)(€) €: 1 

since 

x [(1 - 2B.<2,l) + B.(3,2» (1 __ 1_) 
I I (K)(€) 

(€'2)] + (A (2) - B,(3.2»_-
, , (€)2' 

(H(\~HP») 

= (K) fN2) (E'2) + (2B.(2,1) _ 1) (K'€') 
L (€)2 ' (K)(E) 

+ B.(3,2) (K' €'2)J 
' (K)(E)2 

= (K) [(1 - 2B.(2.l) + B'<3,2» (1 __ 1_) 
I , (K)(€) 

+ (A (2) - B.(3.2» (€'2)J 
' , (€)2' 

(4.14) 

(4. 15) 

(4. 16) 
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Maximizing the right-hand side of Eq. (4.14) with 
respect to Ill! we obtain 

( '2)J-l~-1 + (A (2) _ B.(3.2») _E:_ 
, , (E:)2 • (4.17) 

For statistically isotropic materials we observe that 

Bi~.l) = - 1 J dW
12 

x l2. i o(K'(r l )€'(r2 ) 

411 (K' E:') v rr2 ox l2 .) 

(4.18) 

B.(;3.2) = 1 f dw J dw X2 1.i x 23• k 
'J (4 )2 ( , '2) V 21 V 23 3 3 7T K E: r 2l r 23 

o2(E'(r )K'(r )€'(r ) x 1 2 3 

OX 2 L k OX 23.) 

= B(3.2){J ..• 
'J 

(4.19) 

Equation (4.18) can be established exactly as the 
formula A(2) = ~ given in Sec. 2C of I. Accordingly, 

E* 2: _1_ {I - ~(1 - I/(K)(€»)2 
(l/€) 

x [(~ + Bp·2»)(1 - I/(K)(€») 

+ (~ _ Bp.2»)(€'2)/(€)2]-1}-1. (4.20) 

It is readily confirmed that this bound agrees with the 
result of Beran.6 

The expressions for the best lower bound are much 
complicated when N- 2: 2. Therefore, in lieu of attempting 
to derive the best bound for arbitrary N, we want to get 
a less intricate bound by supposing III = 112 = ... = IlN = 
€t I(E). Straightforward but rather tedious calculation 
shows 

(4.21) 

which, together with Eq. (3. 28), constitutes a useful ex
pression for effective permittivity bounds involving the 
(2N + I)-point correlation functions. 

5. EXPLICIT CALCULATION FOR CELL MATERIALS 

Miller8•9 has proposed a cell model to characterize 
the geometry of random multiphase materials. As 
explained by him, the geometry of a cell material is de
fined as any division of the material space into cells 
which fulfills the following requirements: 
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(i) The space is completely covered by nonover-
lapping cells. 

(ii) Cells are distributed in a manner such that the 
material is statistically homogeneous. 

(iii) The material property € of a cell is statisti
cally independent of the material property of any 
other cell. 

Furthermore, the symmetric cell material signifies a 
cell material satisfying the additional requirement: 

(iv) The conditional probabilities of n points being 
and n' points not being in the same cell of a parti
cular material, given that one point is in a cell of 
that material, are the same for each material. 

In the latter half of I, we have explicitly evaluated two 
low-order perturbation coefficients, A;9) and A;S3) , for 
symmetric cell materials. In such a symmetric case the 
independence assumption (iii) asserts that 

where P(rl! r 2 ) stands for the probability that both points 
r l and r 2 fall into the same cell. The second-order 
perturbation coefficient Afy) is therefore 

A (2) - _!_ J d X l2,i oP(rl! r 2) .. - w12 • 
'J 47T v rr2 oX12,) 

(5.2) 

Likewise, if we denote by P(r l' r 2' r 3) the probability 
that all the points rl! r 2 , r3 lie in the same cell, 

(3)_ 1 r r X l2,i x 23. k o2P(r l ,r2,r3) 
A; - --J, dW 12 J, dw23-- -- ---=-_. 

J (411-)2 V V rr2 r~3 OX12.koX23.) 
(5.3) 

Let us first treat a symmetric cell material composed 
of cells of uniform shape, Size, and orientation. Then 
A;~2) is equal to the so-called magnetometric demagnetiz
atIon tensor12•l3 of the cell. In terms of the point
function demagnetization tensor L i) (r), 13 we can write 

A(2) =M.(2) == 1 JdwL .. (r) (5.4) 
'J 'J v v 'J' 

AU> = MiS3) == 1 ~ dwLik(r)Lkj(r), (5.5) 
v 

v indicating the cell volume. It holds also for Bi~·l) and 
B.(?>·2) that 

'J 

B.(2. l ) = M.(2) , B.(?>·2) = M.(?». (5.6) 
'J 'J 'J 'J 

We remark that M.(?» as well as M.(2) depends only on 
the shape of cells'ind not on their'~ize. This suggests 
that the bounding equations (3.17) and (4.17) are uniquely 
determined by the cell shape, even when the medium 
consists of cells of varying size. 

Secondly, we shall deal with the statistically isotropic 
case where geometrically similar cells are oriented at 
random. In this case it is seen that 

A (2) = B(2.1) = ~Mi\2) = t, (5.7) 

A(3) = B(3.2) = ~M.(?» = ~ J .dwL2
k

(r). (5.8) 
" 3v v ' 

In I we proved the inequality M;\3) 2: ~, while in 
Appendix C we show that Mi)3) ::'0 1. To sum up,A(3) is 
bounded by 

(5.9) 
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that has already been found by Miller. 8 For ellipsoidal 
cells the pOint-function demagnetization tensor L jj (r) is 
constant throughout the cell volume, so that A (3) = t Li~ • 
In particular, we may assign A(3) = t to the shape of 
plates, A(3) = "t to the spherical shape, and A(3) = ~ to the 
shape of rods of circular cross section. 

Higher-order perturbation coefficients which enter in 
Eq. (3. 25), (3. 28), or (4.21) are much more difficult to 
compute than the second-order or third-order pertur
bation coefficient. Take A}j> as an example. The four
point moment (E'(r1)€'(r2)€'(r3)€'(r4) assumes (€'4) 
when four points are in the same cell, (€'2)2 when two 
pairs of pOints are in two different cells, and zero 
otherwise; that is, 

f(r 12 , r1 3' r 14) = P(r1, r 2, r 3, r 4) + (€'2)2/(€'4) 

x [P(r 1,r2;r 3,r4 ) + P(r 1,r4;r2 ,r3 ) 

+ P(r v r 3; r 2, r 4)). (5.10) 

Here P(r1 , r 2, r 3, r 4) represents the probability that the 
pOints r 1, r 2, r 3, r 4 are in the same cell, P(r1 , r 2; r 3, r 4) 
the probability that the two pairs of pOints, (rl> r2) and 
(r3, r 4), are in two different cells, and so on. 

Accordingly,A}j) may be separated into four parts as 

A}j> = Ai:l j + (€'2)2/(€'4»)(A~:L + A§:L + A,I.:lj)' 
(5.11) 

where 

Analogously to A~2) and AW, Ai:?j is independent not 
only of the size of celis but also of their relative arrange
ment, because P(r1 , r 2, r 3, r 4) concerns the geometry of 
a single cell. On the contrary, the quantities like 
P(r V r 2 ;r3 ,r4 ) refer to the mutual relation between dif
ferent cells, so that A~;lj , A~4~jj' and A.\.:lj are essentially 
influenced by the frequency distribution of dimensions or 
distances of cells. In this sense, the expressions (3.17) 
and (4. 17) taking into accountthe three-point correlations 
provide the best possible bounds in terms of the cell 
shape alone. These bounds are 

(5.16) 
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€ 7 2: (1/(1/ €) ){1 - (1 - Mm)2(1 - 1/(K)(€»)2 

x [(1 - 2MP) + MP»)(l - l/(K)(€») 

+ (MP> _MP»(€'2)/(€)2)-1}-1. 
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(5.17) 

Finally we are concerned with an asymmetric cell 
material in which the statistical properties of the geo
metry of cells of different phases are dissimilar. Let 
V z and Afl'>(l) be the volume fraction and the nth-order 
perturbation coefficient of the lth phase with property € z, 
respectively. As discussed in I, the values of A~> and 
A q) for an asymmetric cell material can be estimated 
fr'6m those for a symmetric cell material; namely, 

A~;) = (1/(€'2»)L) vz(€z - (€»)2A)?(l), 
z 

A}j> = (1/(E'3»)L)v z(€z - (€»)3Afj>(1). 

(5.18) 

(5.19) 
z 

It should be noted that such a simple averaging 
formula does not hold for n 2: 4. 
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APPENDIX A: EVALUATION OF (€'E/n), (E/n)E/m), 
AND (€' E/n) E/m) 

We shall present a detailed proof of Eqs. (3. 8)-(3.10). 
In the first place, Eq. (3. 8) is obvious from the defini
tions of EjVo)(r) and A}j). 

In the next place, let us seek (E/,n)ElrriJ) and prove Eq. 
(3.9). By way of illustration consider the case of n = 1 
and m = 2. It follows from Eq. (3. 2) that 

(E) (Ek )1 1 1 (Ep)(r1)E/2>(r1) = J dW12 dW13 dW34 (41T(€»)3 v v v 

X X 12, j X 13. i X34,h il3(€,(r2)€,(r3)€'(r 4) (A1) 

r~2 r~3 r~4 oX 12•j oX13.hox34. k 

Transformation of the variables of integration from 
r 12 , r 13,r34 to r 12 , r 23 = r 13 - r 12 , r 34 gives 

(E.)(E > 
(E}1)(r1)E/2)(r1) = - _J_k_l dw

12
1 dW23 1 dW34 (41T(€»)3 v v v 

x X 12. j X 13. j X 34.h o3(E'(r2)€'(r3)€,(r 4). (A2) 

r~2 rh r~4 oX 23.j OX23.hOX34. k 

In spherical coordinates we have 

(A3) 

Therefore, Eq. (A2) becomes 

(Ep)(r1)Ep>(r1) = - (E)(Ek ) 1 dw231 dW34_1- X34.h 
(41T)2(€) 3 V V r 23 r~4 

o3(E'(r2)E'(r3)E'(r 4) 
x 

OX23.jOX23.h OX 34•k 

(A4) 
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For the three-point correlation function f(r 32' r 34)' 
we impose boundary conditions such that as r 32 ~ 00 

Then, after integrating by parts and applying Gauss' 
theorem, we can see that 

(E/1)(r 1)El2) (r 1» 

= _ ~E)(Ek) (€'3) 1 dw 
(41T)2 (€)3 V 32 

r d X32,j X34,h 02f(r32 ,r34) 
x J, w34-- ---

v r~2 r~4 OX 32 ,h oX34, k 

(£'3) 
= - A(3)- (E)(E ). 

Jk (€)3 J k 

(A5) 

(A6) 

The evaluation of <E}n) E}m) for any given nand m pro
ceeds analogously. The result is 

(E(n)E.(m» = (- l)n+mA(n+m)«€'n+m)/(€)n+m)(E)(E ) 
, I Jk J k' (A7) 

Lastly, we shall perform the proof of Eq. (3.10). Again 
we treat the simple case when n = 1 and m = 2. By 
definition, 

(£'(r2 )E/l) (r2 )Ep) (r2 » 

= (E)(E k ) 1 dw 1 dw 1 dw X2Li X23,i X34 ,h 

(41T(€»3 v 21 v 23 V 34 r~l r~3 r~4 

x 03(€,(r1)€'(r2)€'(r3)€'(r4» 

OX21.j OX23,h OX 34,k 

(E)(Ek ) 1, J 1, X12,i X23,j X34,h - --- dw dw dw ------
- (41T(€»3 v 12 v 23 V 34 rr2 r~3 r~4 

x 03(€'(r1)€'(r2)€'(r3)€'(r4» 

OX12,jOX23,hOX34,k • 

Under appropriate boundary conditions like (A5), we 
obtain 

1 
X12,i of(r12 ,r13,r14 ) 

dw 12--
v rr2 OX 12,j 

1 
1 (32f(r 12 , r 13, r 14) = d W 12 -- __ --=-=-=-~"-....=.c'--

V r 12 OX 12,i OX 12,) 

- J d X12,j of(r12,r13,r14) - w12 -- • 
v rr2 OX 12 ,j 

Introduction of Eq. (A9) into Eq. (AS) leads to 

(AS) 

(A9) 

(€'(r )E.(l)(r )E.(2)(r » = - A(4)«€'4)/(€)3)(E.)(E ). 2 I 2 I 2 Jk J k (A10) 
More generally, 

(€'Ej(n)Elm» = (- 1)n+mAJ,:+m+1)«€'n+m+1) /(€)n+m)(E)(Ek). 

(All) 

APPENDIX B: EVALUATION OF (K'E/n» AND 
(K'E/n)E/m» 

The proof of Eqs. (4. 9) and (4.10) goes in a similar 
manner to that of Eqs. (3. S)-(3. 10). Since the validity of 
Eq. (4. 9) is almost self-evident, we shall restrict our
se1ves to the derivation of Eq. (4.10). 

Let us estimate (K'E/1)EP» in analogy to the argu
ments advanced in Appendix A. USing Eq. (3. 2) and 
changing coordinates, we can write 
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(K'(r 2)Ep) (r2 )Ej(2) (r2 » 

= (Ej)(Ek) r dw J dw 1 dw X12,i X23,i X34,h 

(411"(€»3 Jv 12 V 23 V 34 rh r~3 r~4 

X 03(€'(r1)K'(r2)€'{r3)€'(r 4» 

OX 12,j OX23,h OX 34,k • 
(B1) 

As boundary conditions prescribed for g2(r12 , r 13, r 14), 

we assume that as r 12 ~ 00 

og2 -- = 0(1), 
0°12 

og2 
-- =0(1), 
01/>12 

(B2) 

(B3) 

Substitution of Eq. (B3) into Eq. (B1) yields 

(K'EP)EP» = - B}P>«K'€'3)/(€)3)(E)(Ek), (B4) 

which is easily generalized to 

(K'Ej(n)Elm) = (- l)n+mB)z+m+1.n+l) 

x «K'€'n+m)/(€)n+m)(E)(Ek)' (B5) 

APPENDIX C: PROOF OF M;;(3) < 1 

To deduce M;\J) ::s 1 we start from the inequality (3.16) 

AP)(€'2)/(€)2 + AP)(€'3)/(€)3 2: O. 

Inserting Eqs. (5. 4) and (5.5) into Eq. (C1) we find 

- «€'3)/(€,Z)(€»M;\3) ::s 1. 

Whatever the value of such a one-point moment as 

(C1) 

(C2) 

(€), (€'2), or (€'3) may be, this inequality must be always 
valid. On the other hand, it is evident that 

For a symmetric cell material composed of two 
phases with permittivities €1 and €2' the equality sign 
in Eq. (C3) holds actually in the limit as €1/€2 ~ 0 and 
v1 ~ O. It is thus concluded that 

(C4) 
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On the improper neglect of certain terms in random 
function theory 

I. Lerche- and E. N. Parkert 
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This paper presents some exact solutions of problems in random function theory for the purpose of 
testing the validity of an approximate method known variously in the many different fields of its 
application as first order smoothing theory, first order cumulant discard, quasilinear theory, or the 
adiabatic approximation. The hydromagnetic dynamo equations are used here, as particularly 
appropriate for such an investigation. The calculations show that in one case the exact and 
approximate solutions agree. In the other case the approximate solution is wrong. Hence, in the 
absence of a general criterion for validity, a result based on first order smoothing theory is a 
conjecture rather than a fact. This impacts strongly on much of the recent work on hydromagnetic 
dynamos. 

I. INTRODUCTION 
The formal theoretical basis for the hydro magnetic 

dynamo equations has come under close scrutiny 
recentlyl particularly in connection with the difficult 
question of whether statistically homogeneous isotropic 
turbulence in a conducting fluid of infinite extent leads 
to the growth of magnetic field. Of particular concern 
is the popular mathematical maneuver known variously 
as first order smoothing theory.. first order cumulant 
discard, quasilinear theory, or the adiabatic approxi
mation, 2-4 which is the basis for some of the more 
formal work on hydro magnetic dynamos, plasma tur
bulence, etc. First order smoothing theory conjectures 
that the terms which are nonlinear in the random func
tions do not differ mUCh, or for very long, from their 
mean values, so that the difference can be neglected. 
The general validity of first order smoothing has not 
been established. 

A number of authors have been concerned about the 
validity of the method, which neglects all mode-mode 
coupling (see review by Frisch4 and references therein). 
A number of authors5- S have shown that mode-mode 
coupling is important in the approach to equilibrium in 
many cases in plasma physics, although there are also 
some situations in which the coupling can apparently 
be neglected with impunity.9,lO Kraichnanll has estab
lished the invalidity of first order smoothing in special 
cases. l2 Herringl4 gives detailed comparisons of the 
quasilinear, the quasinormal, and Kraichnan's direct 
interaction approximation with numerical solutions of 
Boussinesq convection, and finds that only the direct 
interaction approximation agrees closely with the 
numerical solutions. 

Our own interest in the problem originally arose in 
connection with the hydro magnetic dynamo and the origin 
of large -scale turbulent and ordered magnetic fields in 
astrophysical bodies. Consequently, the mathematical 
examples which we present are chosen from that 
domain. 

Consider, then, a random velocity field Ov j(r, t), 
(Ov;) = 0 interacting with a magnetic field B;(r, t) + 
OBi(r, t), where Bj(r, t) is the ensemble average field, 
presumably nonvanishing almost everywhere, and OBi 
is the random component, (OB;) = O. The hydromagnetic 
equation for infinite conductivity IiB/a t = V x (v x B) 
reduces to the equation 

aBj a - = - «liv.IiB.) - (Iiv.IiB.») at ax; ,. ,. 

for the mean field Bj' and this equation is statistically 
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exact. Subtracting this from the hydromagnetic equation 
yields the exact equation 

aliBi a 
--=- (Iiv.B-liv B.) 

at aX
j 

.) )' 

a a + - (IivjliBj - (IiviIiBj ») - -(IiVjIiB i - (IivjIiB i») 
aXj aXj 

for the random component of the field. First order 
smoothing theory decrees that Iiv;IiBj never differs by 
much, or not tor long, from (IiV iliBj) so that the terms 
which are nonlinear in the random quantities can be 
neglected. Then we have the inexact equation 

aliBi ~ a 
-- = - (Iiv.B. -liv.B.), at ax. .) ). 

) 

which is then solved simultaneously with the exact 
equation for the average field. 

We might expect the approximation to be valid when 
the correlation length and time of liv; are both small. 
Whether it is valid under less restricted conditions has 
yet to be shown. Unfortunately, the method is often 
appliedl5 without a general proof that it is accurate. 

In a recent paperl6 we used first order smoothing 
theory to work out the small-scale turbulent com
ponents of the "azimuthal" field B }.;t:. t) and the vector 
potential A(x, t) for the poloidal field GA/ax in the 
z -direction as a consequence of random fluctuations in 
the large -scale shear G and in the cyclonic component 
r of the small-scale convection. The calculation was 
motivated by the galactic dynamo 1 7-2 0 in which one 
observes the mean of the total field Bi + IiBi along a 
line of sight, and one then needs to know the magnitude 
of OBi' 

As was noted in that paper, an exact solution of the 
dynamo equations is pOSSible, affording the opportunity 
to determine directly whether the results of first 
order smoothing theory are correct. This paper pre
sents the exact solutions, and points out the success 
and failure, of first order smoothing. 

In their simplest form (strong shear, rectangular 
geometry, and large dynamo number) the dynamo equa
tions, describing the generation of field by shear and 
cyclonic turbulence, are l3 ,17 

aBy aA 
--=G-, 
at ax 

(1) 

aA = rB 
at y' 

(2) 

Copyright © 1973 by the American Institute of Physics 1949 
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where C == dV;/dz represent the large~scale shear and 
the r represents the cyclonic velocity component. In 
this example the vector potential A(x, t) is in the y
direction and the z component of field (sheared by C) 
is oA/ox. 

We shall consider the irregularities in the field pro
duced by a random variation of r. The dynamo equations 
give the large-scale (ensemble average) fields By and 
A in terms of the ensemble average shear and cyclonic 
rates C and r respectively. So imagine,then,an en
semble of systems in which the ensemble average cy
clone strength r and/or shear C are functions of x"and 
t. This ensemble constitutes our "micro canonical 
ensemble." We shall suppose that rand C (the micro
canonical averages) are random functions of x and t. 
Then consider an ensemble of "microcanonical en
sembles," essentially a "grand canonical ensemble." 
The dynamo equations (1) and (2) apply to each micro
canonical ensemble. Consider their solution, using the 
grand ensemble for defining constant, or slowly varying, 
mean values, etc. Equations (1) and (2) can be solved 
exactly when either r or C is a constant and the other 
is a function of either x or t (sec. II and III). 

II. r OR G A RANDOM FUNCTION OF TIME 

A. General considerations 

Consider the two cases 

r = r 0' C(t) = Co[1 + EOG(t)], 

r = r 0 [1 + EOr(t)], C = Co' 

(3) 

(4) 

where r 0 and Co are constants and or(t) and oG(t) have 
zero mean values, (or) = (oC) = O. Then the two dynamo 
Eqs. (1) and (2) can be written 

02A aA 
- - r oCo (1 + EOC) - = 0 
ot2 ox 

(5) 

and 
02B oBy 
--y - roc (1 + EOr) - = 0 
ot2 0 ox 

(6) 

for (3) and (4) respectively. The equations are identical 
in form, so that it is sufficient to consider (6) alone. 
Henceforth we shall drop the subscripts zero and under
stand that rand C denote the constant parts of the cy
clonic strength and shear, respectively. Let h = t/T, 
where T is the correlation time for or(t). Then let 

By = B(h) expikx. 

Equation (6) reduces to 

d2B 
- - ikrCT2[1 + Eor(h)]B = O. 
dh 2 

(7) 

(8) 

This equation is second order and may be written as 
two first order equations if we define 

Y== B, 

Then 

Z == dB. 
dh 

dZ = irGT2(1 + EOr)Y, 
dh 

dY =Z 
dh 
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Consider the probability p{ft, or, Y,Z) for finding the 
combination of values. (or, Y, Z). Assume that the pro
bability distribution j dY j dZP over or alone is 
gaussian. Then P(h, or, Y, Z) satisfies the spatially 
homogeneous probability equation21 

oP = _0_ orp + 02p _ ~ (dY p\ _ ~ (dZ p\ (12) 
oh oor oor2 oy dh J oZ dh J' 
with dY /dh and dZ /dh given by (10) and (11). The first 
two terms on the right hand side represent the assump
tion that the probability distribution over or is the 
Gaussian exp(- 1/2or2). The initial values of Band 
dB/dh are sufficient to determine the solution of (8). 
Denote them by Y(O) and Z(O), respectively, so that 
when h = 0 = t the probability distribution is 

Po = (21T)-1/2 exp(- tor2) o[y - Y(O)]o[Z - Z(O)). (13) 

To proceed with the solution of (12), define the 
quantities 

R (h, or) == J dY J dZ YP, 

S(h, or) == J dY J dZ ZP, 

so that 
.+00 

(y) = (B) = j-oo dor R (ft, or), 

(Z) = IdE) = tOO dor S(h, or). \dh -00 

Then (12) yields 

oR = _o-(Ror) + 02R + S 
oh oor oor2 

and 

oS = _0_ (Sor) + 02S + ikrc (1 + Eor)R, 
oh oor oor2 

and the initial conditions 

R(O,or) = Y(0)(21T)-1/2 exp (- tor2), 

S(O, H) = S(0)(21T)-1/2 exp(- to r2). 

(14) 

(15) 

The coefficients in (14) and (15) are independent of 
time h, so that the solutions have an exponential time 
dependence expivh. Note that (14) and (15) are homo
geneous equations in R and S. Hence they have a solu
tion if, and only if, some dispersion relation is satis
fied. Our purpose is to obtain that dispersion relation. 

It is convenient to expand Rand S in the normal 
modes 1/1" of the homogeneous equation 

d 2 1/1 d 
__ n + __ or1/l + n1/l

n 
= 0, 

dor2 dor n 

which are 

1/1" = exp(- tor2)H,,(2-1/2or), (16) 

where H n is the nth Hermite polynomial. Write 
expivh = expiwt where v == wT. Then consider the 
solutions 

00 

R = expivh ~ C,,1/I,,(or), 
,,=0 

00 

S = expivh ~ D,,1/In(or), 
,,=0 
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and substitute into (14) and (15). Noting that 

21/2ortVn (or) = tVn+1 (or) + 2ntVn-1 (or) 

and equating coefficients of the tVn gives the two 
equations 

(iv +n)Cn -D" = 0, 

- ikrCT2[Cn + 2-1/2ECn _1 + 21/2E(n + 1)Cn+ 1] 

(17) 

+ (ill +n)Dn = 0. 

Then write the dimensionless wavenumber Cl == 
krCT2 and eliminate Dn, obtaining 

2-1/2ClECn_1 + [Cl + i(ill + n)2]Cn 

+ 21/2ClE(n + 1)Cn+ 1 = 0. 

B. Solution by determinant 

(18) 

The determinant of the coefficients of (18) gives the 
dispersion relation. The determinant is infinite, and 
divergent. However, expanding the determinant about 
the upper left hand corner gives a series that appears 
to be asymptotically convergent for small ECl. The 
2 x 2 determinant gives the first correction 

(19) 

The original roots, arising from the dynamo equations 
when E = 0, are 

Cl + i(iv)2 = ° 
or 

iv = ± Cl1/2 expi1T/4 

(one growing and one decaying when k is real). There 
is now an additional pair of roots 

iv =-1 ± Cl1/2 expi1T/4. 

Had we evaluated the 3 x 3 determinant, there would 
appear still another pair 

ill = - 2 ± Cl1/2 expi1T/4 

etc. The extra roots all converge to the original roots 
in the limit as T ~ to. The real part of iv (the growth 
rate) is smaller for these additional roots than in the 
original pair, and so we will not consider them further 
in the present problem. 

Consider the question of the convergence of (19) 
giving the correction 0(£2) to the original dispersion 
relation Cl + i(iv)2. Work out the 3 x 3 determinant, 
keeping terms 0(E4). Use (19) to eliminate iv from the 
correction terms. The result can be written 

Cl + i(iV)2 = Cl 2E2/[Cl + i(iv + 1)2] 

- 2Cl4E4/[Cl + i(ill + 1)2][Cl + i(ill + 2)2] + O(ClBEB). 

If we now work out the 4 x 4 determinant,and then the 
5 x 5 determinant,keeping terms 0(E4) and using (19) 
to eliminate iv in the correction terms, we obtain no 
further contributions to the terms 0(E 2) and 0(£4) etc. 
Hence the expansion of the determinant generates a 
series which appears to be asymptotically convergent 
for small Cl and/or Eo We shall check this assertion 
later. 

For present purposes it is sufficient to consider only 
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the first correction terms 0(E2). By writing v = wT, so 
that the time dependence lS exp(iwt), it is readily shown 
that the grOwing mode is 

iwT = (Cl/2)1/2{[1- !ClE 2(1 + 23/2Cll/2 + 4Cl)-1] 

+ i[l + ~ClE2(1 + 23/2Cl 1/2)(l + 23/2Cl1/2 + 4Cl)-1]). 

Then if Cl « 1, 

iwT"'" (Cl/2)1/2 [(1 - !ClE2) + i(l + !ClE2)], 

and if Cl » 1, 

(20) 

(21) 

iwT "'" (Cl/2)1/2 [(1 - i E2) + i(l + 2-3/ 2Cl1/2 E2)]. (22) 

Thus when r is a random function of t (or C a random 
function of t) the real part of iwT (the growth rate) is 
reduced and the imaginary part (the phase velocity) is 
increased. 

C. Solution by differential equation 

A more proper calculation of the dispersion relation, 
which does not rely on throwing away the divergent 
terms in an infinite determinant, is to write the 
coefficient C n as 

J
'2'IT 

Cn = 0 d(3 exp(inM e((3) 

Then c((3) is related to C n by the Fourier series 

1 00 
e((3) = - L) Cn exp(- in(3), 

21T n=O 

and is obviously a periodic function of (3 with period 
21T. Then (18) can be written 

d2e . de - + 2 (v - CltJ. expz(3)-
d(32 d(3 

+ {v2 + iCl [1 + tJ. exp(- i(3)]} e = 0, (23) 

where we have written tJ. == 2-1/2E. 

Now, if E = 0, the solution of (18) is elementary; if 
Cn "" 0, then 

Cl + i(ill + n)2 = 0, 

which we recognize as the sequence of roots appearing 
in the n x n determinant (19). The solution of the dyna
mo equations (1) and (2) for E = ° gives 

ill = Cl1/2 expi1T/4, 

corresponding to Co = 0(1), say. For small but non
vanishing E we expect that Co = 0(1) and hence that 

(
,2 'IT 

Co = . 0 d{3 e((3) = 0(1). 

With this in mind, consider the solution of (23). Write 
de/d(3 = e<I> to reduce (23) to the Riccati equation. Then 
expand <I> as 

00 

<I>({3)='L tJ.n<I>n(M 
n=O 

and equate the coefficients of like powers of tJ., 

<I>o' + <I> 5 + 2v<I>o + v2 + iCl = 0, 

<I> 1 , + 2<I>1(<I>o + II) + i2-1/2(}, exp(- i(3) 
- 21/2Cl<I>O expi(3 = 0, 

<I>2' + 2<I>2(<I>O + v) + <I>y - 21/2Cl<I>1 expi(3 = 0, 
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etc. Before setting out to solve this system of equations, 
we must consider in a little more detail the nature of the 
solutions. Since c({3) is periodic and 

c({3) =exP6~n t du<f>n(u), 

rB . 
it is evident that each _ du<f> n (u) must consist solely of 
terms linear in (3 and perhaps periodic terms, such as 
exp(±i{3). Hence each <f>n must consist only of a con
stant term plus periodic terms. 

The equation for <f> 0 gives no periodic terms exp±i{3 
so <f> 0 must be only a constant, yie lding <f> 0' = 0 and 

<f>o = - v ± Q'l/Z exp(- i1T/4). 

There will be constant terms in 4>l,<f>Z,etc.,too. The 
terms 4>1' 4>z, etc. will contain periodic terms, so that 
their sum is schematically 

and 
C({3) ~ exp[C{3 'f iED exp(± i(3)]. 

But c({3) is periodic in (3. Hence C must be equal to mi, 
where m is an integer. Hence 

, .Z .. 
CO = . 0 d(3 exp[im(3 'f iED exp(± i(3)]. 

But if m = ± 1, ± 2, etc. this integral for C n is only O(e:), 
whereas we pointed out above that Co = 0(1). There
fore, m cannot be ± 1, ± 2, etc. but must be zero, i.e., 
the sume of the constant terms in 6 ~n<f>n must vanish. 
This restriction provides the dispersion relation. 

It is readily shown that 

21/ZQ'<f> 0 expi(3 ill' exp(- ifJ} 
<f> = - -- ------

1 [i + 2 (<f> 0 + v)] 21 / Z [i - 2(4)0 + v)] 

so that <f>1 is wholly periodic. For <f>z we have 

iQ'z(i + 2v + 4>0) . . 
<f>2 = - + perIOdIc terms. 

2(<f>0 + v)[l + 4(4)0 + v)2] 

The sum of the constant terms through 0(A2) must 
vanish. Solving for iv(= iwT) yields 

( 
Q'E2li + 2Q'l/Z exp(- i1T/4)]) 

iv = Q'l/Z exp(i1T /4) 1 + , 
2(1 -4iQ') 

which is, of course, identical with (20) and (21). 

III. r OR G A RANDOM FUNCTION OF SPACE 

A. General considerations 

Consider the two cases 

r = r 0' G(x) = Go[l + EOG(X)], 

rex) = r 0[1 + EOr(X)], G = Go' 

(24) 

(25) 

where r o and Go are constants and or and oG have 
zero mean. Then the dynamo equations (1) and (2) can 
be written 

(26) 

and 
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(27) 

for (24) and (25) respectively. The equations are identi
cal in form, so the two cases are equivalent. It is suf
ficient to consider only (27). Again we drop the sub
scripts, zero on r 0 and Go. 

Equation (27) admits of exact solutions19 byelemen
tary methods, but it is more useful to obtain the disper
sion relation using the techniques of the previous 
section. 

Let 

A(x, t) = exp(iwt)F(x). 

Then with y = x/L, (27) becomes 

dF w2 LF 

dy rG(l + EOr) 
(28) 

Consider the joint probability distribution P(y, F, of), 
satisfying21 

oP = _0_ orp + oZp _ ~(dF p\ 
oy oor oorz aF dy ) 

Define the energy distribution 

U(or) = J dF FP 

so that 

(F) = J dor U(or). 

Then 

au = _a_oru + oZU _ wZLU 
oy oor oorz rG(l + EOr) 

with dF /dy given by (28). Again expand U in terms of 
lJI n (or), defined in (16), 

00 

U(y, or) = exp(iqy) 6 EnlJln(Or)' 
n=O 

(29) 

Substitute into (29) and note the identity (17) for 
orlJln (or). Equating coefficients of lJI n leads to the set 
of equations 

2-1 / 2 E(iq +n -l)En- 1 + (iq + ~:L +n~n 

+ 21/ZE(iq + n + l)(n + 1)En+1 = O. 

B. Solution by determinant 

The determinant of the coefficients gives the desired 
dispersion relation. The determinant is infinite and 
divergent, but for e « 1 it is asymptotically convergent, 
as in the previous case. The lowest order term is the 
element in the upper left-hand corner. Equating this 
element to zero gives the dispersion relation. 

WZ + ikrG = 0 

for q = kL and E = O. The lowest 2 x 2 determinant gives 
the correction 0(e 2). The lowest 3 x 3 determinant gives 
the correction to 0(e 4). The 4 x 4 determinant gives no 
further correction to the term 0(e4), etc. Thus 

w Z = - ikrG{l - EZ(l + ikL) - 2e 4(1 + ikL)Z + 0(e6)}. 

If krG is real and positive, the growing wave is 

iw ~ (~krG)l/Z{[l - ~EZ(l - kL)]+ i[l - ~eZ(l + kL)]}, 

(30) 
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when r is a random function of x (or G a random function 
of x). Both the real and imaginary parts are reduced bv 
the random component E. 

C. Solution by differential equation 

A more proper calculation of the dispersion relation, 
which does not involve direct questions of convergence 
of the determinant, is to write the coefficient En as 

[
21< 

En = . 0 d{3 exp{in{3)e({3) 

and proceed as in the previous section,IIC. There re
sults the differential equation 

d
2

e + (q __ i _ exp(- i{3) _ i exp(- i2f3)) de 
d{32 21/2E 2 d{3 

_ (iq + ~2 L/rG exp(- i{3) + tiq exp(- i2{3)\ e = O. 
21 2E ) 

Again write 

de = e\{l 
d{3 , 

giving a Riccati equation. Expand \{I in powers of E, 
00 

\)i({3) =6 En\{ln({3) 
n=O 

yielding 

iw 2L 
\{Io=---q, 

rG 

\)i1 = - i2 112\{1o(\{I0 + q) expi{3 

-2- 1/ 2(\{I0 + q) exp(- if3}, 

\{I2 =(\)io +q)[l +i(q + 3 \{I 0)) + ... , 

where the three dots indicate the terms of the form 
exp(± i2{3), which are periodic in {3. For the reasons 
mentioned in II C the part of \{I which is in:lependent of 
{3 must vanish, yielding the dispersion relation 

--+Zq=-E 2 -- 1-2zq---w 2L. w 2L ( . 3W2 L) 
rG rG rG 

~ iE2q(1 + iq) + O(E4), (31) 

which reduces precisely to (30) for the growing mode. 

IV. VALIDITY OF FIRST ORDER SMOOTHING? 

Now first order smoothing [Ref-16, Eq. (13)] gives 

iwT = 0'1/2 exp(i1T/4) 

x {I - tE20'1/2{3(1 + 0'1I2{3) 

X [1 + 0'1/2{3 + 0'1/2 exp(i1T/4)]-1 

x [1 + 0' 1/2f3 - 0' 1/2 exp(i1T /4) ]-1}, (32) 

where 0'1/2 is the dynamo frequency (krG)1/2 multiplied 
by T and 

{3 == [(1 + ikL)/kL )1/2 

for the case that G is constant and or is a function of 
both x and t, and the correlation function is 

(or(x', t')or(x", t") = exp[-Ix' - x" I /L - (t' - t")/T] 

as would result from a Gaussian distribution of or. 
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If or is a function only of x, then let T --> IX) in (32) to 
remove the time dependence. 22 The result can be 
written 

iw = (krG)1/2 exp(i1T /4)[1 - ~E2(1 + ikL)) 

= (tkrG)1/2{[1 - tE2(1 - kL)] + i[l - tE2(1 + H)]}. 

This is identical with (30), showing that for all values 
of L first order smoothing gives a result in agreement 
to the order considered with the exact calculation. 

If or is a function only of t, then let L ...... IX) to remove 
the space dependence from the general result (32). Then 
f3 = exp(i1T /4) and (32) reduces to 

iwT = 0'1/2 exp{i1T/4) x {I - tE20' 1/2 exp(i1T/4) 

x [1 + 0'1/2 exp(i1T/4)][1 + 20'1/2 exp(i1T/4)]-1} 

= (to')1/2{[1 - to'E2(1 + 23/20'1/2 + 40')-1] 

+ i[1 - (to')1/2E2(1 + 3(tO')1!2 + 20') 

x (1 +23/20'1/2 +40')-1ll. (33) 

The real part agrees exactly with (20). But the cor
rection to the imaginary part differs in both sign and 
magnitude. We expect that first order smoothing theory 
should be best when the correlation T is small, i.e., 
0' « 1. 'In this limit 

By comparing this with its counterpart (22) from the 
exact calculation it is apparent that the disagreement 
between (20) and (32) arises from the intrusion of an 
additional term - E2(0'/2)112 in the correction to the 
imaginary part computed from first order smoothing. 

In the limit that T --> O-the "short sudden" approxi
mation13,23 -we have 

iw = (tkrG)1/2(1 + i), 

which is identical with the exact solution. But for any 
finite T first order smoothing disagrees in the lowest 
order terms in T with the exact solution. 

Altogether, then, comparison of first order smoothing 
theory with the exact solutions using the methods of 
Uhlenbeck and Ornstein21 gives agreement in one case 
but not in the other. We note, for what it is worth, that 
agreement arises when the differential equation [in this 
case (27)] is first order in the variable on which the 
random function depends, and disagreement when the 
differential equation [in this case (9)] is second order 
in the variable on which the random function depends. 
Evidently the cause of the disagreement is the non
linear term oroB - (oroB) neglected in first order 
smoothing. The equation for the large-scale field is 
correct in first order smoothing provided only that the 
irreducible part of the triple correlation is zero. 
Evidently, in the one case, the triple correlation is not 
zero, and in the other is consistent with zero. 

As far as we have been able to ascertain there has not 
yet been a systematic investigation of the conditions 
under which first order smoothing is an accurate 
approximation for treating random -fluctuations. There 
do exist particular investigations (e.g., Kraichnan,ll 
Lerche,1 and this paper) which demonstrate its in
validity under conditions where it might have been 
believed, a priori, to be valid. There are also particu
lar cases (e.g., this paper) that demonstrate its validity. 
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Thus, after completing a calculation in the first order 
smoothing approximation, one does not know whether 
the answer is close to the truth. The result is valid in 
the limit of short correlation length and time -the 
"short-sudden" approximation. But to show whether it 
is valid for finite correlation length and time, it is nec
essary to turn to the more sophisticated and more cor
rect direct interaction approximation, developed by 
Kraichnan. 

A number of fields of physical inquiry are affected. 
In particular, the work of Steenbeck, Krause, and 
Radler24 (see also Moffatt,25 Weiss,26 and Krause and 
Roberts,L::> and the comments by Lerche,27,28 and ref
erences therein) on hydromagnetic dynamos is based 
on the first order smoothing approximation. Their 
results can be judged valid only when they can be veri
fied by accurate methods, such as the direct interaction 
approximation. Their results are, of course, valid in 
the short-sudden limit, which was first employed by 
US13 ,23 in demonstrating the dynamo principle, and 
their results reduce precisely to our prior answers. 
Curiously enough Weiss26 in his excellent review of the 
development of hydromagnetic dynamo theory refers to 
our original formal calculations, in the mathematically 
valid short-sudden limit, as "heuristic", evidently pre
fering the more formal recent work based on the first 
order smoothing conjecture. Fortunately we know that 
the more recent work is valid in the short sudden limit, 
where it reduces to the earlier results of Parker,13 

Clearly a significant advance would be made in kine
matic dynamo theory if the work of Steenback, Krause, 
and Radler could be extended (in a rigorous mathemati
cal manner, of course) beyond the "short-sudden" 
regime. It is our opinion that the only valid mathemati
cal tool available for the job is Kraichnan's direct 
inte raction approximation. 

*This portion of the work was supported in part by the United 
States Air Force, Air Force Systems Command under contract 
F-19628-72-C-0056. 

J. Math. Phys .• Vol. 14. No. 12. December 1973 

tThis portion of the work was supported in part by the National 
Aeronautics and Space Administration under NASA Grant 
NGL 14-001-001. 

'I. Lerche, J. Math. Phys. 14, 1381 (1973). 

1954 

2A. M. Yaglom, An Introduction to the Theory of Stationary Random 
Functions (Prentice-Hall, Englewood Cliffs, N.J., 1962). 

'W. e. Meecham, J. Geophys. Res. 69, 3175 (1964). 
4U. Frisch, "Wave Propagation in Random Media", in Probabilistic 
Methods in Applied Mathematics, Vol. I, edited by A. T. Bharucha
Reid (Academic, New York, 1968). 

51. B. Bernstein and F. Engelmann, Phys. Fluids 9, 937 (1966). 
o A. Dolinsky and R. Goldman, Phys. Fluids 20, 1251 (1967). 
'B. B. Kadomtsev, Plasma Turbulence (Academic, New York, 1965). 
8K. Y. Fu, Plasma Phys. 15,57 (1973). 
'c. F. Kennel and F. Engelmann, Phys. Fluids 9, 2377 (1966). 
IDe. F. Kennel and H. E. Petschek, 1. Geophys. Res. 71, I (1966). 
"R. H. Kraichnan, J. Math. Phys. 2, 124 (196 I). 
l2The reader is referred to a paper by Lerche' for a comparison of the 

results of first order smoothing with the results of Kraichnan 's 
equations, which latter represent, in a statistically exact manner, an 
ensemble of physically possible dynamical systems. Exact agreement 
obtains only under Parker's" "short-sudden" conditions. 

I3E. N. Parker, Astrophys. J. 122,293 (1955). 
141. R. Herring, Phys. Fluids 12, 39 (1969). 
!SF. Krause and P. H. Roberts, Astrophys. J. 181,977 (1973). 
"I. Lerche and E. N. Parker, Astrophys. J. 168, 231 (1971). 
17E. N. Parker, Astrophys. J. 162,665 (1970). 
18E. N. Parker, Astrophys. J. 163,295 (1971). 
19E. N. Parker, Astrophys. J. 166,295 (1971). 
2°E. N. Parker, Astrophys. J. 168,239 (1971). 
"G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930). 
"The validity of first order smoothing may be questionable when T (or L) 

is comparable to, or larger than, the characteristic time or scale of the 
ordered field. But passing to the limit T .... = (or L .... =) in the present 
case gives the same result as is obtained if the calculation is repeated 
from the beginning with 8 r independent of t (or x). Thus the correct 
dispersion relation is obtained, evidently, if T .... = (or L .... =) in the 
framework of first order smoothing. 

23E. N. Parker, Astrophys. J. 157, 1119 (1969). 
24M. Steenbeck, F. Krause, and K. H. Radler, Z. Naturforsch. 21a, 369 

(1966). 
15K. Moffat, J. Fluid Mech. 41, 435 (1970). 
2°N. O. Weiss, Quart J. Roy. Astron. Soc. 12,432 (1971). 
271. Lerche, Astrophys. J. 166,627 (1971). 
281. Lerche, Astrophys. J. 181,993 (1973). 



                                                                                                                                    

Relation between the boson calculus and Zhelobenko's method 
M. A. Lohe and C. A. Hurst 
Department of Mathematical Physics, University of Adelaide, Adelaide, S. Australia 5001 
(Received 30 May 1973) 

A comparison is made between the method of constructing finite-dimensional representations 
of the classical groups using the boson calculus in its standard or modified form and the method 
of Zhelobenko, which uses polynomials over a homogeneous space defined by a certain triangular 
subgroup. It is shown that the two methods can be directly related, so that one construction can 
be mapped into the other. 

1. INTRODUCTION 

The method of the boson calculus has been extensively 
developed for the construction of finite-dimensional irre
ducible tensor representations of the unitary groups, and 
recently it was extended, 1 by introducing modified 
bosons to do the same for the orthogonal and symplectic 
groups'. As there is already in existence a fully develop
ed formalism for constructing all these representations, 
together with the spinor representations of the ortho
gonal groups due to Zhelobenko,2 it is of interest. to 
establish the connection between the two. Some dIS
cussion of this relationship was given by Zhelobenko in 
the paper referred to, if the boson calculus is interpret
ed as the construction of irreducible tensor represen
tations, but a detailed correspondence showing exactly 
how to relate the polynomial bases which occur in both 
methods has not yet been made. 

In this paper such a detailed correspondence between 
the tensor representations is given, and in a later paper 
it will be shown how the boson calculus can also be used 
for constructing spinor representations of all the ortho
gonal groups (not just the lower order groups which 
have a classical group as a covering group). 

The boson calculus is usually concerned with the con
struction of unitary representations of unitary groups 
(including the unitary orthogonal and symplectic groups) 
whereas Zhelobenko considered the complex classical 
groups. However, many of the considerations involved in 
the construction of finite-dimensional representations 
are indifferent to whether a complex group or one of the 
real forms is being conSidered, and so long as questions 
of adjoint operators and scalar products do not arise, 
one may discuss representations without worrying about 
which particular field of numbers is chosen. 

The starting point of both methods is to consider, say 
for the group GL(n), polynomials in the matrix elements 
g . . , and to define a representation by the right regular 

'J • representatIon: 

Tgf(g') = f(g'g). (1) 

Instead of the full group manifold of GL(n) one may 
choose the homogeneous space GL(n)/ZD(n) where Z is 
a lower triangular group with unit diagonal elements and 
D is a diagonal matrix, and then the polynomial f(g') is 
replaced by an inhomogeneous polynomial f(z) where Zij 

are the matrix elements of an upper triangular matrix, 
which serve to label the right cosets. Then multiplier 
representations of GL(n) may be defined by right trans
lations on this space according to 

Tgf(z) = OI(zg)f(z'g) , (2) 

where z'g means the right component in the Gauss de
composition of the element zg E GL(n). This is the basis 
of Zhelobenko's method, and it is fully discussed in Ref. 2. 
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In its simplified form the boson calculus starts with 
an n-dimensional vector (al)' i = 1, •.. , n, which trans
forms according to the fundamental n-dimensional re
presentation of GL(n), homogeneous polynomialsf(a) in 
the (a i ) are constructed, and a representation is defined 
by 

(3) 

If we write f(a) = a~lf(a';al)' thenf(ai/al) is a func
tion over the homogeneous ~pace GL(n)/H where H is the 
subgroup for which g Ii = 0, i > 1, and in this simple case 
we see that the boson calculus is also concerned with a 
homogeneous space defined by a lower triangular sub
group. A more detailed examination given in the sub
sequent sections shows that the general boson calculus 
can be expressed in terms of polynomials over exactly 
the same homogeneous space as that employed by 
Zhelobenko. 

In the next section the unitary and general linear 
groups will be discussed, and in the last section the 
orthogonal group. 

2. THE UNITARY AND LINEAR GROUP 

As already mentioned the boson calculus uses spaces 
of homogeneous polynomials to carry representations of 
the unitary group U(n) and the general linear group. In 
order to relate the present discussion to the usual treat
ments of the boson calculus, U(n) will be specifically 
referred to, with the proviso already made, that the re
sults can be simply translated so as to apply to GL(n). 

In general we require n sets of bosons aNi,.OI = 1, ••• , 
n) with adjoints uf' in order to obtain sufficient poly
nomials. It will be convenient to think of these operators 
as n2 complex variables, Le., a~ = z;< E C?, with adjoints , , n-

a<;< = a/aZ{X, and the vacuum state 10) becomes the con
stant 1. The representation space consists of poly
nomials homogeneous of degree m k in the n variables 
at, for k = 1, •.• , n. We can form an irreducible ~epr~
sentation of U(n) in the subspace of these polynomIals In 

which the bosons at:!-, for fixed 01, appear orily in anti
symmetric combin~tions with ar;l, a~-2, .•• , a~. This 

subspace R appears through the application of the 
Young sym;'uetrizer to an arbitrary polynomial, which 
may be regarded as a tensor under U(n) transformations, 
to produce a polynomial (tensor) of a certain symmetry. 
The irredUCible representation space now consists of 
polynomials homogeneous of degree r k = m k - mk+l in 
the variables a·· ., for k = 1, ••. , n (mn +1 = 0). The 

11l2··· t k 

anti symmetric combination a,. " " is defined by 
12'" k 

which is the determinant of the k x k matrix Mij = aJ • 
The numbers mi , i = 1, ... , n are nonnegative integers 

(4) 
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satisfying m 1 ~ m 2 ~ ••• ~mn and label the representa
tion of U(n). 

In this space R" we define the irreducible representa
tion. TJl by (3) were "a" now stands collectively for the 
variables a; i j' k = 1, ... , nand ag stands for the 

12 ••• k 

same variables, in which each ar has been transformed 
to (a"'gl; = ap"'gp; (summation over repeatedp,q, ... ). 
In this representation the generators of U(n) have the 
form 

E J--P 
ij =ajaj , 

and satisfy 

[Eij ,EkZ ] = 6jkE il - 6il Ekj • 

The boson operators a't behave as vectors under U(n) 
transformations: 

[E;j, a't] = 6jk ai"', 

and the variables ail" .ik behave as tensors (multivectors) 

of rank k. The state of highest weight in the irreducible 
space Rn is (ignoring normalization) 

(5) 

By application of the diagonal generators Hi = E;i to 
this state we deduce that the numbers m 1 ,m2 ••• mn are 
the actual representation labels. 

We wish to demonstrate the relation of these represent
ations to those obtained by Zhelobenk02 in a different 
formalism. In order to do this we will obtain another 
realization of the representation T(g), in a projective 
space Pn which is set up in the following way (see, e.g., 
Hermann3 ). Two nonzero tensors a and a' are said to 
be equivalent if there is a nonzero scalar >t such that a = 
>ta'. Pn is then defined to be the set of all these equi
valence classes, so that a point of Pn is an equivalence 
class of such tensors. A function f defined on Pn must 
then satisfy f(>..a) = f(a), i.e., is homogeneous of zeroth 
degree. These functions can be constructed by taking 
functions in the inhomogeneous coordinates a i i i / 

12'" k 

a1 2 ... k for k = 1, ••• , n. These coordinates are not de
fined everywhere, but on thos.e points for WhICh a12 ... k '" 

O. To each homogeneous polynomial defined inR n there 
corresponds a single polynomial defined on Pn , since 
using the properties of fERn as a homogeneous poly
nomial we can write 
~( ) m l -m2 m~-m3 m" 
J,a;,ajlj2 ,· •• ,a il "' in = a 1 a 12 ••• a 12 ... n 

(
a i ahi2 a i1 ••• ia ) 

xf a'a-'''''-a-- . (6) 1 12 1 ... n 

The functions on Pn are obtained by dividing the homo
geneous polynomials by the state of highest weight (5). 
In this way the representation space can be characterized 
not as the space Rn of polynomials. homogeneous in the 
variables a, but as the space of polynomials on the pro
jective space Pn • This construction has been described 
before for SU(2) (Vilenkin4). We have obtained the func
tions on -Pn from the space Rn, in which the polynomial 
degrees m k are also the representation labels. However, 
there are other ways to carry out the construction des
cribed, in which the degrees m k are not the representa
tion labels themselves. 

The coordinate functions of Pn 

k = 1''''J n, 
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are not independent, but an independent set may be taken 
as 

Z .. = a12 ... i-1j 
'J a .. ' 12 ... ,-1, 

i,j = 1, ••. , n. 

This follows from the identities 

x a1 '. ... m,p (7) 

Using these identities for m = 1, ... , n - 1 success
ively, we see using (6) that each 

a il ''' ik 

al. .. k 

can be expressed in terms of 

a12 ... m-lz 

a12 .. ,.m-Im 
for m = 1, ..• , k. 

Equation (7) is proved by conSidering the following 2m + 
1 x 2m + 1 determinant. The upper left m x m block 
has elements M kj = at; the upper right m x m + 1 block 
is zero; the lower left m + 1 x m block has elements 
M kj = af; and the lower right m + 1 x m + 1 block has 
elements L kj = at.. The value of this determinant is 

J 
a12 ... m ail'" i m+

1 
as is shown by carrying out a Laplacian 

expansion according to the first m and the last m + 1 
rows (see Aitken5). Now replace the ith row by the ith 
row minus the (i + m)th row, for i = 1, •.. ,m. The 
determinant is unchanged, but the upper left m x m 
block is now zero, and the upper right m + 1 x m block 
has elements L kj = - at. Again carry out a Laplacian 
expansion, and we obtainJthe right-hand side of (7). 

The function 

on Pn can now be written as a function ¢ of the variables 
Zij' Hence the correspondence (6) may now be written 

(8) 

where fERn, and ¢ is defined on Z = (Zij) E Pn, where Z 

is upper triangular. The function ¢g whlch corresponds 
to f(ag) is then given by 

f() ml-m2 mn rl-. 
ag = a1 ... a12 ... n 'l'g 

= (ag);:'I-m2(ag)~fm3 ••• (ag);:'2' ... n¢ (agh ... j) 
(agh ... i 

Therefore, the irreducible representation Tg defined 
on the space of functions ¢ on Pn is given by 

Tg¢(z) = (0;)1) m
1
-m

2 
... (~h2 ... n) mn ¢(z), (9) 

1 \: 12 ... n 
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where z is the matrix with elements 

z .. = (qgh2 .•. i-1 j j(qgh2 ..• i-.!J... 
'J a12 •.• ;-li! a12 ••. i-1 i 

The factors ( agh 2 '" k for k = 1, ..• , n are functions of 
a I2 •.. k 

Zij' the explicit form of which is given by 

(10) 

where t!.k(zg) is the minor formed from the first k rows 
and columns of the matrix zg. To prove this, consider 
the k x k determinant D k with elements 

Dij = a 12 ... i-I qgqj = a 12 ••. i-li Ziqgqj (q summed) 

which has the value 

(11) 

We will show that the (i,j) element of Dk may be 
written as a~gqj a 12 •.. i-I' without chan~ing the value of 
D k • This is clearly true for i = 1 (with the convention 
that a12 ... i-I = 1 for i = 1). Suppose it is true for i = 
1, ..• , m - 1. We carry out the following row. operations 
on the m th row leaving the determinant unchanged. 
Firstly, note that by expanding the determinant a 12 .. . m-l q 

down the m th column, we can write 
m-l 

aI2 ••. m-lq = a;aI2 •.• m - 1 + ~ a~Cr 
r=1 

for some coefficient Cr (depending on ar, 1 >" q). There
fore, 

m-l 

~ a;gqjCr • 
r=1 

Now replace the mth row of Dk by 

m-l C 
(the mth row) - ~ r (the rth row). 

r=1 a 12 ... r-l 

The element Drj (for r ~ m - 1) is a~gqj a 12 '" ,.-1> so 
that now the element Dmj is equal to aq'gqj a 12 ..• m -1' By 
indUction, and by bringing out the factor a12 ..• i-I' for i = 
2 ..• k,wefindthatDk isequaltoalaI2···aI2 .. k-l 
multiplied by the determinant with elements a.~gqj which 
is (loW)12 •.• k' This proves (10). If t!.i· (zg) is the minor 
obtained from t!.; (zg) by substituting the column with the 
number j in place of the column with the number i, then 
the same proof shows that 

(qg)12 . 1 . t!.. (zg) = ... ,- J 
~ a.. • 

12 ••• ,-1, 

The irreducible representation Tg can now be written 

TgCP(z) = t!.1(zg) me"2t!. 2 (zg) m2-m3 ••• t!.n(zg)mncp(z) 

where now we may write Zij = t!.ij(Zg)/ t!.; (zg). In this 
form we can see that the representation Tg is the same 
as that obtained by Zhelobenko by a different method. 
The results he has obtained can be immediately applied 
to our case where the functions <b ~re qefined on the 
space P , with coordinates ZiJ· = ~. On the other 

n a12 ... i 
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hand, in the formalism of Zhelobenko, the functions cP are 
defined on Z, the subgroup of GL(n) consisting of upper 
triangular matrices with elements Zi·' However, we can 
exhibit Pn as a homogeneous space of GL(n), and identify 
Pn with the coset space GL(n)/H, where H = ZD(n) is the 
subgroup of lower triangular matrices referred to in 
Sec. 1. Let us determine the isotropy subgroup H of 
GL(n) at the point in Pn determined by the tensors, 
denoted a, with the values a il ... i = 0 except a I2 •.• k = 1, 
for k = 1, ••. , n. The matrixg "Ieaves the point in Pn 
fixed if there exist nonzero scalars A = A(k) such that 
loW = Aa. Firstly, we show that am = 0, j > m, and a;;: = 
1. Clearly this is true for m = i. If it is true for m = 
1,2, .•. ,k-l,then,writinga12 ... k_lj asak xk 
determinant, we find 

j= 0 
aI2 ..• k-lj = ala~ ... aZ:::laf = a! 1= 1 

for j > k 

for j = k 

The result follows by induction. Now the condition 
loW = Aa implies the resultg7l1i = 0, j > m, withgmm >" O. 
This is true for m = 1, because (loW)i = A(l) a i = apgpi = 
gl;=A(1)li 1i • Henceg1i =O, i> 1,andgll =A(1)is 
nonzero. Suppose the result is true for m = 1,2, •.. , k -
1. Then qg = Aa means 

(loWh2 ... k-lj =A(k)a12 ... k-lj =0 forj>k, 

= A(k) for j = k. 

Writing (qg)12 •.• k-1 j as a determinant, we see that 
elements above the diagonal are zero. Therefore, 

(loW)12 •.• k-lj =gllg22" ·gk-l k-lgkj = 0, j > k 

= A(k) >" 0, j = k. 

Hencegkj = 0 for j > k, andgkk >" O. By induction then 
we have shown that H is the subgroup of GL(n) consisting 
of lower triangular matrices and we can put Pn = GL(n)/ 
H. This demonstrates the asserted identity of the two 
methods for GL(n). 

3. ORTHOGONAL AND SYMPLECTIC GROUPS 

In order to consider the groups with a metric some 
changes are necessary. The method for the symplectic 
group Sp(n) is the same as that for the orthogonal group 
O(n), except that the metric is antisymmetric, so we will 
consider only O(n). In order thatg E O(n), we require 
gag t = a, for some a which is symmetric. We will 
choose for a the matrix with elements a ij = 6; n + 1-j' The 
advantage of this metric is that the generators Kij (= 
- K;i), which satisfy 

[Kij,KkZ ] = 0jkK;1 + O;zKjk - 0ikKjZ - OjZKik , (12) 

are in Cartan standard form, i.e., are either weight 
generators, or raising or lowering generators. The 
classification of these generators, in terms of the gener
ators Ea corresponding to the root Q is as fOllows: 

Hi = Kn +1- i ,;, i = 1, ... , II, 

E ep+eq = K,,+I-Q,n+1-p, E- ep- eq = Kpq ' (13) 

Eep-eq = K,,+I-p,Q' 

where p, q = 1, ... , II and II = [n/2]. In addition, for 
0(211 + 1) we haveEe = K 2v +2- P v+l andE_ e =Kv+1p ' 
for p = 1, •.. , II. P , p' 

As before, the representations of O(n) are realized in 
a space H,. of homogeneous polynomials. In order to 
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ensure that these representations are irreducible, the 
variables a't (i, a = 1, •.• n) on which the polynomials 
are defined must be constrained with the condition 
apa~+I_p = O. This is in order that the tensors of the 
representation space are traceless, or from the same 
viewpoint, the polynomials which appear are harmonic 
between all variables. We will think of the ai"" as 
modified bosons,1 Le., 

a~ = zlX - 2u(zP, Zq)tl.(J;q)(cxr) <Tis _0_ 
OZ[ 

with adjoints iii" = ajoz;", but there are other possibili
ties. The traceless condition imposes the following con-
ditions on the antisymmetric variables a. ,', k = 1, 

'I'" k 
••• , n [in the restriction to SO(n) we have k = 1, ••. , 1'] 

a. . a· . 1 = 0 'l""k q )I"')ZR+ -q , 
(14) 

for if we expand according to Eq. (4) we see that each 
term has the factor a~ a~+I-q (for some a, (3) which is 
zero. The variables of our space will be a,. " for k = 

I'" k 1, .•• , I' and the polynomials will be homogeneous of 
degreem k -mk +1 in ail".ik(mv+l = 0). 

In this space Hn we define the irreducible representa
tion Tg by Tgf(a) = f(ag), g E O(n), f E H... The gener
ators then have the form 

and the a'f behave as vectors under these transformations: 

For 0(21' + 1) the state of highest weight is 

and for 0(211) there are two possibilities 

I max) = a;"l- m 2a;)-m2 ••• a;"d' ... v I 0) 

or 

(15) 

(15') 

These two cases arise because aI2 ... vaI2 ... v-I v+l = 0, 
a relation which follows easily from (14). When mv '" 0 
the polynomials in Hn are homogeneous of degree m/J-l + 
m in the a,. " and of degree - m/J in the ai i' 

J) 1 .. • .. v-I 1-"" v 

However, we will rarely consider the case m v '" 0 since 
the situation is entirely analogous to that for m v ~ O. 
The state of highest weight (15) has the same appearance 
as that for the unitary group (5). In fact, (15) is also the 
state of highest weight of the group U(II) generated by 
Ecx/3 = a cx ii.8 , which commutes with O(n). In the state lte 
(15) only the boson parts of the modified bosons give any 
contribution. 

Now we define a projective space Pn in the same way 
as before, Le., a point of Pn is an equivalence class of 

J. Math. Phys., Vol. 14, No. 12, December 1973 

tensors, where two tensors a, a' are defined to be equi
valent if a = A.a' for a nonzero scalar A.. Functions on Pn 
are constructed from the coordinates Zij = a 1 2 •.• i-Ii / 
aI2 ... i-I i' The a's here are constructed from moditied 
bosons and will be manipulated formally, but the poly
nomials which actually appear are well defined as before 
because the variables a12 ... 1 .. k = 1, ..• , II appearing in 
(15) may be regarded as ordinary bosons. The poly
nomials ¢ on Pn are obtained from those in Hn according 
to 

f(a) = alml-m2 ... a;"d' ... v¢(z), 

for the case mv ~ O. The Zij are not all independent, and 
the relations between these variables are expressed in 
the restriction that Z is orthogonal, Le.zoz t = o. Now 
zin+l-qZjq = l5in +1- j holds identically for i ~ n + 1 - j 
because Z is upper triangular, with diagonal elements 
equal to one. For i < n + 1 - j we need to show 

al. .. i - 1 n+l-qa 1 ... j - 1 q = 0, 

and this immediately follows from (14). These relations 
between the Zi' are the same as those between the Zij 
which appear in the formalism described by Zhelobenko. 
The representations obtained in both approaches are 
therefore the same, with the same representation spaces, 
Le., we have 

where in our formalism 

( ) 
(cg)12 ... k 

C.k zg = -----, 
a12 ... k 

(16) 

k = 1, ..• , II. 

We can now use the important results obtained by 
Zhelobenko and apply them to our case. Ofprimeinterest 
is the fact that the spinor representations fall naturally 
into this construction of the representations of O(n). In 
the space of homogeneous polynomials Hn the numbers 
m 11 m 2' •• mv which label the representation can be 
integers only, and we do not obtain the two -valued (spinor) 
representations of O(n), in which the mi are all half odd
integers. Zhelobenko has explained in detail how these 
representations appear naturally in the space constructed 
according to (16). We will see in a later paper how to 
transfer back from the space of polynomials defined on 
Pn , to the space Hn of harmonic homogeneous polynomials 
in such a way as to include both spinor and tensor repre
sentations together in a natural way. 

1 M. A. Lohe and C. A. Hurst, J. Math. Phys. 12, 1882 (1971). 
2D. P. Zhelobenko, Russ. Math. Surv. XVII, 1 (1962). 
3R. Hermann, Lie Groups for Physicists (Benjamin, New York, 1966), 
Chap. 2. 

'N. Y. Vilenkin, Special Functions and Theory of Group Representations 
(A.M.S. Trans!., Providence, R.I. 1968), Chap. III. 
~A. C. Aitken, Determinants and Matrices (Oliver and Boyd, Edinburgh, 
1958), Chap. IV. 
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It is shown how to construct all spinor representations of O(n). For the low order groups, this is 
done in such a way as to obtain the representation space of the covering group. More generally all 
representations of 0 (n) are constructed in spaces of harmonic homogeneous polynomials. This is 
achieved for the spinor representations by finding realizations of the Lie algebra of 0 (n) which are 
new. Results are written out explicitly for 0(3). 

1. INTRODUCTION 

The representations of O(n) may b~ labelled by num
bers m l' m 2' ... m v where!) = [n/2] 1S the rank of O(n). 
The m i can be integers in which case the representa
tions are single-valued and are referred to as the ten
sor representations. It has been shown in a previous 
paper1 how to construct the irreducible tensor repre
sentations in spaces of harmonic homogeneous poly
nomials defined on modified boson operations af which 
satisfy g p apa~ = 0, for some metric g. Since each 
polynomial oehaves as a tensor under O(n) transforma
tions we could regard the representation space as con
sisting of tensors which are traceless, due to the con
dition gpqapa~ = O. I~ this construction the labels m i 
are also the polynomlal degrees in aj, so that the m i 
are necessarily integers. 

However, there exist also the spinor (two-valued) 
representations in which all the m i are semi-integers 
(Le., half odd integers), and which appear because O(n) 
is not simply connected. It is important to be able to 
include the spinor representations in any construction 
of the O(n) representations because of their phYSical 
importance, particularly for quantum mechanics. Such 
a construction is usually carried out by considering not 
actually the orthogonal group but its covering group, as 
is the case for 50(3) covered by 5U(2) (see for example 
Bargmann2 ). This approach can be used only for the 
low order groups, namely SO(3), 50(4) covered by 
SU(2) x 5U(2),50(5) covered by 5P(4) and 50(6) covered 
by 5U(4). We show in Sec. 2 how by consideration of 
these covering groups we obtain certain operators satis
fying the traceless conditions, which are different from 
modified bosons. By substituting these operators into 
the expressions for the 50(n) basis states, we obtain 
states in the representation space of the covering group. 
In this way we include the spin or representations by 
obtaining the representations of actually the covering 
group, even though these representations are constructed 
by a global analysis. Some of the operators used in this 
construction satisfy simple triple commutation rela
tions, and these are also discussed briefly. 

In general 50(n) is not covered by another of the 
classical groups and we must find other methods to 
include the spinor representations. It is known how to 
construct the fundamental spin or representation using 
Clifford algebras (see for example Boerner3 ), and so 
we could produce arbitrary spinor representations by 
taking the direct product of a tensor representation 
and the fundamental spinor representation and reducing 
the result. However, this method is cumbersome, and 
even for 50(3) the operators which take us directly into 
the irreducible subspace are without simple properties. 

In a recent paper4 (referred to as Paper I) we have 
shown how to obtain a construction of the representa
tions of 50(n) which includes both spinor and tensor 
representations together in a natural way. This con-
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struction was described by Zhelobenk0 5 using the method 
of inducing representations, but we have shown how to 
repeat the construction using as a starting point the 
formalism of the boson calculus. By transferring back 
to this formalism we show that the space of harmonic 
homogeneous polynomials is in fact a suitable space 
with which to carry the spinor representations. This is 
achieved by finding realizations of the Lie algebra of 
50(n) which are new; here modified bosons play an im
portant part. 

For example, in the case n = 3 we find that contrary 
to general belief the spherical harmonics Y1m(fI, cfJ) are 
suitable basis states with which to carry the semi
integer representations, and these are distinguished 
from the integer representations by the different form 
of the generators. Attempts to construct the spinor 
representations in spaces of harmonic functions have 
centered on the interpretation of theY1m(O, cfJ) for semi
integer values of the label 1. As previously indicated 
this is not pOSSible, the problem being that even if the 
state of highest weight is given a meaning for semi
integer l, the lowering generator J_ does not annihilate 
YI,-l(fI, ¢) which must necessarily be the case. Pandres6 

has attempted to meet this difficulty by noting that 
Q = J_ Yl.- l is orthogonal to all Y 1m , but this property 
is not sufficient to show that Q = O. In a representation 
space where no scalar product has been defined it is 
still necessary that J_ annihilates the minimum state 
(see for example Miller7 ). 

The method described in Sec. 3' for 50(n) leads also 
to new realizations of the Lie algebra of U(n). It is 
likely that these realizations will be important in ob
taining infinite-dimensional representations of the non
compact groups, especially considering that our ap
proach is, in the words of Zhelobenko,5 "the theory of 
finite-dimensional representations from the infinite
dimensional point of view." 

2. COVERING GROUPS 

In this section we demonstrate the relation between 
the orthogonal groups (of low order) and their covering 
groups, on a global scale. We give explicitly the sub
stitutions necessary to transfer from 50(n) basis states 
to those of the covering group, and so we obtain the 
spinor representations in the form of the representa
tions of the covering group. Let us consider first 
50(3). Suppose we have three commuting operators 
a!, a 2 , a 3 (with adjoints ap G2 , ( 3 ) which form a vector 
with respect to the generators K ij of 50(3), i.e., 

[K ij' a k] = 0jkuipa p - ° jkUj pa p (for notation see I). 

(2.1) 

We also require that these vector components satisfy 
the traceless condition 2a 1a 3 + a~ = O. We can then 
form an irreducible representation space with the func
tions obtained by allowing the a j to act on the vacuum 
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10) (for which K ij 10) = 0). The basis functions then 
have the form 

I f,,)= ara~-m 10), 

where 1 labels the representation, and - 1 .s m .s l. 

(2.2) 

If we put the a; equal to modified bosons with K .. = 
(J;pa/ij - (Jjpapa; we recover the usual SO(3) basi:f 
states, the solid spherical harmonics, and 1 must be an 
integer. However, another possibility is to put 

a1=Q!~, a 2 =v'2Q!1Q!2' a3=-Q!~, (2.3) 

where Q! l' Q! 2 are ordinary bosons. These operators 
satisfy 2a 1a3 + a~ = 0 and form an SO(3) vector, with 
the generators K;j being given by 

K31 = t(Q! 11i 1 - Q!2li 2)' K21 = (1/../2)Q!2li 1' 

K32 = (1/../2)a 1li 2 • (2.4) 

We have in fact obtained the'SU(2) representation space. 
The basis states (2.2) become 

I~) =ai+ma~-mIO) 

and 1 can be a semi-integer. The operators (2.3) can be 
obtained by comparing states of highest weight for SO(3) 
and SU(2), after equating the generators for each as in 
(2.4). We obtain a1 = a~, and then by requiring that 
(2.1) should hold we deduce the .expressions for a2 and 
a3' The operators a l' a 2 are components of a vector 
under SU(2), but are regarded as spinor components 
under SO(3). 

We can use the same technique for SO(4). The gene
rators of SU(2) x SU(2) may be expressed with E;j = 
a;a j' i,j = 1, ., .,4, where the Q! 's are ordinary 
bosons, and then the correspondence between the gene
rators of SO(4) and SU(2) x SU(2) is 

t(K41 + K 32 ) t(Eu - £22) 

t(K41 - K 32 ) t(E33 - E 44 ) 

K43 E12 
(2.5) 

K21 E21 

K42 E34 

K31 E43 

The state of highest weight is then 

I max) = a~cm2a~iI0>, m2 '" 0 

= Q!~1+m2a;cm210>, 

so that a 1 = a 1a 3 , a 12 = Q!~. Now from the require
ment that a1 = Q! 1 a 3 behaves like the first component 
of an SO(4) vector under the E;i' we find 

a 1 =a 1a 3 , a2 =Q!1a 4' 
(2.6) 

a 3 =a 2a 3, a 4 =-Q!2Q!4' 

Similarly, we obtain all a;j = a;b
i
· - ajb;, so that we can 

solve for all b i' It is possible on y to express the b' s 
in terms of anyone of them, b 1 say. We find 

(2.7) 
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The variables a ij which actually appear are nevertheless 
independent of b l' The a's and b' s found in this way 
satisfy the traceless conditions, i.e., a 1a4 + a 2a3 = 0, 
b 1b 4 + b2b 3 = 0, a 1b 4 + a2b3 + a3b2 + a 4b 1 = O. In 
fact they satisfy more than this, because we have 
a 1b 4 + a3b2 = 0 = a 4b 1 + a2b 3• This is because a 13 
and a 24 are zero in the space for which m2 > O. When 
m 2 < 0 the expressions for the b's are 

Q!:za 4 Q!4 
b 4 = - -- b 1 - -. 

Q!1a 3 a 1 
(2.8) 

and then a12 = 0 = a34• 

The expressions for the at as double bosons satisfy 
the following simple triple commutation relations: 

[a;,a j ] =0, 

[a;, raj> ak]] = (J ;k(Jj pa p - 0 jka; - 0 ;jak 

i,j,k=l, ••• ,n. 
(2.9) 

The operators (2.3) for SO(3) also satisfy these rela
tions, but the b; (2.7) and (2.8) do not have this property. 

It is of interest to find other operators satisfying 
(2.9) because of the possibility that there could be 
other solutions of the traceless conditions. However, it 
is possible to classify all operators expressed as 
double bosons which satisfy (2. 9), and it can then be 
shown that (2.3) and (2.6) 'are essentially the only solu
tions with (J pqapa q = O. However, for arbitrary n the 
operators 

a i = a ;...In/2 + N - 1 

satisfy (2.9), where a; are modified bosons defined by 

[a;,a j ] = 0, 

[Ii ;' Q! j] = O;j - (J ;pa p(n/2 + N)-1(J jqa q' 

where N = Q! pli p is the number operator. If we put 

a; = a ;...Jp + N where the Q!; are ordinary bosons we 
obtain commutation relations similar to (2.9), namely 

[a;, aj] = 0, 

[a;, raj' ak]] = - 0j"a j - 0ija". 
(2.10) 

For the case n = 1 these relations are the same as 
(2.9) and this case has been studied by Kademova and 
Kraev.8 The algebra of the a; is isomorphic to the Lie 
algebra of SU(n, 1)9 for (2. 10) and isomorphic to the 
Lie algebra of O(n, 2) for (2.9). 

The techniques we have used for SO(3) and SO(4) to 
find operators which permit the construction of all the 
representations of the covering group apply also to 
SO(5) and 50(6). For 50(5) aj> b i' i = 1, .•. ,5, are ex
pressed in terms of modified bosons Q! ;,{3; for SP(4) 
which satisfy Epqa tf3q = O. Putting 

(

0 - 1 
1 0 

E = 0 0 
o 0 

we have a 12 + a 34 = O. The correspondence between 
the generators of SP(4) and SO(5) is as follows, where 
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S;j = £;pOl/ij + EjpOlp751; + E;tfl)3j + £jtfl)3;, 

i,j = 1, ..• ,4, 

are the generators of Sp(4): 

S:n KS1 + K42 

S43 KS1 - K42 

1/v'2S42 KS3 

1/v'2S32 K43 

- 1//2S31 K31 

1//2S 41 K32 

is 22 KS4 

- !S44 KS2 

- !Sll K21 

!S33 K41 

The .operators a;, b; which have all the re~ired pro
pertIes are a 1 = 01 13 , a2 = - 01 14, a3 = v'2(112' a4 = (123' 

as = 01 24 , 

011 01 14 
b 2 = --- -- b 1 , 

01 13 (113 

01 01 01 
b 3 = v'2 2..2 + v'2 ~ b , 

(113 (113 1 

(12 01 
b - ___ 3+~b 

4 - (113 01 13 1> 

01 1 01 2 01 3 01 4 01 24 
b s =- --- -- + -- bl" 

01 13 01 13 01
13 

(2.12) 

For SO(6) the operators a;, b;, c i' i = 1, ... , 6, are 
expressed in terms of ordinary bosons. The results for 

a; are a1 = 01 12 , az = 01 13 , a3 = (123' a4 = 01 14, as = 
- (124' a6 = (134' 

3. REPRESENTATIONS IN SPACES OF HARMONIC 
HOMOGENEOUS POLYNOMIALS 

It is necessary to use more general methods in order 
to construct both spinor and tensor representations of 
SO(n), for arbitrary dimension n. We wish to develop 
the boson calculus further to allow this, i.e., to construct 
these representations in spaces H n of harmonic homo
geneous polynomials. A unified construction has been 
carried out by Zhe~obenkos by defining multiplier re
presentations in t~e space of functions on a subgroup Z 
consisting of upp~r triangular matrices. In I (to which 
we refer for not~tion and further details) it has been 
shown how to COllstruct these same mulitplier repre
sentations in the space of functions If! on a set of n x n 
upper triangular matrices z with elements z ;j' The 
functions cp, homogeneous of zeroth degree, are con
structed by taking rational functions in modified boson 
operators af(i, 01 = 1, ... , n), and the coordinate func
tions Z;j can be put equal to a 1 .. ; H/ a1 ... ;-1;' If j(a) 
is a harmonic polynomial, homogeneous of degree 
r,,=m,,-m"+1ina; ; (fork=1, ••• ,II,mv+1 =0), 

1'" " 
then the 1-1 correspondence betweenj(a) and CP(z) is 
given by 

(3.1) 

The representation T g in the space of functions cp is 
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given by 

T gCP(z) = A;"1- m
2 ••• A;vcp(i), (3.2) 

where A,,(Z,g) is the minor formed from the first k rows 
and columns of the matrix zg and is equal to (agh2 / 
a12 ... '" and z is a known function of z. The important 
results which Zhelobenko has obtained and which apply 
to T g defined by (3. 2) are as follows: 

For n = 211 + 1 there exists a polynomial lEo(z,g) on 
P such that A (zg) = 1E20 (z,g). The fundamental spin or 

n VII 1 
representation labelled by (2,2'" 2) can now be con-
structed according to S!cp(z) = lEo(z,g)cP(z), where Sg 
is a representation in the sense that S g g = ± S g S g • 

1 2 1 2' 

The multiplier for an arbitrary representation T g is 
now written 

so that mv may be a semi-integer, in which case 
m 1> ••• , mv- 1 are also semi-integers. 

(3.3) 

For n = 211 there exist two polynomials on P n,lE- and 
IE+ such that 

A v_1 (zg) = IEjz,g) IEJz,g), 

Av(zg) = 1E:(z,g). 

The two fundamental spinor representations, labelled 
by (i3, ... , ± i) are constructed according to S gCP(z) = 
6±CP(z) and in general the multiplier has the form 

Again m v ' m v - 1 can be semi-integers simultaneously, 
in which case m 1> ••• , m v - 2 are all semi-integers. In 
the form (3.4) the representation includes naturally 
the case for which mv < 0, even though the transfer 
(3.1) to the functions cP has been carried out from poly
nomials j for which mv '" 0 only. If we had begun with 
functions j for which mv < 0, then we would reach the 
same space of functions CP(z) by putting 

with 
aI2 ... V-1j . + 2 

z vj = a ' J '" II 12 ... v-1 v+1 

(zvv+l =al. .v-l/a l. .. v-lv+1 =0 as before). 

We wish to transfer back to the space H n in such a 
way as to retain this construction of the spin or repre
sentations, We obtain a polynomial j(a) in Hn from CP(z) 
by multiplying cP with a certain polynomial which be
comes the state of highest weight in H n' This is ex
pressed in the formula (3,1) which holds in the case 
when the degrees r; ofj(a) E: Hn are connected with 
the representation labels m; by r; = m i - m ;+1' As 
previously noted, the formula (3. 1) restricts each m; 
to nonnegative integral values, More generally, however, 
we can also transfer back to H n by multiplying each 
CP(z) with a polynomial of degrees r; such that 
r; '" rn; - m ;+1' We do this in the following way, In 
the representation space of polynomials CP(z) on P n we 
replace each m; by m; - P; = I;, for i = 1, ... , II, so 
that the representation labels are now l; = m ; - p ;' 
Now transfer back to H n' the space of harmonic poly
nomials in the a's with degrees r; where r; is not equal 
to li - li+1 = (m; - m;+I) - (p; - P;+I) as before, but 
r; = m; - m i+1' This transfer is carried out by multi-
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plying each cp(z) with the polynomial a~cm2 ••• a~ ... v' 
Le., (3.1) still holds, but now the m i are no longer the 
representation labels. We can be sure that f(a) ob
tained according to (3. 1) is actually a polynomial in 
the a f s if m. - m .+1 .~ (m. - p.) - (m .+1 - P .+1) for 
i = 1, ••• ,v(Pv+l = O),Le., if PI ~P2 ~ .,. ~Pv ~ O. 
Since the m. -P • are representation labels they satisfy 

and 

m 1 - PI ~ m 2 - P 2 ~ ••• ~ mv - P v ~ 0, 

n = 2v + 1, 

ml-P1 ~m2-p2 ~ ... ~i mv-pvi, 

n = 2v. (3.5) 

The m. are integers, hence the P. are either all integers 
or all semi-integers. 

In this way we obtain the representations (l1' ••• , lv) 
in the space of harmonic polynomials homogeneous of 
degrees r, = m, - m i+l' By choosing P, suitably we can 
obtain any of the permissible values of (l1' ••• ,lv)' All 
the tensor representations for lv ~ 0 are obtained by 
putting P, = 0 for all i, and all the spinor representa
tions for lv ~ 0 by putting P, = i for all i. We could 
also obtain, for n = 2v, all representations for which 

where 6 0 , 6± are polynomials in a I2 ... ,-I / a 12 ... ,-I " 

The space H n is invariant under T g provided the 
parameters Pi are restricted to the values indicated 
above. From T g we can calculate the form of the gene
rators. However, we will find it easier to use the cor
respondence (3.1) to calculate the dependence of the 
generators on m, in the space of functions cP, and then 
to put m i ~ m i - P, and transfer back to Hn' If 

K ( ) P -P p-p 
,j a = uiqaq aj - u jp aq a i , 

then the generators K ,/z) acting on cp (z) are deter
mined by 

( ),,,() K ( ) m I-m2 m (a 1 ... k - 11 ) K,j a'J,a = ij a a 1 .. • al~ ... vcp a 
1. .. k-l k 

(3.9) 

The dependence of K 'j(z) on the m i' which is found from 
the action of K,j(a) on a'{'I-m2 ••• al':!' ... v, is established 
in this way for integral m i but will also hold in the case 
when m, takes semi- integer values. The classification 
of the K ij as raising or lowering generators, or weight 
generators, has been given in I. The raising generators 
commute with a'{'C m2 . .. a'{'i' ... v and therefore when act
ing on cp (z) are independent of m i' Hence they are un
changed in Hn' The weight generators are Hi = K n,I-'. i 
and using (3.9) we see thatKn +1_"j(z) = mj + Dj(z) 
where D, is a differential operator in z, independent of 
m l' .•• ,m v' Putting m i ~ m , - Pi and transferring to 
H .. , we have that Kn +1-, ,(a) is replaced by Kn +1-,. ,(a) -
P j' In order to specify the changes necessary for the 
lowering generators, it is sufficient to consider only 
the generators corresponding to the simple roots, since 
all other lowering generators are obtained from these 
by commutation. For n = 2v + 1 the lowering genera
tors corresponding to the simple roots are K 2V+l-j j 

for j = 1, ... , v. We find K2v+l_j.j(z) = (mj - mj+lkjj+l 
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1 v < 0 but these are constructed more conveniently in 
the space H n for which m v < O. 

The representation T g in the space of functions cp(z) 
has the form (putting m , ~ m i - P i) 

m-m m _ (1)P I-P2 (l)P v 
Tg¢(Z)={~II 2 .. ·~vVcp(z)} ~1 ... ~v 

= [-.lJ PrP2 [-.lJ Pv CPg ~ ••• ~ • 
1 v 

We transfer back to Hn and using the fact that cP II cor
responds to f(ag) and ~k = (agh2 ... / a I2 •.. k we find 
that T g is defined in H n by 

(3.6) 

For n = 2v + 1 this may be written 

( 
al )PI-P2 (a 12 1 ) PV-I-PV 2p 

T gf(a) = .. -- ..• ...v- 6~ vf(ag) , 
(agh (agh2 ... v-I (3. 7) 

while for n = 2v we have 

+ Dj(z) for some D'. Hence in Hn K 2v +1_j ,j(a) is re
placed by 

K () 
fA ) al ... j-lj+l 

2v+l-j,j a - Il"'j - Pj +1 . a . . , 
1. .. J-IJ 

j = 1, ... v. 

(3.8) 

For n = 2v all lowering generators can be obtained 
from K 2v j (j = 1, ... , v- 1) andKv v-I' We find 
K 2V_j,j(z) '= (m j - m j +1)zi j +1 + Dj'(z) and K v, v-I (z) = 
(m v-I + m v)z v-I v+l + D/'(z) for differential operators 
D",D"'. Hence in Hn 

K () K () ( ) al. .. j - 1j +1 
2v-j,j a -> 2v-j.j a - Pj - P j +l 

a!. .. j-l j 
and 

K () K () ( )
al ... V-2V+l 

v,v-l a -> v,v-l a - P v-l + Pv 
al ... v-2 v-I 

These replacements are considerably simplified in 
the case P, = 0 (tensor representations) and Pi = i 
(spinor representations). Although the generators in
volve ratios of the variables a '1'" 'k their range is a 

subspace of H n and no rational function of polynomials 
appears provided the P, satisfy (3. 5) and p 1 ~ P2 ~ ••• 
"" P v "" O. The representationfJ constructed are not uni
tary in general, although they are equivalent to unitary 
representations. They can be made unitary by redefin
ing the scalar product in H n which can always be done 
because SO(n) is compact (see Vilenkin, Ref. 10, p. 44). 

It is possible to find realizations of the type just des
cribed for the generators of U(n) also. We can con
struct representations labelled by l, = m i - P, (i = 1, ..• , 
n) in the space of homogeneous polynomials of degree 
r k = m k - mk+l in the variables ail' .. ik for k = 1, ... , n, 
where ar are now ordinary bosons. We require 
P 1 ~ P 2 ••• "" P n "" 0 where the P, are all integers, and 
also ml - PI"" m 2 - P 2••• "" mn - Pn' The representa-
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tion T in this space is given by 
g 

and the generators E;j satisfying 

[E;j,EkJ = 0jkEil- 0ilEkj 

are specified by 

E;j = afa1, j > i (raising generators), 

H; = E jj = a~a~ - Pi' 

E P P ( )
al. .. ;-I;+1 

;+I,;=a i+1{l;- Pi-Pi+! 
al.,. i-I i 

(lowering generators). 

(3.10) 

(3.11) 

This construction leads to no new representations ex
cept that now In' the last label, can be negative in addi
tion to the usual nonnegative values. 

4. RESULTS FOR 0(3) 

In order to illustrate the construction described above 
we will write down the results explicitly for 50(3). We 
begin in the space H of harmonic homogeneous poly
nomials of degree m 1 in the a j where m 1 = 1 is also the 
representation label, and the a j are modified bosons with 
2a1 a3 + a~ = 0. We have 

J+ = K32 = a 1a2 - a2a3, 

J_ = K21 = a2{l1 - a3a2, 

J 3 = K31 = alaI - a3a3, 

and an arbitrary basis state is 

I~> = a]"a~-mIO>. 

We put z 12 = a2/ a 1 = Z, so that a3/ a1 = - ~z2 and then 

f(a 1,a2,a3) = a~lf(l, a 2
, a3) 

, a 1 a1 

=a~nlcp(z), 

where 

CP(z) =f(l,z, - ~z2). 

The representation T in the space of functions cp (z) is g 
given by 

Now g = (g;j) satisfies gag t = a, so that if gll,g12,g21 
are taken to be independent, we have 

(4.1) 
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Hence 
a 

(ag)/a 1 = ?gPl = zlp g pl 
1 

=gl1 + zg21 + ~z2.(g~/2g11) 

= (~ + zg2/2~)2, 

Also, 

The basis functions are zl-m for - 1 ~ m ~ 1 and the 
generators are 

1963 

d 
J =-, 

+ dz 
d 

J3 =m 1 - z-
dz 

m 1 can now be a semi- integer. Putting m 1 --7 m 1 - P = l, 
where P can have any of the values 0, ~, ... , m 1 and 
transferring back to H, we find the generators have the 
form 

(4.3) 

T g is defined in H by 

( 
2a1~ )2P 

T gf(a) = f(ag). 
2a 1911 + a2g 21 

(4.4) 

We obtain all tensor representations by putting P = 0, 
and all spin or representations by putting P = ~. 

The basis states are 

which are the usual spherical harmonics as can be 
seen by expanding the modified bosons 

1 d 
a i = Xi - y2 --- a --

3 + 2N ip dx P' 

where y2 = 2x 1x 3 + x~. This expansion is carried out 
most easily by writing 

where H is a projection operator calculated by Vilenkin 
(Ref. 10, p. 446). Another expression for I,U can be 
written by noting that 

a hi = (x -~ ~)hl 
2 2 2l + 1 dX2 

1 d 1 = ___ y21+3 _ --hi, 
2l + 1 dX 2 y21+1 

where hi EO H is of degree l. In this form a2 appears 
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as the well-known Maxwell multipole. The basis states 
are now written as 

I~) ex: r21+2P+1XT+p(-.!L)I-m 1 . 
dx 2 r 2m +2 p+1 

We can transform to spherical polar coordinates by 
putting 

x - 2- ei<p sinO, 
1 - f2 

x2 == r cosO, 

x == 2- e-i<p sinO 
3 12 ' 

and then 

The minimum state is 

and 
I!z) == a~Pa~-PIO) ifP ~ l, 

I!l) == ar1a~110)_ifP ? l. 

These states are an orthogonal basis, for although J + 
is not the Hermitian adjoint of J_ the labelling operators 
J 3 and J2 == J 3(J3 + 1) + 2J_J+ are Hermitian. This is 
because (a/ a 1)J + = a2li2 + 2a3li3 is Hermitian. These 
nonunitary representations can be made unitary by re
defining the scalar product in H. To do this it is suffi
cient to specify the scalar product between the baSis 
states, and the required definition is 

(Z - m)! (l + m)! (l + p)! 
(I';",), I~'» = °1l'°mm,2 1

-
m (2l)! 

These results do not depend on the form we have 
taken for the metric a; if we put a = I, the identity, then 
we would have 

z =a3/(a1-ia2). 

This formalism also includes naturally the representa
tions of the full orthogonal group 0(3), by enlarging the 
representation space to include axial tensors. The state 
of highest weight is then written 
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1 P = ai+ P-1a12 10), 

and the generators have a similar form (4.3). 

Although SU(2) is the covering group of SO(3) it is not 
obvious how T 1f defined by (4.2) is a representation of 
g E SU(2). In tact, we can recover the usual expression 
for T g,g E SU(2) by substituting for all a2 , a3 with (2.3). 
Then z == a/ a1 = /2(0'2/0'1) where 0' l' 0'2 are ordinary 
bosons. With the matrix 

u = (; ~), 1 0' 12 + 1,8 12 = 1, 

which belongs to SU(2), we identify g E SO(3) deter
mined by g J.1 = 0'2, g2l = - 20',8, g 12 = 0',8. Then from 
(4.2) T u takes the form 

T ucfJ(z) == (0' _13z)2m1cfJ(,8 + l'i'z), 
0' - i3z 

which is the familiar expression for representations of 
SU(2) in the space of polynomials cfJ of one variable z. 
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For a quantized mode of the radiation field. the operator whose classical analog is the ordinary 
phase factor of the mode amplitudes has been shown to be nonunitary. A mathematically rigorous 
formulation of the phase P is given on the basis of the canonical factorization theorem. All other 
phase quantities are defined in terms of P and pt. Many of the seemingly complex features of phase 
operators are found to be simple direct consequences of the general mathematical theory. It is easily 
seen that P is a partial isometry but not a unitary operator. In contrast to the amplitude operator, it 
is found that P is not a spectral operator and the set of phase eigenstates is not complete. 
Mathematically precise operator relations, including the rigorous statement of commutation rules, are 
developed. For each of the phase operators, a complete spectral analysis is given, with the nature of 
the spectrum, spectral decomposition (if any), and eigenstates shown explicitly. The values of the 
various phase operators are compared between phase states and coherent states. 

1. INTRODUCTION 

The quantum theory of coherence provides the physical 
foundation for the complete description of coherent 
radiation fields and for the analysis of devices that 
generate such fields. The theory has been extenSively 
developed only in the last decade, notably by the pioneer
ing work of Glauber1.2 in a series of now classic papers. 
The need for such a theory became urgent with the ad
vent of various masers, the first source of highly co
herent electromagnetic radiation. 

In classical theory, the correlation functions describ
ing the coherence properties of the field can be express
ed in terms of the probability distribution for the ampli
tudes of a complete set of field modes. The amplitudes 
are complex c-numbers, the Fourier coefficients in the 
modal expansion of the field, and serve as the random 
variables whose probability distribution describes the 
noise in the field. The phase and modulus of each ampli
tude are clearly defined quantities. In the quantum 
theory, amplitude operators replace the classical 
Fourier coefficients. Analogous field correlation func
tions are defined, but these functions are expressed in 
terms of the density operator for the quantum states of 
the field. Thus the coherence is no longer described by 
ordinary noise theory. The factorization of an ampli
tude into the product of a phase operator and a modulus 
operator is also not a direct analog of the classical 
case. 

The idea of phase and modulus operators was used by 
Dirac 3 in his original paper on the quantization of the 
electromagnetic field. Thereafter his interpretation 
became the conventional one in discussing the phase of a 
quantized wave. 4 Following the classical correspondence 
closely, Dirac assumed the phase operator of a mode 
was a unitary operator e i ¢, where cp is the phase-angle 
observable. If such an observable cp existed, it would 
necessarily be conjugate to the photon number operator 
for the mode. The first detailed study of this question 
was made by Susskind and Glogower. 5 They demonstrated 
that the unitarity assumption leads to contradictions, 
which implies that a self-ajoint operator cp does not 
exist. Using heuristic methods, they showed how to cir
cumvent this difficulty by defining self-adjoint operators 
C and S, which become equal in the classical limit to the 
sine and cosine of the phase angle. With these operators, 
valid uncertainty relations for phase and number can be 
given. Their work and more recent studies in the field 
are described in an excellent review article by Carruthers 
and Nieto,6 to which we refer the reader for a compre
hensive list of references. 

Our purpose is to present a rigorous and complete 
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mathematical development of phase operators. In Sec. 2 
we review the background of physics and mathematics 
on which our treatment rests. The survey of relevant 
mathematical theory in Sec. 2B should be helpful to many, 
because it brings together material that is widely dis
persed in the mathematical literature. The phase 
operator P of a quantized mode is defined in Sec. 3 on 
the basis of the canonical factorization theorem. The 
properties of P, pt and the related operators C, S follow 
directly from the general mathematical theory. The 
phase operator P, which in the classical limit becomes 
the ordinary phase factor of the mode amplitude, is a 
partial isometry but clearly not a unitary operator. We 
use the canonical factorization theorem itself to prove 
that the mode amplitude is a closed operator. In the 
course of the mathematical formulation, we are required 
to determine the domain and range of each basic 
operator. This in turn enables us to derive precise 
operator relations, including the rigorous statement of 
commutation rules. 

We continue the analysis of the operators in Sec. 4, 
and derive a complete description of their spectra and 
eigenstates. The eigenstates of P, which have not pre
viously appeared in the literature, furnish an inSight into 
the significance of the eigenstates of C and S, which are 
described by continuum eigenvectors and hence are not 
physically realizable states. Unlike the amplitude 
operator, the phase operator is not a spectral operator. 
For the sake of completeness, we sketch in Sec. 5 the 
corresponding spectral analysis for the relative phase 
operators. The classical analogs of these operators are 
the sine and cosine of the relative phase angle between 
a pair of modes. Finally, in Sec. 6 the values of the phase 
operators are compared when the mode is in a coherent 
state and a phase state. Similarly, the values of the rela
tive phase are compared when both modes occupy co
herent states and phase states. 

In summary, our treatment of phase operators pro
vides not only a mathematically precise formulation and 
extension of previous heuristic work, but shows how 
seemingly complex features of the phase operators 
follow as simple direct consequences of the general 
mathematical theory. 

2. THEORETICAL PRELIMINARIES 

A. Field-theoretic background 

The gauge invariance of Maxwell's field equations 
means that in the case of the pure radiation field (free or 
noninteracting electromagnetic field) a gauge can always 
be chosen for the four-potential (if?, A) such that the 
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scalar potential vanishes and the vector potential sa~isfies 
transversality, i.e., cI> = 0 and 

V-A = O. (2.1) 

It will be convenient here to describe the electro
magnetic field by a discrete set of dynamical variables. 
This is accomplished by the familiar device of "box 
normalization," where the field is enclosed in a three
dimensional box of finite volume n on whose surface 
appropriate boundary conditions (entailing hermiticity 
of the Laplacian operator) are imposed. The complete 
orthonormal set of vector functions uk(r) resulting from 
a given type of boundary condition corresponds to a set 
of oscillation modes for the field in n. When the vector 
potential A is expanded in the set of oscillation modes, 
the amplitudes of the different modes provide a discrete 
set of dynamical variables for the electromagnetic field. 
A well-known prescription enables us at any point to go 
to the limit n ~ ex> and a continuum of variables. 

In the Heisenberg picture of quantum mechaniCS, the 
vector potential operator has the same form as the 
classical potential function: 

A( ) '" (h/ )1/2[ ( ) -iwkt 1" *( ) iWk t] r, t = c L.J wk ak Uk r e + ak Uk r e • 
k (2. 2) 

For a free field, the mode amplitude operators ak , a]; 
are constant in time. In the classical limit, A(r, t) may 
be regarded as an ordinary c-number function, and the 
pair ak , aZ are complex conjugate numbers that remain 
constant in time when no charges or currents are present. 
The field operators E = - (l/c)a.A/at, B =V x A satisfy 
Maxwell's equations for free field if 0 2 A == (V2 - c-2 al)A 
= O. The linear independence of different frequency 
terms in the expansion (2.2) implies 

V2U k + C- 2 W,tUk = 0 (2.3) 

in n. 
Because they are solutions of the wave equation (2.3) 

in n with appropriate boundary conditions, the mode 
functions can be selected so as to satisfy orthonormality, 

and condition (2.1) requires them to obey the trans
versality property, 

(2.4) 

(2.5) 

If the volume n is a cubical box of side L with periodic 
boundary conditions, the oscillation modes are traveling 
waves which we may take to be linearly polarized, in 
which case 

uk(r) = (Lt3/2e-(o)eik.r, 

where the propagation vector k has magnitude Ik I = 
w/l./c according to Eq. (2. 3). The unit polarization vector 
e (a) is required to be perpendicular to k by Eq. (2. 5). 
Thus to a given k there correspond only two independent 
polarization directions. The triad (e-(1), e-(2), k) is custo
marily taken to be right-orthogonal. We see that in the 
plane-wave case the index k may stand for the values of 
three Cartesian components of k, the value of the index 
a = (1,2) specifying the associated polarization direction. 
Of course, the discrete set of values of k are determined 
by the periodic boundary conditions. 

The commutation relations for the mode amplitudes, 
from which follow the quantum-mechanical properties of 
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oscillators: 
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where 1k is equal to the identity operator on the domain 
of definition of the commutator, which will be defined in 
Sec.3C. Using Eqs. (2. 4) and (2.5) and the boundary 
conditions on the mode functions, we can evaluate the 
classical expreSSion for the energy of the field: 

(1/8rr)i (E2 + B2)d3r = ~L;1iwk(a];ak + aka];). 
n k 

When the quantum conditions (2.6) are imposed, this 
canbewrittenasL;k1iwk(nk + ~),wherenk == a];ak is 
the photon number (number of quanta) operator for the 
kth mode. The infinite constant term, sometimes called 
the zero-point energy or the energy of the vacuum fluct
uations, is due to the noncommutativity of the amplitude 
operators and can be removed without disturbing the 
correspondence with the classical theory. We may take 
the Hamiltonian for the free field to be 

H = 61iwknk. (2.7) 
k 

Since the amplitude operators for different modes 
commute, the Hamiltonian (2.7) is separable in the modes. 
Thus the pure radiation field is equivalent to an assembly 
of dynamically independent, one-dimensional harmonic 
oscillators, called radiation oscillators, and the state of 
each mode can be discussed independently. The eigen
values nk ofthe operator nk are the nonnegative integers 
nk = 0,1,2, ... , and the excitation energy of the kth 
mode 1iwkn", can have the values O,lfwk , 21iwk ,···. Let 
the vector Ink>k correspond to the energy eigenstate of 
the kth mode with energy 1iwknk; in particular, 10)k is the 
ground-state vector of the mode. The sequence of ortho
normal vectors {Ink)k I n~ = 0,1,2,···} is complete in 
the Hilbert space .\l k of all physically relizable states 
of the kth radiation oscillator. Hence .\l k is a separable 
Hilbert space. The states of the entire radiation field 
correspond to vectors in the infinite direct product space 
,p == Q9k .\l k' although only a separable subspace of the non
separable Hilbertspace .\l is the natural state space. 
The subspace .\l (n), n = 0, 1, 2, •.. , of all n-photon states 
is a separable Hilbert space, and so is the infinite direct 
sum EBn .\l(n), called the Fock space or natural state 
space. 7 The energy eigenstates of the entire field are 
the basic products 

/ ..• ,nk, ••• ,n;, ... ) == ··./nk)k···/nPI···. 

It follows directly from the definition of the direct 
product space .\l that Ok/ )k is the zero vector of .\l if any 
factor / )k is the zero vector of its space .\lk. 

The commutation relations (2.6) imply that 

and hence that 

akl .•• ,n~, •.• ) = (n;')1/2/ .•. ,n" -1, ••• ), 

a];I ..• ,nk, ••• ) =(nk + 1)1/2/ ••• ,n;' + 1, .•• ). 

(2.8a) 

(2.8b) 

Equations (2.8) display the role of aJ; and ak as photon 
creation and annihilation operators, respectively. Gen
erating the excited states of the kth radiation oscillator 
by repeated application of the photon creation operator 
on the ground state, according to the prescription 
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(2.9) 

fixes the phase factor in each energy eigenvector of the 
kth mode relative to the ground-state vector of the mode. 

In the ground or vacuum state \ 0) of the unperturbed 
electromagnetic field, all radiation oscillators are in 
their respective ground states, i.e., \ 0) == Dk\ O)k' Alter
natively, the condition 

all k, (2.10) 

defines the state \ 0) • 

The coherent states2 of the kth oscillator are the 
eigenstates \ OI)k of the mode amplitude ak : 

ak I OI)k == 011 OI)k' 

where the eigenvalue 01 is a complex number. The co
herent states \ ) of the whole radiation field are the 
direct products of the coherent modal states, i.e., \ ) == 
Dkl OIk)k' Expanded in energy eigenstates of the radiation 
oscillator, a normalized coherent modal state has the 
form 

00 

1(0)k == e-(1/2)laI 2I; (n!)-1/201n In)k' (2.11) 
noO 

Note that this expression implies the phase factor in 
the vector 101\ has been fixed relative to the ground
state vector I O)k by taking the scalar product (0101) to be 
a real number: (0 I (1) == exp(- i \ (112). 

In the state 1(1) k' the expectation value for finding the 
oscillator in the energy eigenstate In.pk is 

p(nk ) == (01 \ n;')(n;' I (1) == (nkIr110112n'ke-laI2, (2.12) 

which is a Poisson distribution with mean value 

(2.13) 

The second moment of the Poisson distribution is 

so that the uncertainty in the value of nk is 

(2.14) 

In general, for the classical theory to describe a mode 
of the radiation field, it is necessary that the state of the 
mode be a superposition of many n-photon states involv
ing values of n» 1. As Eqs. (2.13) and (2.14) suggest, 
the coherent states describable in the classical domain 
are those with values of 01 in the region 101 I» 1 of the 
complex 01 plane. 

B. Mathematical background 

A linear operator V in a Hilbert space ~ is a linear 
mapping of a subspace ~ (V) == ~,the domain of definition 
of V, onto a subspace <R(V) == ~, the range of values of V. 
A linear operator V is called an isometric operator or 
an isometry if (V~ \V~) == (~I~) for all ~ E ~ or, equi
valently, if (V~ll V~2) = (1/111 ~2) for any pair ~l> ~2 E 

~. Since V~ = 0 implies ~ ::= 0, an isometry V is neces
sarily a one-to-one mappingof~ onto ~ and possesses an 
inverse V-1, the reverse one-to-one isometric mapping 
of ~ onto ~. If the domain ~ of an isometry V is dense 
in ~, then the adjoint operator V t is defined and the do
main of vt contains at least the range ~ of V, where it 
is equal to V-1. Thus vt maps ~ isometrically onto~. 
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On ~ the operator V t V is equal to the identity operator, 
and on ~ the operator VV t is equal to the identity 
operator. Clearly, an isometry V is bounded on its do
main ~ with norm I V I ::= 1. 

An isometry V is said to be maximal if either its do
main ~ or its range ~ is equal to the whole Hilbert 
space ~. A maximal isometry clearly has no proper iso
metric extension in ~. Let I denote the identity operator 
on ~. If ~ ::= ~,then vt V::= I; if ~ == ~,then vvt == I. 
(The equality sign between operators implies that their 
domains are equal.) If U is an isometry such that both 
its domain and range are equal to ~, i.e., if U is an iso
metric mapping of ~ onto itself, then U is a unitary 
operator. For a unitary operator, ut is also unitary and 
utu == UUt == I. 

A partial isometry P is a bounded linear operator on 
the entire Hilbert space ~ with the property that there 
exists a closed subspace ~ of £) such that 

(1) P is an isometry on~, i.e., (p~ I p~) == (~ I~) for 
all ~ E~, and 

(2) the orthogonal complement ~.L is the null space of 
P, i.e., P maps~.L onto the element zero: p~.L == {O}. 

Since the subspace ~ is a closed set, its isometric 
image ~ == <R(P) = P.p == P~ is necessarily a closed 
subspace also. The subspace ~ is called the initial 
domain of P and the range ~ of P is called the final 
domain. The restriction pi of P to ~ is an isometry, so 
that for pI: ~ ~ ~,the inverse exists, (Plt1: ~~~. 
Let Q be the operator that is equal to (P I )-l on ~ and 
equal to the zero operator on ~.L. Thus Q is a partial 
isometry, with initial domain ~ and final domain ~. 

The following properties of a partial isometry Pare 
direct consequences of its definitionS: 

(i) P is bounded on s;, with norm Ip I == 1; 

(ii) pt==Q,P=Qt; 

(iii) P t P is the orthogonal (self-adjoint) projection 
onto the subspace ~,i.e., . 

pt P = 1- (P, (pt P)2 == ptp, <R(pt P) = (pt P)£) ==~, 

where (P is the orthogonal projection onto ~.L; 

(iv) ppt is the orthogonal projection onto ~, i.e., 

ppt = I _ ~, (Ppt)2 = ppt, <R(Ppt) == ~, 

where ~ is the projection onto ~.L; 

(v) a necessary and sufficient condition that a bounded 
linear operator P be a partial isometry is that pt P be a 
projection; 

(vi) the operator P is a partial isometry if and only if 
pt is a partial isometry. 

Our development of phase operators will be based on 
the canonical factorization (polar decomposition) 
theoremS,9. A closed transformation T with domain 
~ (T) dense in the Hilbert space ~ can be written in one 
and only one way as a product T = P A, where P is a 
partial isometry whose initial domain is <R(Tt), the 
closure of the range of Tt, and A is a positive self
adjoint operator such that <R(A) = <R(T+). The operator A 
is the pOSitive square root of the positive self-adjoint 
operator Tt T: A = (Tt T) 1/2 • 

The equality T == PA then implies ~(A) = ~(T) and 
<R(P) == <R(T). If the operator T in the theorem is a 
normal operator, i.e., if TtT::= TTt, then T::= PA::= AF 
and P is unitary. 
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We now briefly review those properties of unbounded 
operators which bear most directly on the theorem and 
our application of it. A linear operator T in a Hilbert 
space .\1 can have an adjoint only if its domain is dense 
in .\1. Thus whenever we write Tt, it is to be understood 
that X>(T) is dense. If B is a bounded operator on the 
entire space.\1, then X>(B + T) = X>(BT) = X>(T), (B + T)t 
= Bt + Tt, and (BT)t = Tt Bt. A self-adjoint operator A = 
At is maximal symmetric, i.e.,A has no symmetric (and 
hence no self-adjoint) extensions in .\1. If T is a positive 
self-adjoint operator, there is a unique positive self
adjoint operator A such that A2 = T; we call A the 
positive square root of T and write A = T1/2. The 
adjoint Tt is a closed operator; in particular, a self
adjoint operator A = At is necessarily closed. 

If T is a linear operator with dense domain in ~, then 
X>(Tt) is dense in .\1 if and only if T possesses a closed 
linear extenSion; then Ttt == (Tt)t is the minimal closed 
linear extension of T, i.e., every closed linear extension 
of T is also an extension of Tt t. The extensions need 
not be proper ones, of course. In particular, if the 
operator T itself is closed, then T t t = T. Moreover, if 
T is closed and has dense domain, T t T is self-adjoint 
and positive and (I + T tT)-l exists, is everywhere 
defined and bounded on .\1, and is self-adjoint. If Tis 
closed and unbounded, its domain cannot be the entire 
Hilbert space, i.e., X>(T) must be a proper subspace of 
.\1. This follows from the closed-graph theorem, which 
tells us that a closed operator that is everywhere defined 
in .\1 must be bounded. 

The unbounded operators that occur here will be found 
to be closed operators. In this connection, we note that 
a bounded operator B is closed if and only if its domain 
X>(B) is a closed set. In particular, B is closed whenever 
X>(B) = .\;1. In order to discuss the spectrum of a closed 
operator T, we consider the operator T - AI, where A is 
a complex number. The operator T - AI has domain 
X>(T) and is closed if T is closed. The resolvent set p(T) 
consists of those values of A for which T - AI is a one
to-one mapping of X> (T) onto all of .\;). NOW, whenever the 
inverse of a closed operator exists, the inverse is also 
closed. Hence,p(T) is the set of complex numbers such 
that (T - AI)-l exists and is a bounded linear operator 
defined everywhere in.\1. The spectrum CT(T) of Tis 
defined as the complement of p(T) in the complex plane. 
It can be shown that the spectrum of a closed operator is 
a closed set. Thus a closed operator T partitions the 
complex plane into the set p(T) and the closed set CT(T). 

The spectrum CT(T) consists of three nonoverlapping 
sets called the pOint spectrum, the continuous spectrum, 
and the residual spectrum and denoted by CT (T), CT c(T), 
and CTy(T), respectively. These sets are defurmined by 
the nature of the mapping (T - AI) on its domain X>(T) 
and of the range subspace <R(T - AI) onto which X>(T) is 
mapped. The point spectrum is the set .of all complex 
numbers A in CT(T) for which (T - AI) is not a one-to
one mapping of X> (T). Thus, A E CT P (T) if and only if 
there exists at least one vector 1/1 '" 0 in .\1 such that 
(T - AI)1/I = 0, or equivalently, if and only if T has at 
least one eigenvector in ~ with the eigenvalue A. If A 
belongs to either CTc(T) or CTy(T), (T - Al) is a one-to
one mapping of X>(T) onto <R(T - AI), but the range is not 
equal to .\1. If A E CT c (T), the subspace <R( T - A I) is dense 
in but not equal to .\1; if A E ay(T), the subspace <R(T - AI) 
is not dense in ~. 

If T is a bounded operator on .\1, its spectrum a(T) is 
a closed, nonvoid subset of the circle I A I ~ I T I. If T is 
unbounded, its spectrum may be a bounded set, an un
bounded set, the void set, or even the whole complex 
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plane. The spectrum of a unitary operator, a self-adjoint 
operator or a positive self-adjoint operator lies on the 
unit circle, the real axis, or the nonnegative real axis, 
respectively. A self-adjoint operator A is bounded if 
and only if its spectrum is a bounded set; if A is bounded, 
its spectrum is a bounded closed set on the real axis. 
A unitary or a self-adjoint (indeed, any normal) operator 
has no residual spectrum. If the Hilbert space .\1 is 
separable, the point spectrum of a unitary or a self
adjoint operator is discrete (i.e., finite or countably 
infinite). 

To describe completely a spectral operator T and a 
resolution of the identity for T requires a rather lengthy 
series of technical definitions. We present here only a 
bare outline with emphasis on some important features 
that will be encountered later. A spectral measure E(6), 
6 E CB, in .\1 is a mapping of a Boolean algebra of sets CB 
into a Boolean algebra of projection operators in .\1 such 
that E(l) = I, where 1 is the unit set in CB. A resolution 
of the identity (spectral decomposition) for the closed 
operator T with dense domain in .\1 is a countably additive 
spectral measure E defined on the Borel sets of the plane 
and related to T in a way indicated by the symbolic re
presentation 

(2. 15) 

where d 2A is the (real) differential element of area in the 
complex A plane. We note that E(o) = I if 0 ~ a(T), and 
E(o) = 0 if the intersection 0 n CT(T) is the void set. A 
closed and densely defined operator that possesses a 
resolution of the identity is called a spectral operator. 
The resolution of the identity for a spectral operator is 
unique. 

A spectral operator for which Eq. (2.15) is a well
defined operator equation (rather than a symbolic repre
sentation) is called a scalar type spectral operator. 10 

Associated with the resolution of the identity E for a 
scalar type spectral operator T is a functional calculus 
of operators. If f is a complex valued Borel measurable 
function of a complex variable, then 

is a closed linear operator with domain defined by 

(f(T)1/I,/(T)1/I) = fa(T) If(A) 1
2 (1/I,E(d2A)1/I) < 00, 

1/1 E ~(f(T). 

(2.16) 

The amplitude operator ak is an example of a scalar 
type spectral operator. Glauber2 has shown that the co
herent states {I a)k} of the kth mode oscillator form a 
complete set in .\1k by deriving the completeness rela
tion as a certain integral over the complex a plane of 
the projection operators I a)(a I : 

(2.17) 

This takes a familiar form even though the set of co
herent states is not orthogonal. According to Eq. (2.17), 
any vector in .\;1 k can be expressed as a linear combina
tion of I a)k, and hence the set of coherent states is com
plete. But '\;)k has a denumerable orthogonal basis (see 
Sec.3B). Therefore, the set of coherent states, which is 
uncountably infinite, cannot be linearly independent or 
orthogonal. It follows that the spectral decomposition of 
ak is 

(2.18) 
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Thus ak has a pure point spectrum which consists of 
every (finite) point in the complex plane. 

A familiar spectral-operator in quantum mechaniCS, 
of course, is the self-adjoint operator A representing a 
phYSical quantity, and the properties of the resolution of 
the identity for A are well known. The spectral measure 
belonging to a unitary operator vanishes on any Borel set 
that contains no points of the unit circle (on which the 
spectrum lies). The spectral theorem for unitary oper
atorsll tells us that any unitary operator U has a resolu
tion of the identity of the form 

(2.19) 

where the family of projections E(O) varies only in the 
interval ° :s () :s 21T and, as a function of the real variable 
(), possesses all the properties required of a family of 
projections that belongs to a self-adjoint operator. The 
requirement that E«(}) be continuous at 0 = 0, i.e.,E«(}) = 
0, 0 :s 0, determines E(O) uniquely. The self-adjoint 
operator defined by A = J(f"(}dE(O) is bounded on ~ and 
its spectrum is contained in the interval [0,21T]. By Eq. 
(2.16) the operator U is the exponential function of A: 
U = e iA. An isometric operator that is maximal but not 
unitary has no resolution of the identity and is not a 
spectraloperator.12 

For a comprehensive treatment of the mathematical 
theory outlined in this section, we refer the reader to the 
volumes of Dunford and Schwartz13 and to Riesz and 
Sz.-Nagy,14 To complete our survey of the mathematical 
theory used here, we mention the alternative treatment 
of the continuous spectrum, the well-known method of 
Dirac, whose rigorous justification is given by the theory 
of distributions. In Dirac's method, the continuous 
spectrum of a physical quantity (self-adjoint operator) 
is treated formally like the point spectrum. However it 
is necessary to employ a vector space '0 with a general
ized scalar product, which in some cases is a Singular 
distribution, namely, the Dirac delta function. The Hilbert 
space of physical states ~ (which contains the eigen
vectors associated with the eigenvalues of the point 
spectrum) is embedded in '0, but '0 is not a Hilbert space 
because of the singular nature of its scalar product. The 
eigenvectors associated with an eigenvalue in the con
tinuum belong to '0, but such vectors do not represent 
physically realizable states and are not contained entirely 
in ~. It is in its dependence on two continuum eigen
vectors that the scalar product is a Singular function. 
The completeness relation for a self-adjoint operator A 
in the Dirac formalism is 

Ela')(a'i + J da"la")(a"l = 5, 
a' 

where a' E a (A), a" E a etA), and 5 is the identity 
operator in 1). The restriction of 5 to the subspace ~ 
is equal to I, of course. 

3. PHASE OPERATORS 

A. The modal phase operator 

The amplitudes ak and al are both closed operators 
defined on a dense domain in ~k (as will be shown in 
Sec.3B). Hence both operators satisfy the conditions of 
the canonical factorization theorem. Applying the 
theorem to ak , we obtain the unique factorizations 

(3.1) 

for ak and its adjoint. The self-adjoint factor must be 
the positive square root of the photon number operator 
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for the kth mode: nk = a; ak • In view of the Eqs. (2. Sa, b) 
satisfied by the amplitude operators, it is apparent that 
the partial isometry P k and its adjoint, the partial iso
metry PZ, are defined on ~ k by 

P k I ni) k = I nk - 1) k' 

PklO)k = 0, 

P;lnk)k = Ink + l)k' 

(3.2a:) 

(3.2b) 

(3.2c) 

We call P k and nl/2 the phase operator and modulus 
operator, respectively, of the kth mode. Note that P k and Pz act as "discrete displacement" operators (lowering 
and raising operators, respectively) on the energy eigen
states. The phase operator Pk is bounded with norm 
I P k I = 1. Therefore its spectrum is contained in the 
closed unit circle: a (Pk ) S C, where C = {ullul :s I}. 
We shall see that the point spectrum of Pk is the interior 
of the unit circle and the continuous spectrum is the 
boundary of the unit Circle, Le., ap(Pk ) = {ullul < I}, 
(Je(P k ) = {ullul = I}. The adjoint Plhas norm 
Ipktl = IPkl = 1. However, the spectrum of P; is a pure
ly residual one, i.e., (Jy(pn = {u II u I :s I}. The eigenstates 
of nk are also eigenstates of nJ/2. Since these eigen
states form a complete set in ~k' the spectrum of the 
self-adjoint operator nJ/2, like that of nk' is a pure point 
spectrum; it consists of the set of nonnegative numbers 
a(n1-l2) = {n'1/2In' = 0,1,2,"'}' When the classical 
description of the mode applies, the values of n~/2 will 
be large positive numbers and the values of P k will be 
found in the region I u I ;5 1. Therefore, in the classical 
limit, where a k can be treated as an ordinary complex 
number, the operators n~/2 and P k do indeed play the 
roles of modulus and phase factor, respectively, of a k • 

The initial domain of the partial isometry Pk is ~ k = 
<R(an = sil{ I n;')k In;' 2:: I}, the closure of the subspace 
<R(an spanned by the set of energy eigenstates for which 
n;' ;<' ° in agreement with Eq. (3. 2a). The one-dimensional 
subspace or ray spanned by the ground state of the kth 
r.adiation oscillator is the orthogonal complement of ~ k 

in ~k: ~t = SP{IO)k}' Hence~t is the null space of 
Pk , which accords with Eq. (3. 2b). The final domain of 
Pk , which is equal to the initial domain of the partial iso
metry Pkt, is the entire Hilbert space, i.e.,!nk = ~k' 
From properties (iii) and (iv) of Sec. 2B, we have 

(3.3) 

(3.4) 

where <Pk is the projection operator onto the ray corres
ponding to the ground state. 

Let us now apply the canonical factorization theorem 
to the adjoint aZ. This case requires the positive square 
root of the self-adjoint operator aka!, = nk + l k • In the 
next section, we will show that the domains of ak aX and 
nk = akak are equal, which means that they are equal to 
the domain of the commutator (2.6). The definition ofthe 
sum operator then permits us to write akak = nk + I k • 
The theorem then gives the unique expressions 

at = PkT(nk + I k )1/2, ak = (nk + I k )1/2Pk, (3.5) 

where we have used (at)T = ak, which is valid for any 
closed and densely defined operator. 

As an isometry, Pk has range <R(Pk ) = ~ k and domain 
:D(P,,) = ~ k ;<' ~ k' Hence P k is maximal isometric but 
not unitary. The fact that its range is equal to all of 
~ k precludes an isometric extension of Pk to all of ~k 
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and ultimately rules out the possibility of Pk having a 
unitary extension. The commutator (3. 4) is an expression 
of this; the existence of the ground state requires that 
the partial isometry Pk possess a nonzero null space 
and not be unitary. Obviously, a is not a normal operator, 
as the commutation relations (2.6) explicitly state, and 
hence P is not required to be unitary. Moreover, the 
existence of a ground state 10) satisfying Eq. (2.10) is 
due basically to the commutation relations (2.6), from 
which Eq. (2. 8a) derives. Thus the nonunitary nature of 
P stems ultimately from the commutation relations 
(2.6). 

Since it is bounded on ~ k' P k is a closed operator and 
therefore satisfies the conditions of the canonical fac
torizationtheorem. ThuswecanwritePk == Vk (PZPk )1/2. 
Under circumstances where the ground state can be 
ignored and only operator restrictions to ~k enter, we 
can regard the operators Pk and pkt as commutative. 
Then Pk and Vk can be regarded as equal and unitary, 
and the values of Pk lie essentially on the unit circle. 
This situation occurs whenever the classical description 
applies. 

B. Properties of the operators 

In this section, we will retrace our course somewhat 
in order to verify the basic properties of our operators 
that have already been utilized. This not only will justify 
the results obtained but will illuminate the entire mathe
matical structure. In discussing a single mode of the 
radiation field, we may simplify the notation by dropping 
the mode index k as a subscript. Henceforth we will 
feel free to omit the mode subscript k when only a single 
mode is involved. 

As is well known, the self -adjoint operator n == at a in 
the Hilbert space ~ has a pure point spectrum, which con
sists of the nonnegative integers. Also, the spectrum is 
Simple, Le., the eigenvalues are all of multiplicity 1 (non
degenerate). If fOllows from the spectral theorem for 
self-adjoint operators that the set of orthonormal energy 
eigenstates { I n') In' == 0, 1, 2, ..• } is complete in ~,and 
n has the spectral decomposition 

00 

n==L) n'ln')(n'l, L) In')(n'l == I. 
n'=Q n' 

The entire Hilbert space is the closure of the subspace 
spanned by the energy eigenstates and can be defined as 
the set 

The partial isometries P and pt are bounded operators 
on ~. The initial domain of P in Eq. (3. 1) is the set 

The domain of n is defined as the set of all vectors If; 
such that 

00 00 

In1f;12= L) n,2(lf;ln')(n'llf;) = L) n'2icn,12<oo, 
n'~O n'~O 

If;E:D(n). (3.6) 

In the operational calculus based on the resolution of 
the identity belonging to n,the positive square root of n 
is expressed as n1/2 == L);:;~on'1/21 n')( n' I and its 
domain is defined by 
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00 00 

In1/21f;12 == L) n'(lf;ln')(n'llf;) 
n':::Q 

L) n'icn ,12<oo, 
4'=0 

If; E :D(n1/ 2 ). (3.7) 

Note that :D(n) is a proper subspace of :D(n1/ 2). Clear
ly, the domain of the operator aat is equal to that of n: 
:D (aat ) == :D{n). 

We now consider the amplitude operators. Let us at 
first regard Eqs. (2. 8a, b) as defining relations for a 
pair of operators a and at in ~ without assuming the 
adjoint relation between them. Both operators are clearly 
unbounded (discontinuous), and we must specify their 
domains of definition. By linearity, the relations (2.8) 
define both operators on the subspace:D spanned by the 
set of all energy eigenstates of the oscillator: :D == 
sp{ I n') In' == 0, 1,2, •.. }. Since the set is complete, the 
closure of:D is the entire Hilbert space ~ and:D is 
dense in ~. The domain of definition of a and at can be 
extended to the subspace :D (a) == :D (nl/2) defined by con
dition (3.7). If If; is an infinite linear combination, 
If; == L)n' cn ' In'), we define the operators by 

alf; == 4cn,(n')1/21 n' - 1), 
n 

atlf; == L) cn ' (n' + 1)1/21 n' + 1). 
n' 

If cP == L)n,bn , I n') belongs to :D (a), then 

00 

(cp.lalf;) = (atcpllf;) == L) (n')1/2b,,":_lCn 
,,'~1 

holds for any pair cp, If; E: :D(a), since the series is con
vergent by the Cauchy-Schwarz inequality. It follows 
immediately from the definition of the adjoint operator 
that at is equal to the adjoint of a on :D (a) and vice
versa. Since the common domain :D(a) of a and at is 
dense, a necessarily possesses a closed linear extension 
(although not necessarily a proper closed extension) and 
(at)t == aft is the minimal closed linear extension of a, 
Le., att is equal to a on :D(a) and every closed linear 
extension of a is also an extension of att . The closed 
operator at t has a dense domain, since it is defined at 
least on the dense set :D(a), where it is equal to a. Thus 
att satisfies the conditions of the canonical factorization 
theorem. 

Now the operation of a is given everywhere on :D(a) by 
the expression (3.1) when the operation of P on the 
energy eigenstates is defined by (3. 2a, b). Since :D(P) == 
~ , the domain of the product Pn1/ 2 is :D (n1/2) == :D(a). 
Thus the form (3.1) is a valid representation of a every
where on :D(a). The uniqueness of the canonical factoriza
tion means that the factorization of at t takes the same 
form (3.1) on :D(a). But a self-adjoint operator such as 
nl/2 has no self-adjoint extension. Hence the form (3.1) 
cannot be extended to a larger domain, and the domain of 
att is equal to :D(a). Therefore, att == a, the operator a 
is closed, and the pair of operators a, at are the adjoints 
of one another. 

Definitions (3.6) and (3.7) indicate that both :D(n) and 
:D(n1/2) are invariant under the operation of pt. Hence 
the domain of n1/2pt is clearly equal to :D(nl/2) == :D(a) == 
:D(at ), which completes the verification of the second 
operator equality in (3.1). 

Not only the domainS of n1/ 2 and a but also their 
ranges are equal. To see this, observe that 

00 

If; = L) C ,,' In') 
n'~O 

00 (n') 1/2 
cp == L) -,-- cn,l n' + 1), 

n'~O n + 1 
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are either both contained in 1) (n1/2) == 1) (a) or neither is. 
Since n1/21/1 == acp, it follows that <R(n1/2) == <R(a). Unlike 
the operator n, which has the non-zero null space ~l., 
the operator n + I is a one-to-one mapping of its domain 
1)(n) onto its range. Likewise the operator (n + 1)1/2 is 
a one-to-one mapping of its domain 1)(n1/2) == 1)(a) onto 
<R«(n + 1)1/2) == <R(a). The inverse operator provides 
alternative forms for suitable restrictions of the 
operators P and pt: 

P1/l == (n + 1)-1/2a 1/l, all 1/1 E 1)(a), 

pt cp == at (n + 1)-1/2cp, all cp E <R(a). 

C. Operator relations 

The operator aat has domain of definition 1) (n), and 
hence the commutator [a, at] has also the domain 1) (n). 
Thus the operator 1 that appears in the commutation 
relation (2.6) stands for the restriction to 1)(n) of the 
identity I on s;, and makes the domains of both sides of 
the equation equal. We can rewrite Eq. (2.6) in the form 

aat == n + I, 

since both operators of the equality have the same 
domain. 

(3.8) 

Now the equation n == n1/ 2n1/ 2 implies that :D (n) is the 
set of all vectors in s;, that are mapped by n1/ 2 into 
:D(n1/ 2). Furthermore, the subspace :D(n) is invariant 
under pt, and pt maps no other vectors of s;, into :D (n). 
Accordingly, the forms (3.1) for a and at can be inserted 
into Eq. (3.8) and give 

Pnpt == n + I, (3.9) 

More generally, in the operational calculus based on 
the resolution of the identity belonging to n, we have 

00 00 

Pf(n)pt == :E f(n')PI n'>< n' I pt ==:E f(n') In' - 1>< n'- 11 
n'=O n'::::1 

00 

== L f(n' + l)ln')<n'l, 
n'=O 

(3.10) 

Pf(n)pt == f(n + 1). 

Equation (3.9) reveals again the nonunitary character 
of the partial isometry P. If P were unitary, the trans
formation of n on the left of (3.9) would be a similarity 
transfOrmation and hence would preserve the spectrum 
of n, which is clearly not the case. 

A vector 1/1 in s;, is mapped by Pinto :D(n) if and only if 
1/1 belongs to :D(n). Therefore, multiplying Eq. (3. 9) on the 
right by P is permissible and retains :D(n) as the domain 
of the resulting equation: Pnpt P == nP + P. Using (3.3) 
and the operator equation nCP == 0, we obtain 

Pn == nP + P, [P, n] == Pl, (3.11) 

where again the operator 1 is used in the equivalent 
commutator form of the equation in order to indicate the 
restriction to :D(n).Similarly, multiplying Eq. (3. 9) on 
the left by pt and using relations (3.3) together with the 
fact that on :D(n) the operator CPn is equal to the zero 
operator gives 

[pt, n] == - pt 1, (3.12) 

the adjoint of Eq. (3. 10). 
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It is evident that the subspace :D(n1/2) == :D(a) == :D(at ) 
is invariant under either P or pt, while no other vectors 
of s;, are mapped into :D(n1/2) by either operator. The 
equations 

Pn1/ 2 == (n + 1)1/2p, 

n1/2pt == pt(n + 1)1/2, 

(3. 13a) 

(3. 13b) 

obtained by equating the two forms of a and at given by 
relations (3.1) and (3.5), both have the domain :D(n1/2). 
We can safely multiply Eq. (3. 13a) on the right by pt and 
obtain, with the help of (3.3), 

Pn1/2 pt == (n + 1) 1/2, 

which is a special case of Eq. (3.10). 

The partial isometry P is definitely not unitary. It is 
instructive, however, to trace the main consequences 
that would derive were P a unitary operator. From the 
spectral theorem for unitary operators, it would follow 
that P is expressible in the form e i.<I>, where ¢ is a 
bounded self-adjoint operator on s;, with spectrum in the 
interval [0,211]. We may further suppose that :D(n) is 
invariant under ¢ as it is under P, with no other vectors 
in s;, mapped into :D(n) by ¢. Then the Lie expansion15 

ei</Jne-i<l>==n+ i[¢,n] + (i2 /2!)[¢,[¢,n]] + ... 

is valid on the domain :D(n). We could then infer that the 
commutation relation [n, ¢] == il is equivalent to Eq. 
(3.9). Thus we are lead to attribute to ¢ the Significance 
of a "phase angle," where n¢ is the observable canoni
cally conjugate to n. The commutation relation in turn 
implies that the "phase angle" and number of quanta 
obey the Heisenberg uncertainty relation f:l.¢f:l.n:2: 1/2. 
We must emphasize that no such self-adjoint operator 
does in fact exist, since its existence would imply the 
unitarity of P. However, the concepts introduc€d here 
become meaningful and useful under those limiting con
ditions where the operator P is approximately unitary. 
Moreover, the exponential serves as a heuristic device 
for suggesting other approaches to the problem of phase 
relations in the quantized radiation field. 

A bounded operator P on s;, can be written uniquely as 
the sum16 

P == C + is, (3.14) 

where C and S are bounded self-adjoint operators on s;, 
given by 

C == ~(P + pt), S == (1/2i)(P - pt). (3.15) 

The "real" and "imaginary" parts C and S commute if 
and only if P is a normal operator. 

The symbols C and S are used for the components of 
our partial isometry P in Eq, (3. 1) in analogy to the sine 
and cosine operators obtained as the corresponding com
ponents of a unitary operator. The commutation rela
tions (3.11) and (3.12) give6 

[C, n] == iSl, [S, n] == - iCl, 

and relations (3.3) give 

[C, S] == ~iCP, 

C2 + S2 == 1- tcp. 

(3.16) 

(3. 17a) 

(3. 17b) 



                                                                                                                                    

1972 Howard C. Volkin: Phase operators 

As expected, the presence of the ground state, which 
excludes the possibility of P being unitary (and hence 
normal), likewise prevents C and S from commuting. 
Measurements of the physical quantities C and S are 
compatible (approximately compatible) only in states of 
the radiation field which have no (negligible) ground
state component, in which case P is effectively unitary. 
The commutation relations (3.16) and (3. 17a) imply 

ACAn 2: i(s), ASAn 2: i(C), ASAC 2: i(<p), (3.18) 

which exhibit the mathematically rigorous forms of the 
number-phase uncertainty relations. 

4. EIGENSTATES AND SPECTRA OF PHASE 
OPERATORS 

A. Eigenstates and spectrum of P 

In order to find possible eigenvectors of P and pt, 
i.e., possible solutions in .\l of the eigenvalue equations 
Pl/I = u t/I and pt q; = vq;, where u and v are complex 
numbers, we write 

00 00 

Pl/I = ~ c, 1 n') = u ~ c, In'), 
n'=O n +1 n'=O n 

00 00 

pt q; = ~ b, 1 n') = v ~ b, 1 n'). 
n';;:l n -1 n'=O n 

Clearly, eigenvectors of P and pt are determined by 
the solutions. of the respective sets of equations 

C = uc 
n'+! n" 

n' = 0, 1,2, •.. , 

bo = 0, b = vbn " n' = 1, 2, .... 
.'-1 

(4.1a) 

(4.1b) 

The solutions of (4. la) are given by C , = cun'. The 
coefficients satisfy ~ I C 12 < co and thG eigenvector 

n' 
belongs to .\l if and only if I u I < 1. Therefore, in the 
complex u plane, the interior of the unit circle is the 
point spectrum of p and each eigenvalue is nondegenerate 
Thus, for a given mode of the radiation field, the states 

00 

lu) = (1- luI 2)1/2 ~ un'ln'), lui < 1, 
n'=Q 

are normalized eigenstates of the phase operator: 
plu) = ulu). 

(4.2) 

The norm of P is I pi = 1, and hence the spectrum of 
P must be contained in the closed unit circle I u I ::s 1. 
Moreover, P is a closed operator, so that its spectrum is 
a closed set. Since the interior of the unit circle is the 
point spectrum, the boundary I u I = 1 is the remainder 
of the spectrum. Because the interior contains all 
possible eigenvalues of P, for any value of u in lu I 2: 1, 
P - uI is a one-to-one mapping of :P (P - uf) = .\l onto 
CR(P - uf). We now use the following theorem: If the 
inverse of a linear operator T exists, then T necessarily 
preserves the linear independence of an arbitrary set of 
vectors in its domain, I.e., the set{Tt/ln } is linearly 
independent if and only if the set {t/ln } is linearly inde
pendent. From this it follows that, for I u I = 1, P - uI 
transforms the basis {I n)} for .\l into a linearly indepen
dent set contained in CR(P - uf). But the transformed set 
{I n - 1) - u I n)} is complete and hence the range CR(P -
uf) is dense in .\l. Thus we conclude that P has the con
tinuous spectrum I u I = 1 and has no residual spectrum. 

The only solution of (4. 1b) is the trivial one bn = 0, 
n = 0,1,2, .•.. Hence pt has no point spectrum. Accord
ingly, for all values of v in the complex plane, pt - vI is 
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a one-to-one mapping of :D(pt - vI) = .\l onto CR(pt - vI). 
Now Ipt I = 1, so that the spectrum of pt is contained in 
I v I ::s 1. The basis { I n) } for .\l is transformed by pt -
vI into the linearly independent set {en == In + 1) -
v I n) In == 0, 1, 2, ••. }, which is a (nonorthogonal) basis for 
for the subspace CR(pt - vI). Every vector q; in CR(pt -
vI) has a unique expansion in this baSiS, given by the . 
unique expansion in the basis { 1 n)} of the preimage of q; 
in .\l. The identity 

N-1 

10) - (l/vN ) I N) = - ~ en /v n + 1 

n=O 

shows that the ground-state vector can be approached 
arbitrarily closely by some linear combination of the en 
only if I v I > 1.17 Thus, for I v I ::s 1, the transformed 
basis is not complete in .\l and CR(pt - vI) is not dense 
in .\l. It follows that I v I ::s 1 is the spectrum of pt and is 
entirely a reSidual spectrum. 

As we have already observed, the isometric trans
formation P(pt) is maximal, inasmuch as its range 
(domain) is the entire Hilbert space .\l, but it is not 
unitary. Therefore neither P nor pt possesses a resolu
tion of the identity.12 It follows that the phase eigen
states (4. 2) of p do not form a complete set in .\l, for 
their completeness would imply that a resolution of the 
identity for P could be constructed as some linear com
bination of the projection operators lu)( u I. An example 
of a complete set is given by the eigenstates of a, as 
shown by the spectral decomposition (2. 18). 

In a phase eigenstate I u), the expectation value of the 
photon number n for the given mode is 

00 

(n) == (ulnlu) = (1- lul2) ~ n'luI 2n' = luI2(1-luI2)-1, 
n'=O (4.3) 

and the expectation value of n2 is 
00 

(n2) == (uln2 Iu) = (1- lul 2) ~ n'2IuI 2n ' 
n'=Q 

(4.4) 

The dispersion in values of n for the phase eigenstate 
is the root-mean-square deviation: 

An = «(n - (n»2)1/2 = (n2) - (n)2)1/2 = I u I (1 - I u 12)-1. 

(4.5) 
Note that the state 1 u = 0) is equal to 1 0), the oscillator 

ground state. The phase of the vector 1 n'), n' ;>0.0, is 
fixed relative to the ground state vector 10) by Eq.(2. 9). 
Hence the choice of normalization constant in Eq. (4. 2) 
to be the real number (1 - I u 12)1/2 determines the phase 
factor of the vector 1 u) relative to the ground state 
vector of the mode: (uIO) = (1 - lu 12)1/2. 

In the state lu), the probability of finding the oscillator 
in the energy state 1 n') is 

p(n') == (uln')(n'lu) = (1- luI 2)luI 2n'. (4.6) 

For a particular value of u, the distribution p(n') has 
its maximum at n'= 0 and falls off exponentially with 
increasing n'. The distribution has the mean ;; = 
~oo n'p(n') = (ulnlu) = (n) and variance (J = 

n'=O 

[~no:'=o(n' - ii)2p(n'»)1/2 = An. Since 1 u 1 < 1 in Eqs. 
(4.3) and (4.5), the dispersion in values of n always 
exceeds the mean value of n. In this sense, the number 
of light quanta can be said to be undetermined in a phase 
eigenstate of a radiation oscillator. This statement is a 
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limited realization of the hypothetical uncertainty rela
tion between the number operator n and a (nonexistent) 
phase angle observable cp. 

When I u I ~ 1, the decrease of pen') with increasing 
n' is very slow. Thus for values of Pnear the unit circle, 
an eigenstate I u) has appreciable amplitudes for states 
I n') with n' :» 1 and the expectation value of n becomes 
very large. The contribution to I u) of the single state 
I 0) then becomes relatively unimportant. Under these 
circumstances, we have seen in Sec. 3A that the operator 
P can be regarded as unitary and the classical description 
of the mode applies. Hence, the phase eig.enstates have 
a classical electromagnetic field description when 
lui ~ 1. 

The limit lu I = 1 for a phase state (4.2), if it exists, 
implies that every value of n is equally probable. Let us 
define the vectors 

co 

le ie) = (21T)-1/2 E e in'9In'), OSe<21T. (4.7) 
n'=O 

Such vectors do not exist in the Hilbert space ~ since 
they do not have finite norm. They correspond to idealized 
states that are not phYSically realizable. FollOwing the 
method of Dirac, ~ can be extended to a vector space 'O 
that contains the vectors Ie i9). From the definition (4.7), 
we see that the set {I n)} is also complete in 'O. The 
vectors (4.7) are not orthogonal. It can be shown6 that 

(e i9 Ie i tl') = (411")-1 + io(e - e') - (i/41T) coti(e - e'). 

However, the vectors (4.7) form a complete set for 'O, 
inasmuch as 

h co h 1 dele i9)(e i9 1 = E I n')(n"ll e i9(n"-n')de/211" 
o n'.n"=O 0 

00 

= E In')(n'l = 5, 
n,'=o 

where 5 is the identity operator in 'O. 

B. Spectrum of C and of S 

According to the definitions (3.15) of C and S, their 
norms satisfy 

It turns out that I C I = lsi = 1. Since C(S) is self
adjoint, its spectrum lies on the real axis in the interval 
[- 1, 1] and contains no residual part. 

It is easily shown that C(S) has no point spectrum. 
Let I c') denote an eigenvector of Cbelonging to the eigen
value c', and expand I c') in the complete set of energy 
eigenstates: 

co 

I c') = Ed, In'). 
n'=O n 

(4.8) 

The eigenvalue equation C Ie') = c'l c') is equivalent 
to the set of recursion relations 

(4.9) 

The solution of this set of equations is given by 

dn = dz n + bz-n , n 2: 2, (4.10) 

provided 2c' = z + z-l. Then the eigenvalue c' will be a 
real number if and only if I z I = 1. But when z lies on the 
unit Circle, dn does not approach zero, in the limit n ~ 00, 
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for any set of values of the constants d, b, and the series 
(4.8) cannot converge to a vector in ~. Thus C has no 
eigenvectors in ~,Le., C has no point spectrum. 

The spectrum of C must be purely continuous. The 
easiest way to treat the continuous spectrum of a self
adjoint operator is the method of Dirac. Since the reality 
of c' requires that Iz I = 1, we write z = e i9 and have 
c' = cose. We next observe that the relations (4.9) 
imply dn = dor n for n 2: 1, where rn is a real number. 
This condition is satisfied if d = doh, b = doh* in Eq. 
(4.10). If we write d = K(e i9/2i), b = K(- e--i9 /U), then 
dn = K sin(n + l)e, n 2: 2. The choice do = K sine 
makes the expression for dn hold for all values of n, as 
may be verified directly from the Eqs. (4. 9). With the 
normalization K = (2/11")1/2, the eigenvectors5 

co 

I cose) = (2/11")1/2 E sin(n' + 1)(J I n), Os e s 'IT, 
n'=O ( 4.11) 

satisfy the orthonormality condition 

(cose I cose') = o(e - e'), e '" 0, 'IT, e' '" 0, 'IT. 

The interval 0 s e s 'IT gives all the independent eigen
vectors, since I cos(- e) = - I cose). A single indepen
dent eigenvector belongs to each value of e inside the 
interval. Thus the spectrum of C is continuous and con
sists of the entire closed interval [- 1, 1]. 

If we extend the Hilbert space ~ to a vector space 'O c 

containing the eigenvectors of C, we see from Eq. (4.11) 
that the set { In')} is a basis for 'O c' The set of eigen
vectors form a complete orthonormal set in 'Oc' since 

f de I cose)( cose I = (2/'IT) E I n')( n"ll
l1 
de sin(n' + l)e 

o n~nn 0 

x sin(n" + 1)/1 = E I n')(n' I = 9e> 
n' 

where 9c is the identity operator in 'O c' The relation 

Icose) =-i(e i9 Ie i9) -e- i9 Ie- i9») 

shows 'Oc is a subspace of the vector space 'O defined in 
Sec.4A. 

Since S and C do not commute, they do not possess a 
common set of eigenvectors. The eigenvectors and 
spectrum of S are obtained by an essentially similar 
development. The spectrum of S is purely continuous in 
the entire interval [- 1, 1], and to each value in the 
interval there corresponds one independent eigenvector 
The eigenvectors of S form a complete orthonormal set 
in a vector space 'Os, which is an extension of ~ and a 
subspace of 'O. Generalized "cosine" and "sine" oper
ators, as well as annihilation type operators correspond
ing to pairs of such operators, have been studied by 
Lerner, et al. 18 The properties of these operators are 
further elucidated by Aharonov, et al.1 9 

5. RELATIVE PHASE OPERATORS 

We now investigate the generalization to quantized 
fields of the relative phase (phase difference) between a 
pair of modes. The discussion involves two distinct 
modes, and we shall accordingly revert to the modal 
index notation. Although the symbolic expression e i</>k 

for the phase operator P k has meaning only in the 
classical limit, the analogous exponential function 
exp[i(cpk - CPk')] of the relative phase angle suggests that 
we consider the operator Pkt,Pk , k' '" k. 

Such mixed operator products as pt P and P pt, 
k' k k' k 
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k'''' k, are defined on the Hilbert space ~ == ~ ® c:. • 
k'k k' ""k 

Because of the kinematical independence of the different 
modes, any two operators pertaining to distinct modes 
commute, e.g., 

[pt P) = [P n 1/2) = ° k' .,. k. 
k" k k" k ' 

(5.1a) 

Likewise, it is clear that 

[p P) = [n1/2 n1/2) = ° 
k" k k' , k ' 

any pair k, k'. (5.1b) 

The operator pt P is bounded on ~ ® c:. and can be 
k' k k' ""k 

written uniquely as the sum 

pt P = C + is 
k' k k'k k'k' 

where C and S are bounded self-adJ'oint operators 
. k' k k'k 

on ~ k'k given by 

C =1. (pt P + pt P ) = C 
k'k 2 k' kkk' kk" 

k' .,. k, 

S = (1/2i)(pt P - pt P ) = - S 
k'k k' kkk' kk" 

k' .,. k. 

Using relations (3.3) and (3.4), we find 

[C k'k ' Sk'k) = (1/2i)((J>k - (J> k,)' 

The total photon number for the modes k', k is 

N= n I + I n == n + n • 
k' k k' k k' k 

(5.2a) 

(5.2b) 

(5.3) 

(5.4) 

The domain of N is the subspace :D(n ) ® :D(n ) of ~ • 
k' k k'k 

With the help of the commutation relations (3.16), a short 
calculation shows that N commutes with both Ck'k and 
S : 

k'k 

[Ck'k' N) = 0, [Sk'k' N) = 0, (5.6) 

where it is understood the domain of each commutator is 
:D(N). This means that a relative phase operator can be 
measured simultaneously with the total number of photons 
in the two modes (but not with the number of photons in 
each individual mode). Equivalently, a common set of 
eigenvectors can be chosen for Ck'k. and N and for Sk'k 

aftd N. Because of (5.3), however, there exists no 
common set of eigenvectors for all three operators. 
Since (J>knk is equal to the zero operator on :D(nk) and 
nk(J>k = 0, N also commutes with the commutator (5.3). 

The state In' ) I n') == I n' ,n') is an eigenstate of N 
k' k k' k 

with the eigenvalue N' = n~, + n~, and the set of all 
such vectors is a complete orthonormal basis for ~ , . 
Let SJw be the subspace spanned by all the basic pr~_k 
duct states having a total of N' photons in modes k' and 
k. Clearly SJ

N
" has dimension N' + 1 and consists of all 

eigenvectors of N with the eigenvalue N' and of only 
such vectors. Any vector in ~w' has the form 

N' 

I/!, = E g,IN'-n',n'). 
N n'=O n 

The Hilbert space c:. is the direct sum of the ortho-
""k'k 

gOhal subspaces ~N" N' = 0,1,2, ... : 

~ k'k = ':' ~N" 

Thtl commutativity of the relative phase operators with 
N means that each subspace ~N' is invariant under Ck'k 
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and Sk'k' Let IN'; c') denote a simultaneous eigenvector 
of N and Ck'k with the indicated eigenvalues. For N' = 0, 
the basic state I 0, 0) is the eigenstate of C and has the 

k'k 
eigenvalue zero. In the one photon subspace, which is 
two-dimenSional, Ck'k has two orthogonal eigenvectors, 
which can be taken as 

11;±1/2) =(2)-1/2[11,0) ± 10,1)]. 

In the three-dimensional subspace ~2 of two-photon 
states, C k'k has three orthogonal eigenvectors with the 
eigenvalues 0, ± (2)-1/2. The generalization to arbitrary 
SJ N' is as follows 6 : Ck'k has the N' + 1 eigenvalues 

c~ = cosB N'r' BN'r = 'TFY/(N' + 2), 

r = 1, 2, ... , N' + 1, (5.7) 

and the corresponding eigenvectors 

IN'; cosBN'r) N' 

= (2/ N' + 2)1/2 L; sin(n' + 1)BWr In', N' - n') 
n'=O (5.8) 

form a complete orthonormal set in ~N" The N' + 1 
angles BWr are uniformly distributed in the interval (0, 1T). 
It is evident that the set of angles given by all values of 
N' is denumerable and dense in the interval. The set of 
all angles is in one-to-one correspondence with the 
eigenvalues, which are seen to form a denumerable and 
dense set of points on the real line in the interval (-1, 1). 
Moreover, the collection of all eigenvectors (5.8) is a 
complete orthonormal set in ~ k 'k' Hence we conclude 
that Ck'k has a pure point spectrum that is everywhere 
dense in the interval [- 1, 1]. The spectral decomposition 
of Ck'k is 

00 N'+l 

Ck'k = L; L; 
N'=O r=l 

cosBN'rIN'; cosBN'r)(N'; coSBN'rl. 

The relative phase operator for any pair of modes k', 
k may be regarded as an operator in the Fock space 
EEln ~Cn), where ~(n) is the subspace of all n-photon states. 
The states (5.8) are the N'-photon states for the two 
modes k' and k. Let SJ" be the subspace of n-photon 
states for the collection of all modes except k' and k. 
Then ~(n) can be decomposed into the direct sum of 
orthogonal subspaces 

where the subspace SJN' ® ~"-N' consists of all n-photon 
states which are eigenstates of C k'k with eigenvalues 
(5.7) given by the indicated value of N. Clearly Ck ' k has 
a complete set of eigenstates in SJ(n), n = 0, 1, 2, .... 
Thus as an operator in the separable Fock space, the 
spectrum of a relative phase operator Ck'k is the same 
as its restriction to the subspace ~k'k' 

The spectrum and eigenvectors of Sk'k are obtained by 
a development essentially parallel to that for Ck'k' The 
eigenvalues of Sk'k are given by s~ = sin<PN'r' <PN'r = 
[1Tr/(N' + 2)]- 1T/2, r = 1,2, ... , N' + 1. 

6. PHASE RELATIONS IN PHOTON STATES 

A. The phase operators for a single mode 

First we investigate the values of the self-adjoint . 
phase operators C and S when the mode is in a normaliz
able phase state (4.2). Only a single mode enters the 
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discussion, and so the modal subscript can be omitted. 
The phase state I u) is an eigenvector of the phase 
operator P, and hence 

pn Iu) = un, (6.1) 

The expectation values of C and S follow immediately: 

(ulclu) = ~(u + u*) = ffie(u), 

(ulslu) = (1/2i)(u -u*) = 5m(u). 

With the help of Eqs. (6. 1) and (3.3), we find 

(uIC2Iu) = i(u2 + U*2 + lul 2 + 1), 

(uls2Iu) =- i(u2 + u*2 - lul 2 -1), 

(6.2) 

which combine with relations (6.2) to give the dispersion 
in values of C and of S: 

ilC = «uIC2Iu) - (uIClu)2)1/2 = i(1- luI 2)1/2, (6.3a) 

ilS = «uls2 Iu) - (uISlu)2)1/2 = ~(1- luI2)1/2. (6.3b) 

As expected in the classical domain 1 u 1 ~ 1, the dis
persions become negligible and the phase observables 
have well determined values. The states 1 u) behave as 
eigenstates of C and S in the classical limit. Whenever 
the classical description applies, the mean value of n is 
large and the value of n is highly indeterminate. Accord
ing to the uncertainty relations (3. 18), a large value of 
iln is necessary in order that the value of a phase obser
vable be well determined. Equations (4.5) and (6. 3a) 
give the explicit result 

(6.4) 

Thus, in the phase state I u), the product of the uncertain
ties in C and in n becomes very large in the classical 
domain. 

The values of C and S and the number-phase un
certainty relations for the coherent states have been 
discussed in detail by Carruthers and Nieto. 6 We sketch 
the results for comparison with the phase states. From 
the relations 

00 

Pia) = ae-(1/2)laI 2 L) [(n + 1)!]-1/2 a "ln), 
n=O 

00 

p 2 1 a) = a 2e- (1/2) la 12 L) [(n + 2) !]-1/2 a " In), 
n=O 

we obtain 

(alpla) = ae-laI2F1(laI2), 

(a Ip2 1 a) = a2e-lal2 F 2( I a 12), 
(6.5) 

where the functions Fl and F2 are defined by the power 
series 

(6.6) 
00 n 

F2 (z) = Eo n![(n + l~(n + 2)]112 

Since both series converge for all values of z in the 
complex plane, they define entire functions Fl and F2• In 
terms of these functions, we find 
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(aICla) = ~(a + a*)e-laI2F1(laI2), 

(a 1 S 1 a) = (1/2i)(a - a *)e-laI2Fl (I a 1 2), 
(6.7) 

(a 1 c21 a) = i[(a 2 + a*2)e-1aI2 F2( I a 12) + 2 - e-1aI2 ]. 
(6.8) 

The asymptotic representations 

F1(z) ~ z-1/2e"'[1 - (1/8z) + ... ], 

F2(z) ~z-le"[l- (1/2z) + ... ] (lzl» 1), (6.9) 

give 

(aIPla) ~ a/lal, ilC ~ 0 (Ial» 1). (6.10) 

Thus, for coherent states in the classical domain, the 
expectation value of P shows the anticipated character of 
a phase factor and the dispersion in values of C becomes 
negligible. However, with the help of Eq. (2.14), the pro
duct of the uncertainties is found to have the asymptotic 
behavior ilC iln ~ ~ (S). Hence in the classical domain, 
the coherent states behave as minimum-uncertainty 
states for the number-phase uncertainty relations, in 
contrast to the behavior (6.4) of the phase states. 
Similar results are obtained with the phase operator S. 

The situation in which (n) « 1 is sometimes called 
the "quantum limit." Observe that the dispersion in the 
phase operator attains its largest value in this limiting 
case. 

B. The relative phase operators 

With the help of relations (5. 1a) and (3.3), we write 

C2 = i(pt2p2 + pt2p2 + pt P I + ptp I ) 
k'k k' kkk' k' k' k kkk" 

Let us first consider the case where the state of the 
radiation field is such that the modes k' and k occupy 
phase eigenstates of their respective phase operators, 
p k' and Pk' We denote the state vector in ~ k' 0 ~ k 

describing the two modes by luk"Uk) == IUk')k' IUk)k' 
From Eqs. (6.1) the expectation value of the relative 
phase operator and its square follow directly: 

(Ck'k) == (Uk"Uklck'kluk"Uk) = ~(UZ,Uk + uk,uZ), 

(C~'k) = i[(U;,uk )2 + (Uk , Uk*) 2 + luk,I2 + IUk 12]. 

The uncertainty in values of the relative phase when 
the two modes are in phase eigenstates is 

ilCk'k = «C;'k) - (Ck'k) 2)1/2 = Hluk,12(l- luk l 2) 

+ lukI2(l-luk,l2)]1/2. (6.11) 

The relative phase has a well-defined value only if (i) 
IUk I~ 0, luk.1 ~ 0 or if (it) IUk I ~ 1, luk,l ~ 1. Con
dition (i) is the quantum limit and corresponds to the 
situation where both oscillators are essentially in their 
ground states. Recall that the state Uk = Uk' = 0, with 
both oscillators in their ground state, is an eigenstate 
of the relative phase. Condition (ii) represents the other 
extreme from (i), the limit in which both modes have a 
classical description. 

Next consider the case where the modes k and k' are in 
coherent states. Let I a k" a k) == I ak')k' I ak)k be the 
state vector describing the two modes. A short calcula
tion with the help of Eqs. (6. 5) gives 

(ak"akICk'klak"ak) = ~(a:,ak + ak,aZ 

x exp(-la k ,12 -lakI2)F1(lak'12)F1(lakI2), (6.12) 



                                                                                                                                    

1976 Howard C. Volkin: Phase operators 

(a k" a II I C:'k I a k" ak) 

= ~[1 - ~ exp(- I a k' 12) - ~ exp(- I a
k 

12)] 

+ i(a 2 a*2 + a*2(2) exp(-Ia 12 - la 12) 
k' k k' k . k' k 

xF2(lak,12)F2(lakI2). (6.13) 

Again the uncertainty in the relative phase is small in 
the two extremes: (1) the quantum limit (n) = I a k l2 « 
1, (nk ,) = I a k ,12 « 1 and (2) the classical limit la k I» 
1, I ak,1 » 1. In the quantum limit, the state of the two 
modes is essentially the relative phase eigenstate I 0, 0) , 
as already noted. 

The form of Eqs. (6. 12) and (6.13) in the classical 
domain derives from the asymptotic expansions (6.9). If 
the numbers a are expressed in polar form, a = I a Ie icp, 

the classical case is summarized by 

(ak"akICk'klak"ak) ~ COS(fPk- (/Jk,)t::.Ck'k ~ 0, 

(Iakl »l,lak, I» 1), (6.14) 

as expected. 

We conclude tmt the classical field concept of a co
herent electromagnetic wave having a well-defined phase 
for each modal component and a well-defined relative 
phase between each pair of modes is realized only in the 
classical domain. The role of phase operators in des
cribing photon states is subject to this limitation. 

C. Values of the phase operators 

In Eq. (2. 2) a change in the origin of the time para
meter is equivalent to a change in each amplitude 
operator by a constant phase factor. Similarly, when the 
mode functions are traveling waves, a change in the 
origin of the spatial reference axes corresponds simply 
to a new phase factor in each modal amplitude. These 
observations are consistent with the fact that the com
mutation relations (2.6) are invariant under any trans
formation of the form 

(6.15) 

where Yk is a real number. 

We see that for a given radiation field, the amplitude 
operators remain undetermined to within constant phase 
factors until the space-time origin, phases of the modal 
wavefunctions, etc., are prescribed. A corresponding 
constant phase factor remains to be fixed in the values 
of each modal phase operator. According to Eq. (2. 9), 
the transformation (6.15) changes the phase of an energy 
eigenstate vector: 

(6.16) 

Recall that the phase factor of every energy eigenvector 
I nk) is referred to the ground state vector 10)k' A 
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change in phase of 10)k merely introduces an equal phase 
change in all the energy eigenvectors. 

In a phase eigenstate (4. 2) 

IUk> = (1-lukI 2)1/2I;ufln'\ 
n' 

= (1-luk I 2)1/2I;iifln'>k' 
n' 

the transformation (6.16) is seen to be equivalent to a 
change in the phase value 

(6.17) 

The transformation (6.15) induces a corresponding 
transformation in the phase operator: 

(6.18) 

The phase state I Uk> is an eigenstate of Pk with eigen
value Uk' as a comparison of Eqs. (6.17) and (6.18) 
immediately reveals. Similarly, under (6.15) the relative 
phase operator transforms as 

C -7 -C - .!.(e i(rk -rk')p,tp, + - i(r k-1 k')p,tp, ) 
k'k k'k - 2 k' 11 e 11 k" 

with an obvious change in the values of the relative 
phase. 
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Multiplets IJ M > transforming under irreducible representations of the [algebra of S U(2) 
are constructed as infinite sums of products of two S U (I, I) states I-p > and YM +p >. The 
"generalized coupling coefficients" figuring in the construction are shown to exist if the 
S U(2) label J and the S U(l, I) labels j and I satisfy j = I + J - k, ° :::; k :::; 2J. They are 
constructed explicitly and tum out to be analytic continuations of both S U(2) and S U(l, I) 
Clebsch-Gordan coefficients. The constructed states IJ M > are not normalizable in the usual sense. 
The "generalized coupling coefficients" can be applied, e.g., to study vertices, involving ordinary 
particles (with mass satisfying m 2 > ° and S U(2) spin) and tachyons (m 2 < 0, S U(I, I) spin). 

1. INTRODUCTION 

The purpose of this article is to consider a somewhat 
unusual mathematical object, namely a generalization of 
Clebsch-Gordan coefficients, making it possible to con
struct SU(2) multiplets (in some generalized sense) out 
of products of SU(I, 1) multiplets. Indeed, let us write 
down the identity 

IJMjl) == IJM) == mEM (: ~;;) I ~) I~), (1) 

where I~) and I~) transform according to irreducible 
unitary representations of the group SU(I, 1). The ques
tion we raise is: Is it possible to construct such "gener
alized Clebsch-Gordan coefficients" (~ },. ~) that the 
object IJM) on the left-hand side of (1) transforms 
according to an irreducible unitary (and finite-dimen
sional) representation of SU(2) (so that J is integer or 
hali -integer and M = - J, - J + 1, ..• , J). The group 
SU(I, 1) x SU(1, 1) does not contain an SU(2) subgroup, 
hence a direct product of SU(I, 1) representations cannot 
be decomposed into SU(2) ones. The vectors IJM) in (1), 
if they exist, can thus not be vectors in the direct pro
duct Hilbert space of two SU(I, 1) representations. 

In this article we shall however demonstrate that if the 
numbers j and 1 labeling SU(I, 1) representations and J, 
labeling SU(2) ones, satisfy the condition 

j = 1 + J - k, 0:5 k:5 2J, (2) 

then such coefficients (~ in ~) can be found that the vector 
IJM) transforms like a basis vector for an irreducible 
unitary representation of the algebra of SU(2), Le., 
satisfies 

J± IJM) = [(J 'F M)(J ± M + 1)]1I2IJM ± 1), 

J3 IJM) = M I JM), 
(3) 

whereJ=0,t,1,'" andM=-J,-J+ 1,"',J[J± and 
J 3 are generators of SU(2), specified below]. T~e basis 
vectors defined by (1) are, however, not normal1zable 
and satisfy 

\ 00

0 
(J'M'I'j'IJMlj) = t ifM =M', j =j' and 1 = I' 

otherwise 
(4) 

regardless of the values of J and J'. Note that the action 
of the operators J± and J3 on I JM) is defined by Eq. (1) 
[their action on the right-hand side of (1) is known], and 
that the multiplets I JM) are defined up to an arbitrary 
complex factor, depending on J,j and 1, but not on M. 

In this article we shall not discuss the details of any 
physical applications of the presented "generalized 
Clebsch-Gordan coefficients" or "generalized coupling 
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coefficients." By way of motivation let us, however, 
mention that these objects will occur if we consider 
vertices, involving one tardyon r a usual particle with 
positive mass squared m 2 > 0 and spin described1 by 
the group SU(2)], and two tachyons2 [faster than light 
particles with m 2 < 0 and spin described by the group 
SU(1, 1)]. Similarly, Regge pole theory can be interpreted 
as an expansion in terms of irreducible representations 
of the group SU(1, 1) (figuring as the little groupl of the 
Poincare group, leaving a spacelike vector, namely the 
momentum transfer, invariant). Regge poles then corres
pond to certain nonunitary infinite-dimensional irredu
cible representations of SU(1, 1), the background integral 
corresponds to unitary representations of the principal 
series, and "nonsense terms" correspond to unitary re
presentations of the discrete series. 3 The coupling con
stant in (1) can then be interpreted in terms of vertices 
involving particles and reggeons (or other objects figuring 
in complex angular momentum theory). Finally, there are 
quite a few other areas of physics in which the repre
sentations of SU(1, 1) play an important role, such as the 
theory of the hydrogen atom,4 various internal sym
metries in particle physics,5 etc. The generalized 
coupling coefficients of this article relating SU(2) and 
SU(1, 1) multiplets may well prove to be useful in any of 
the above areas, as well as other ones. 

In Sec. 2 of this article we give, mainly for purposes 
of notation, a brief review of the representation theory 
of the SU(1, 1) and SU(2) groups. In Sec. 3 we derive 
expressions for the coupling coefficients (,J~ _ip fJ) 
corresponding to the highest and lowest weights of SU(2) 
representations. The general coupling coefficients as 
well as selection rules for the values of j, 1 and J are 
presented in Sec. 4. Special cases for low values of J are 
discussed in Sec. 5. In Sec. 6 we discuss various pro
perties of the generalized coupling coeffiCients, in parti
cular their normalization, symmetries, recursion rela
tions, etc. We demonstrate that the coupling coefficients 
of this article can be considered to be analytic continua
tions of both the SU(2)6 and the SU(1, 1)7 Clebsch
Gordan coefficients. We show that it is possible to con
struct SU(1, 1) multiplets out of direct products of SU(2) 
and SU(1, 1) ones, but that the couplings SU(2) x SU(2) ~ 
SU(1, 1) and SU(2) x SU(1, 1) ~ SU(2) are not possible. 
In the final Sec. 7 we make some further comments on 
the Significance and applicability of the results of this 
paper and discuss possible future developments. 

2. REPRESENTATIONS OF THE SU(2) AND SU(1,1) 
ALGEBRAS 

Let us spell out some well-known results in order to 
establish notation. The algebra of the group SU(2) [or the 

Copyright © 1973 by the American Institute of Physics 1971 
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locally isomorphic rotation group 0(3)] can be so defined 
that the generators L; satisfy the commutation relations 

(i, k, I = 1,2,3). (5) 

Similarly, the algebras of 8U(1, 1) [or the locally iso
morphic three-dimensional Lorentz group 0(2, 1)] can 
be defined so that the algebra satisfies 

With the conventions (5) and (6) all operators in a 
unitary representation of the corresponding algebra will 
be anti-Hermitian. 

For our purposes it is more convenient to define dif
ferent bases for the algebras of 8U(2) and 8U(1, 1), 
namely such that the matrix elements of the generators 
in irreducible representations have the same form for 
both algebras. Thus, we introduce the standard raising 
and lowering operators (see, e.g., Ref. 8) and for 8U(2) 
put, 

whereas for 8U(1, 1) we put 

The commutation relations for SU(2) and 8U(1, 1) can 
both be written as 

(8) 

(9) 

However, the hermiticity conditions for 8U(2) and 
8U(1, 1) are different in this basis, namely in any unitary 
representation we have 

J 3 = Jj, 

(J.)+ = J_ for 8U(2), 

(J.)+ = - J_ for 8U(1, 1). 

(10) 

(11) 

The matrix elements of the generators in a canonical 
basis can be written in the same form 8 

J± 1 JM) = [(J 'f M)(J ± M + 1»)1/21 JM ± 1), 
J3 IJM) =MIJM) (12) 

for both algebras and the Casimir operator in both cases 
satisfies 

The numbers J and M, labeling representations and 
basis vectors, run through different values for 8U(2) and 
8U(1, 1), of course. Restricting ourselves to those irre
ducible unitary representations of the algebra that can 
be integrated to representations of the group, we find 
that8 

J=0,~,1,L"', M=-J,-J+l,"',J (14) 

for 8U(2). For 8U(1, 1) all the unitary representations, 
except the trivial one, are infinite-dimensional and we 
have several series of representations8.9 : 

(a) Discrete lower bounded series. 

J=0,~,1,t···, M=J+1,J+2,···. (15) 

(b) Discrete upper bounded series. 

J = 0, ~, 1, i , ... , M = - J - 1, - J - 2, .. '. (16) 
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(c) First continuous principal series. 

J = - ~ + iII, q = real, M = 0, ± 1, ± 2, .... (17) 

(d) Second continuous principal series. 

J=-~+iq, q=real, M=±~,±i,,··. (18) 

(e) Continuous supplementary series. 

- 1 < J < 0, M = 0, ± 1, ± 2, .... (19) 

We shall normalize the 8U(1, 1) states in the conven
tional manner, putting 

(JM 1 J'M') = o(J - J')OMM', (20) 

where o(J - J') is a Dirac 0 function for continuous re
presentations and a Kronecker delta for discrete ones. 

3. GENERALIZED COUPLING FOR THE HIGHEST 
AND LOWEST SU(2) STATES 

In the following we shall denote 8U(2) multiplets as 
IJM) and 8U(1, 1) ones as Ik). Let us now rewrite 
equation (1) for M = J and derive an expression for the 
generalized coupling coefficient. We have 

(21) 

The range of summation in (21) depends on the type of 
8U(1, 1) representations figuring on the right-hand side 
of (21). The form of (21) ensures that J 3 1 JJ) = J 1 JJ) 
and immediately shows that the representations j and 1 
must either both be continuous or both discrete, in which 
case one must be lower and one upper bounded. For de
finiteness we assume throughout that if j and I are dis
crete, then 1 is upper bounded,j lower bounded. If j and 
1 are both continuous, then - 00 < r < 00, if they are dis
crete, then max(l + 1,j - J + 1) :::s r < 00. If 1 belongs to 
the first principal series, the supplementary series, or a 
discrete integer series, then r is integer, otherwise r is 
half- integer. If J + r is integer, then j must correspond 
to the first principal series, the supplementary series 
or a discrete integer representation. If J + r is half
integer,j must correspond to the second principal series 
or a discrete half-integer representation. 

Let us now apply the raising operator J+ to both sides 
of (21). We obtain 

0= J+ 1 JJ) 

-L~( j 1 J)[U- J + r )(j+J+r+1)1/2 -rl J+r-rJ 

(
. 1 J) 

+ J+~+1-r-1J 

x [(1 + r + 1)(1- r)]1/2~ I J + t + 1) I~ J' 
implying a simple recursion relation 

. 1 J) 
(J + ~ + 1 - r - 1 J 

= _ ((j - J - r)(j + J + r + 1») 1/2 (j 1 J) 
(I + r + 1)(1 - r) J + r - r J • 

(22) 
Relation (22) can be solved in such a manner as to 
express a general coefficient (JJr Jr j) in terms of some 
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"starting coefficient" which can be chosen to correspond 
to r = rmin = max(l + 1,j - J + 1) if j and 1 are discrete, 
or to r = 0 (r = t) if both land j belong to continuous 
series. It is easy to check that in all cases the solution 
of recursion relation (22) can be written as 

( 
• Z J) 

J ~ r -r J 

(
r(J - j + r)r(j + J + r + 1))1/2 

- (_1)r-l x (Jo Z J) 
- r(Z + r + 1)r(- 1 + r) 0 , (23') 

where Xo is an arbitrary constant that can depend on the 
SU(1, 1) and SU(2) representations that we are coupling 
(but not on r, Le., the individual basis vector). The co
efficient Xo can be fixed, as we shall show in Sec. 6, by 
requiring that the generalized coupling coefficients 
should be the analytic continuation in j and Z of SU(2) 
Clebsch-Gordan coefficients. The expansion (21) can 
now be rewritten as 

IJJ) = Xo.6(- 1)r-l 
r 

x(r(J-j+r)r(j+J+r+1))1/2
j 

j )jZ), 
r(Z + r + 1)r(- 1 + r) J + r - r 

(24) 
where the sum ranges over all integer (half-integer) 
values of r for which the arguments of the r functions 
are not negative integers or zero. 

Quite analogously we can put M = - J in formula (1), 
apply J_ to both sides and obtain the generalized 
coupling coefficient for the lowest SU(2) weight, namely 

( 
• Z J) 

-/+r-r-J 

( 
r(r - Z)r(r + 1 + 1) )1/2_ 0 = (- 1)r-1 xo{j, l,J), 

r(r + j - J + 1)r(r - j - J) 
(25) 

1979 

where xo(j, l,J) is again an unknown constant. We shall 
show below [see (29) and (30)] that 

(26) 

4. GENERALIZED COUPLING COEFFICIENTS FOR 
ARBITRARY STATES 

Let us now apply the lowering operator J_ to Eq. (24) 
(J - M) times. Using formulas (3) and performing some 
algebra, we find 

(JJJ-MIJJ) = r(2J + 1) I JM) ( 
r(J -M + 1)) 1/2 

r(J + M + 1) 

= xor(J - M + 1)(- 1)(J-M)/2.6 (- l)r-l 
r 

r(J + j + r + 1)r(J - j + r) 
x 

r(z + r + 1)r(- Z + r) 

J-M+r 1 
x .6 

p=r r(p -r + 1)r(J-M -p + r + 1) 

( 
r(- 1 + p)r(l + p + 1) ) 1/2 

X r(j + M + P + 1)r(- j + M + P) 

(27) 

where both the r and p summation ranges are such that 
none of the arguments of the r functions are negative 
integers or zero. 

Formula (27) can be further improved by interchanging 
the order of summation. The final result is 

I) (
r(J+M+ 1)r(J-M+ 1))1/2 ~ ( r(-l+p)r(l+p+1) )1/2 

JM = Xo (- 1)(J-M)/2 L..J 

r(2J + 1) P=Po r(j + M + p + 1)r(- j + M + P) 

~ r(J + j + r + 1)r(J - j + r) I j ) I Z ) X L..J (- 1)r-l , 
r=r o r(l + r + 1)r(- 1 + r)r(p - r + 1)r(J -M - P + r + 1) M + P - P 

where 

1 
max(l + 1,j -M + 1) 

Po = - co 

for land j discrete 

for 1 and j continuous 
and r 0 = max(- J + M + p, Z + 1), 

(28) 

Le., the summation limits are again determined by the r functions. Note that the r summation is always over a finite 
region. 

Finally we must ensure that the general coupling coefficient 

( 
j Z J) = x (_ 1) (J-M)/2 (r(J_+ M + 1)r~ - M + 1) r(- 1 + p)r(l + p + 1») 1/2 

M + P - P M 0 r(2J + 1) r(j + M + P + 1)r(- j + M + P) 

~ r(J + j + r + 1)r(J - j + r) 
x L..J (- 1)r-l 

r=ro r(Z + r + 1)r(- Z + r)r(p - r + 1)r(J - M - P + r + 1) 

coincides for M = - J with coefficient (25), calculated for the lowest SU(2) weight (in other words we must check 
that J-IJ - J) = 0). Comparing (25) and (29) we see that the two are consistent if and only if 

~ r(J + j + r + l)r(J - j + r) 
F(J,j, l,P) == ...J (- 1)r-1 

r=ro r(Z + r + 1)r(- 1 + r)r(p - r + 1)r(2J - p + r + 1) 

(29) 

= N(J,j, Z)(- 1)lrl-J = (xo/x
o
)(- 1)P-l-J, (30) 
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the essential point being that N(J,j, l) does not depend on 
p. 

We shall prove elsewhere10 that 

F(J,l + J - k, 1,P) = (- l)P-I, 0:::; k :::; 2J, (31) 

and that for j'" 1 + J - k, 0:::; k:::; 2J the sum F(J,j, 1,P) 
cannot satisfy condition (30). 

To summarize: Generalized SU(2) multiplets, corres
ponding to angular momentum J, can be constructed from 
products of SU(l, 1) multiplets, corresponding to the 
representations j and 1, providing that the numbers j, 1 
and J satisfy the condition (2). The generalized coupling 
coefficients of Eq. (1) are then given by formula (29). 

Note that condition (2) implies that either representa
tions j and 1 are both discrete (then one must be upper 
and one lower bounded) or both continuous and then j = 1. 
Note also that condition (2) is weaker than a triangular 
relation since it does not imply J :::; 1 + j (but does imply 
11- j I :::; J). In particular, if 1 = j then J can be an 
arbitrary integer. 

5. EXAMPLES 

Not surprisingly, the general formula (29) for the 
coupling coefficients is quite complicated, not more so, 
however, than the corresponding formula, e.g., for SU(2) 
Clebsch-Gordan coefficients. For low values of J the 
formulas become quite simple and we shall give several 
examples. Note that the formulas (23) and (25) for 
arbitrary J.butM = ± J are also quite simple. 

Let us spell out several special cases that can either 
be derived directly or obtained from (23), (25) and/or 
(29). We have 

J = O. 

( z Z 0) = x o(- l)P-I. 
p -p 0 

(32) 

~Xo(- l)P-I(Z + p + 1)1/2 

I xo(- l)P-I(- 1 + p)1/2 

{ 

Z + .! 
for j = ~ 

1- "2 
(33) 

( 
j Z ~) 

-t+p-p-t 

~xo(- 1)P-I+1/2(- Z + P - 1)1/2 

/xo(- 1)P-I+1/2(Z + p)1/2 

J = 1. 

. ~ 1 + t for J = 1 
1- "2 

Xo(- l)P-I[(- Z + P + 1)(- 1 + p)]1/2 

= lxo(- l)P-I[(- Z + P)(l + P + 1)]1/2 

Xo(- l)P-I[(Z + p + l)(Z + p + 2))1/2 

I
Z- 1 

for j = 1 

1+ 1 

Xo(- 1)P-I+1/2[2(- Z + P)(l + p)]1/2 

(
j Z 1) = Ix (- 1)P-I+1I2,f2p p -p 0 0 

xo(- 1)P-I+1/2[2(l + P + 1)(- Z + P - 1)]1/2 

J. Math. Phys., Vol. 14, No. 12, December 1973 

1980 

l
Z- 1 

for j = 1 (34) 

1 + 1 

'xo(- 1)P-I+1[(1 + p)(l + P - 1)]1/2 

( 
j 1 1) 1X (_ I)P-I+1[(1 + p)(_ 1+ P - 1)]1/2 

-1 +p- p- 1 0 
o(-I)P-I+1[(-1 + P -1)(- 1+ P - 2)]1/2 

1
1- 1 

for j = 1 

1 + 1 

The general formula (29) also simplifies very signifi
cantly for the "stretched" coefficients, when j = 1 + J or 
j = I - J. In these cases the summations can be per
formed and we obtain 

(
l+J Z J) 

M+p-pM 

( 
r(2J + 1) 

= xo(- 1) (J-M)/2+P-1 r(J _ M + l)r(J + M + 1) 

X 
r(J + M + 1+ P + l)r(- 1 + P))1/2 (35) 
r(- J + M - 1 + p)r{l + p + 1) 

and 

(
l-J 1 J) 
M+P -p M 

( 
r(2J + 1) 

= xo(- 1) (J-M)/2+P-1 r(J _ M + l)r(J + M + 1) 

x r(J + M + P - l)r(l + P + 1) ) 1/2 (36) 

r(- 1 + p)r(l- J + M + P + 1) 

In order to illustrate the problem of normalizing the 
generalized SU(2) multiplets [see formula (4)], let us 
consider a specific example, e.g.,J = 0 or I,M = O,j = 
1: 

luoo) = 100) =xo p~l(-I)p-/I~p) I!), (37) 

11l1Q) = 110) = Xo 12 I; (- I)P-I+1/2p I~ ) II). (38) 
P=/+1 p P 

It is easy to see that the norms of these vectors are 
given by 

00 

(Z'l'oolllOO) =fJll'lxoI2 I; pO, 
p=/+1 

00 

(l'l' lOlllI0) = fJIl'21xol2 L; p2, 
p=/+1 

and that both sums diverge (in general like p2J). 

(39) 

(40) 

It should be noted here that the states Ij Z J M) and 
I j 1 J' M) for J ... J' (but all other labels equal) are not 
orthogonal. For example, 

00 

(ll 001l! 10) = IXoI2,f2 i L; p, (41) 
P=/+1 

and the sum again diverges [although more slowly than 
the one in (40)1. In formulas (37)-(41) we assume for 
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definiteness that 1 is integer or half-integer. The lack 
of orthogonality for J '" J' shows clearly that in the space 
that we are considering the SU(2) Casimir operator is 
at most a symmetric operator, but not a Hermitian one. 
In all our arguments the left-hand sides of the equations 
are defined by the right-hand sides; in particular, the 
SU(1,1) states are normalized in a conventional manner. 
We did not investigate the problem of redefining the 
scalar product in the SU(2) space in a more appropriate 
manner. 

6. PROPERTIES OF THE GENERALIZED COUPLING 
COEFFICIENTS 
A. Infinite norm 

Using the formula (1) and the normalization (20) of 

( 
1 + J 1 J) (l + J' 1 J,) * 
M+p-pM M+p-pM ---p:.-;;; 

1981 

SU(1, 1) states, we have 

(J'M' IJM) = 0MM,O(j - j')o(l- l') 

L]f j 1 J)f j 1 J,)*. (42) 
xp W+P-PM W+P-PM 

One can show that the sum in (42) diverges rapidly, 
namely as pJ +J ' for p ~ co. Th~ general proof is some
what cumbersome, so let us just illustrate this result by 
examples. For 1 being an upper-bounded series and j = 
1 ± J we have 1 + 1 :s p < co and using (35) or (36) we see 
that the general term in the series behaves as 

( 
r(2J + 1)r(2J' + 1) ) 1/2 , Ixo 12(_ 1)(J+J'-2M)/2 pJ+J' (43) 

r(J - M + 1)r(J + M + 1)r(J' - M + 1)r(J' + M 1) 

(use was made of Stirling's asymptotic formula for r 
functionsll). Similarly, for J = J' = ± M, we have [see 
(23) or (25)] 

I ( j 1 J) 2 p2J 
M+p-pM ~ • 

B; Relation to SU(2) and SUI 1,1) Clebsch-Gordan 
coefficients 

(44) 

The method used in Secs. 3 and 4 to derive expressions 
for the generalized coupling constants can be applied 
directly to derive analogous formulas for SU(2) or 
SU(1, 1) coupling coefficients. This is particularly simple 
in the case of SU(2) multiplets. Treating the multiplets 
on the right-hand side of (21) as SU(2) multiplets, going 
through the procedure of Sec. 3, making use of the usual 
normalization 

(45) 

of ordinary SU(2) multiplets, and making the usual phase 
conventions,6 we obtain an expression for a "highest 
weight" SU(2) Clebsch-Gordan coefficient: 

(j J - m 1 m IJJ) = (- 1)i-J+m 

( 
r(2J + 2)r(j + 1 - J + 1) 

x r(j + 1 + J + 2)r(j - 1 + J + 1)r(- j + 1 + J + 1) 

ru + J - m + 1)r(l + m + 1)) 1/2 
x • ru - J + m + l)r(l- m + 1) 

(46) 

Formula (46) should be compared with (23) for the 
highest weight generalized coupling coefficients. Making 
use of standard properties of r functions, in particular 
r(z)r(1 - z) = 1T/simrz, we find that the two formulas 
COinCide, if we define Xo to be 

Xo == xoU, l,J) = e(irr/2)(j-J-l+2) 

( ru + 1 - J + 1)r(2J + 2) )1/2 

X r(j + 1 + J + 2)r(j - 1 + J + 1)r(- j + 1 + J + 1) . 
(47) 
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Proceeding along the lines of Sec. 4, i.e., applying the 
operator (J_ )J-M to the state IJJ) we derive a general 
expression for the SU(2) Clebsch-Gordan coefficient. 
The formula coincides with expression 13. 1b of Yutsis 
and Bandzaitis6 and can be shown to agree with our 
formula (29) if Xo is given by (47). 

Thus our generalized coupling coefficients (29) can be 
considered to be an analytic continuation of the usual 
SU(2) Clebsch-Gordan coefficients. The continuation is 
in the quantum number p, from - 1 :s p :S 1 to P 2: 1 + 1 
for discrete representations of SU(1, 1), or to arbitrary 
integer or half-integer - co < p < 00 for continuous re
presentations. The continuation is also in j and 1 - from 
integer or half-integer values, satisfying a triangular 
relation with J, to arbitrary j and l, satisfying (2). 

Since the SU(1, 1) Clebsch-Gordan coefficients7 have 
been shown to be analytic continuations of the SU(2) ones, 
our coefficients (29) can equally well be considered to 
be analytiC continuations in J andM of the SU(1, 1) 
Clebsch-Gordan coefficients. 

C. Further comments 

When considering Clebsch-Gordan coefficients for any 
group, properties that are usually stressed are sym
metries, recursion relations, and the relation between 
the coefficients and D functions (finite transformation 
matrices). This last question cannot even be considered 
here, since we have not established whether the con
structed representation of the SU(2) algebra can be inte
grated to a representation of the group. Hence we do 
not know whether the D functions exist at all, still less 
what they are. The symmetry properties of the general
ized coupling coefficients are not particularly illuminat
ing. Consider for instance an interchange of j and l. 
The corresponding SU(1, 1) representations can both be 
discrete-one upper bounded, one lower bounded-then 
their interchange is not meaningful. Alternatively, both 
representations can be continuous, but then we must have 
j = 1 and the interchange is trivial. Recursion relations 
can readily be derived by applying the raising and lower-
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ing operators J± to both sides of Eq. (1). We shall not 
present the resulting formulas here. 

D. Other types of coupling coefficients 

Finally, let us mention that other couplings involving 
SU(2) and SU(1, 1) multiplets can be considered. Thus 
we can write 

I
l)- is \ j J l / I j > 

- p - M =-J /- P - M M - P I - P - M 
/JM) , 

(48) 

where we are constructing an SU(1, 1) multiplet from 
products of SU(1, 1) and SU(2) multiplets. Proceeding 
similarly as above we can show that the coefficients 
Lfj-M k _lp} in (48) exist, providing that j, l and J satisfy 
(2 • The representation land j must both be upper 
bounded or both lower bounded, if j and l are discrete. 
It is quite easy to construct the coefficients in (48) ex
plicitly and also to relate them to the coefficients (29), 
but we shall not do this here. 

The remaining two types of conceivable couplings, 
namely SU(2) x SU(2) -? SU(1, 1) and SU(1, 1) x SU(2)-? 
SU(2) are actually not possible. Consider the coupling 
of two SU(2) states to an SU(1, 1) state, e.g., 

I l) Jr L Jl] 
- P = M~J L- P - M M _ p / L - P -M) /JM) , 

p?l+ 1. (49) 

If the left-hand side is supposed to be an upper bounded 
SU(1, 1) multiplet, then we must have 

(50) 

On the right-hand side we have 

(Jjk /L - P -M) /JM) 

s~o e) (JY-S /L - p - M)(JJs/JM). (51) 

However, 

(JJ k-s /L - P - M) = 0 for - p - M - k + s < - L, 

(JJs/JM) =0 forM-s<-J, 

so that for 

k>L+J-p 

all terms in (51) are zero and hence the multiplet defined 
by (49) has a finite number of components and cannot 
transform under a unitary representation of SU(1, 1). 

Similarly, we cannot construct an SU(2) multiplet out of 
the product of an SU(2) and an SU(1, 1) multiplet. Indeed, 
put 
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/JM) (52) 

The condition for /JM) to be an SU(2) multiplet is 

(JJJ+M+1/JM) = 0, (J.}J-M+1/JM) = O. (53) 

Applying both operators to the right-hand side of (52), we 
find that (53) imposes incompatible conditions. 

7. CONCLUSIONS 

Let us add a few more words about the possible signif
icance and applications of the generalized coupling co
efficients introduced in this paper. The connection with 
tachyons was mentioned in the Introduction. It is well
known12 that the direct product of two tachyon-like re
presentations of the Poincare group (with mr < 0 and 
m~ < 0) contains also tardyon-like representations (with 
m > 0). It is hence perfectly meaningful to consider 
vertices, involving two tachyons and a tardyon. The 
corresponding Clebsch-Gordan coefficients of the Poin
care group have been calculated,12 using the canonical 
linear momentum basis,l in which the four components 
of the linear momentum P" and one component of the spin 
operator WI' = € JlVAp MVAPP is diagonal. 

Alternatively, one can consider representations of the 
Poincare group in an angular momentum basis. For 
positive mass squared m 2 > 0 representations such a 
basis13 corresponds to diagonalizing the energy Po, the 
square of the angular momentum J2, a component J 3 and 
the helicity operator i W 0 = PJ. A similar "angular 
momentum" basis can be introduced for tachyons by 
diagonalizing a component of the momentum P3 , the 
SU(1, 1) "angular momentum" J~ - Kr - K~ and "helicity" 
- iW3 = M 12 Po + M 01P2 + M 2oP1 and the component J 3 • 
If we 'calculate the Clebsch-Gordan coefficients of the 
Poincare group in such a baSiS, then the coupling co
efficients of this article will make an appearance. The 
selection rules (2) and those of Sec. 3 can thus be inter
preted as angular momentum selection rules, e.g., for 
tachyon pair production. We plan to return to these 
problems in a separate study. 

A mathematical by-product of the approach of this 
paper is the derivation of combinatorial identities of the 
type illustrated by formulas (30) and (31). A derivation 
of this nontrivial summation formula, together with a 
description of Lie algebra methods of deriving more 
general identities of this type will be presented 
separately. 10 

Finally, let us mention that the approach of this paper 
can be applied for other Lie algebras. We have actually 
mainly made use of the fact that the SU(2) and SU(1, 1) 
algebras have the same complex extension SL(2, C), 
which enabled us to write the two algebras in the same 
form (see Sec. 2). Thus it should be possible to construct, 
e.g., SU(n) [or O(n)] multiplets out of products of 
SU(n - q,q) [or O(n - q,q)] multiplets. 
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On the transport properties of a van der Waals fluid. I. 
Formal theory* 

J. Piasecki and P. Resibois 
Faculte des Sciences, Universite Libre de Bruxelles, Belgium 
(Received 6 March 1972) 

We present a formal exact analysis of the autocorrelation formulas for transport coefficients in a van 
der Waals fluid. We show that the first correction due to the long range force is of order 'Y 
('Y = inverse range of the force) and the formal expression for this correction is displayed in terms of 
the PrigogintrBalescu graphs. The analysis crucially rests upon a generalization of hydrodynamica1 
modes in a van der Waals fluid, valid for wave numbers smaller or of the order of 'Y. 

I. INTRODUCTION 

It is now almost a century ago that van der Waals had 
the remarkable idea of analyzing the equilibrium prop
erties of a classical fluid by separating the pair inter
action between the particles into a short-range strongly 
repulsive part and a long-range part, corresponding to 
the weak attraction. 

Although the qualitative success of this theory was 
rapidly recognized, it is only recently that a rigorous 
formulation of this theory has been given, both for the 
one-dimensional case1 and in three dimensions. 2,3 Ap
propriate perturbation techniques have also been devel
oped. 4-6 The starting point is to write the potential of 
the pair interaction in the form (we work in three 
dimensions) : 

(I. 1) 

where VS(r) is the Short-range part while y3VL(yr) (the 
so-called "Kac potential," originally introduced by 
Brout7 in the similar problem of ferromagnetism) is the 
long-range part of the total potential. The parameter y 
measures the inverse range of VL and the y-independent 
integral y3 f tflrV(yr) is supposed to converge; Y thus 
plays the role of a smallness parameter and various 
perturbation methods have been developed in order to 
obtain y expansions for the thermodynamic properties 
and the correlation functions of the system. In these 
expansions, the role of the reference system is played 
by a fluid of particles interacting via the short-range 
potent.ial only. 

Under certain assumptions about the functions vs and 
VL (see Refs. 3 and 5), it has been proved that the 
y- 0 limit leads to the van der Waals type equation of 
state combined with the Maxwell equal area construc
tion. The lowest order corrections to this equation as 
well as to the thermodynamic and correlation functions 
have been calculated. 

Apart from some semimacroscopic studies close to 
the critical region (where precisely, for y finite, the y 
expansions are known to fail 1), 8 there has been no simi
lar development for the transport properties of a van 
'der Waals fluid. The purpose of the present paper is to 
present such a theory: We want to determine the lowest 
order correction to the transport coefficients of a fluid 
resulting from the presence of the long-range potential 
y3 VL(yr), when this fluid is far from its critical region. 

As is often the case in many-body theory, the feasi
bility of this program depends fairly heavily upon a 
suitable formal technique. This technique is presented 
in Sec. II, where we start our analysis from the well-

1984 J. Math. Phys., Vol. 14, No. 12, December 1973 

known Green-Kubo expressions for transport coeffi
cients. We then recall briefly the many-body analysis 
of these formulas according to the method of Prigogine 
and coworkers9

-
u ; in particular, we use their diagram 

technique and we show that, due to the linear nature of 
the problem, the technique recently applied by one of 
us (J. P. )12 to the study of linearized kinetic equations 
can be transposed here to considerably simplify the 
formal exact expressions for these transport coeffi
cients. The developments given in this section are valid 
irrespective of the decomposition (I. 1) and, as a matter 
of fact, they only reproduce previously published cal
culations in a manner which is convenient for our pres
ent purpose-we will thus be rather brief and refer the 
reader to the literature for further details. 

In Sec. m, we analyze the y expansion of one of the 
central operators of Sec. II, namely the so-called colli
sion operator which is the generalization for dense 
fluids of the well-known Boltzmann operator of dilute 
gases. We show that a naive expanSion of this operator 
in power of VL fails to converge for y small and that, 
in order to get convergent expressions, we first have 
to replace the free propagator of the particles by a 
"dressed propagator" which, in the long wavelength 
limit, describes the hydrodynamical propagation of 
these particles. The physical picture underlying this 
renormalization procedure is quite simple and can be 
interpreted in very intuitive terms: Because the Kac 
potential is very long range, the particles will feel it in 
their motion over long distances and long times. For 
such extended time and space intervals however, it is 
unrealistic to approximate the dynamics of these parti
cles by their free particle motion; because the fluid in 
which they propagate is dense, we have rather to con
sider their hydrodynamic behavior in this fluid. Once 
this renormalization has been made, it is a straight
forward, albeit nontrivial, matter to establish the con
vergence of the y expansion; more precisely, we give 
the rules which allow one to establish a lower bound to 
the y dependence of any graph that contributes to the 
collision operator. We show in particular that the domi
nant correction due to the Kac potential is of order y1. 
This result is in contrast with the corresponding ex
pansion for the equilibrium properties, which generally 
involve a y-independent correction. In Sec. IV, we ex
tend the results of Sec. m to the other operators that 
are involved in the microscopic expression for the 
transport coefficients. As the calculations are similar 
to those presented in detail for the collision operator, 
we do not give here any detailed proof and merely pre
sent the results. In particular, the leading correction to 
any transport coefficient is again of order yl and its 

Copyright © 1973 American Institute of Physics 1984 
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formal microscopic expreSSion is presented 
graphically. 

The results of Secs. m and IV are obtained under the 
assumption that the hydrodynamical modes of the van 
der Waals fluid can be expressed, to lowest order in y, 
in terms of yO-order quantities. This assumption is 
consistently checked in Sec. V, using a slight general
ization of the microscopic theory of hydrodynamical 
modes recently developed by one of the authors (P. R.).13 
In particular, it is shown there that the eigenvalues of 
these modes, denoted by A~(Y)(Q EO (1,2 ... 5»), are given, 
to lowest order in y, by 

At2 = ± ic(kY'l)k - r(ky'l)k2, A~,4 = - Tj'k2 In, 

A~= _/Csk2/nC/kY,l), 

where 

(I. 2) 

r(ltl,'l) = 2~[~Tj"+~'+(Cv(~'l)- Cp(~'l»)/C"J. (1.3) 

Here Tj', ~", and /C", respectively, denote the coeffi-
, cients of shear viscosity, bulk viscosity, and thermal 
conductivity of the reference hard-core fluid, while 
C(kY'l), Cp(kY'l), and Cv(ky'l), respectively, are the 
sound velocity and specific heats of the van der Waals 
gas, calculated to zeroth order in y and suitably gen
eralized to small but nonzero wave number k (k;SY). 

Let us stress that the present paper is only concerned 
with formal results, which, although exact (in the sense 
of formal perturbation theory), cannot be directly used 
to explicitly compute the first order correction to 
transport coefficients of a van der Waals gas. This ex
plicit calculation can, however, be pursued up to the 
point where the aforementioned corrections are reduced 
to simple quadratures: This very important aspect of the 
present theory will be dealt with in a forthcoming 
publication. 

Finally, let us close this introduction by one remark 
concerning the approach to equilibrium of a van der 
Waals fluid: Indeed, another important problem-inde
pendent of the calculation of transport coefficients -is 
the time behavior of the system when it is put in an 
arbitrary nonequilibrium state. Unfortunately, it seems 
that the present approach cannot be directly applied to 
the study of this question and that the y expanSion of the 
generalized time dependent kinetic equation requires a 
separate analysis. This analysiS should presumably take 
careful account of the existence of two time scales in 
the system, related to the short- and long-range inter
actions, respectively. We hope to discuss this problem 
in a separate publication. Some mathematical details 
have also been relegated in appendixes. 

II. FORMAL PRELIMINARIES 

We consider a classical N-particle system with co
ordinates r= rl> r2 ••• r N and v = vi> v2 ' •• VN • 14 Its 
Ham iltonian is 

N 2 N 

H=L.
V
• + ~ V(lr.-rbl) (11.1) 

.=1 2 .>b=l 

and the corresponding Liouville operator L is written 

L=Lo+ OL, (11.2) 
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(11.3) 

(11,4) 

We want to evaluate a transport coefficient X through 
the Green-Kubo correlation function: 

X=limlim ~ (t d'Tfd.i:,VJX exp(-iL'T)(JX _ l5JX)p.Q. 
t .. oo 110 Jo T 

(11.5) 

Here lim"" denotes the thermodynamic limit; n is the 
volume of the system. Moreover, JX = ~f.1 ~ is the flow 
operator associated with X and l5JX denotes the "counter
term" which insures that (JX - l5JX) is orthogonal to the 
invariants of L; for example, if we consider the ther
mal conductivity X;;; TK, we have 

N N 

.f1'K= ~ JtK, OJTK= ~ BJtK, 
1=1 ,=1 

f>JtK = (h/n)v ix' 

(11.6) 

(11.7) 

(11.8) 

where h is the equilibrium enthalpy density. Finally, 
the equilibrium distribution for N particles at tempera
ture T= l/kf3 has been denoted by p"Q. 

As was shown for example in Ref. 11, Eq. (11.5) can 
be transformed by introducing the four operators W"o(z) 
(collision operator), ~kO(Z) (creation operator), ~Ok(Z) 
(destruction operator), and <Pw(z) (propagation operator) 
which play a fundamental role in the kinetic theory of 
homogeneous systems developed by Prigogine and co
workers. 9,10 If we introduce the abbreviation (k I A I k') 
for the Fourier transform, 

n'N! drexp (- i E kara)A<r, V)exp(i ~ k~rb)' (11.9) 

the definitions of these operators are 

and 

W"O(Z)=~(OI-f>L(LO~Z Q(-f>L»)"!O), 

~kO(Z)= ~(kl(Lo~z Q(-OL»)"\O), 

g)Ok(Z) = ~(ol(- f>L)Q L01_ Z r Ik), 

<Pw(Z) = t (k\-L 1 (Q(- f>L)L2-)njk'), 
~O o-z o-z 

(II. 10) 

(11.11) 

(11.12) 

(II. 13) 

where Q = I - I 0)(0 I (I is the identity operator), and z is 
a complex variable lying in the upper half -plane. When 
z is in the lower half-plane, we should take the analyti
cal continuation of these expreSSions. Moreover, k and 
k' denote sequences (k1 , • " ,kN) and (kf, ., . ,kN), re
spectively, which both contain some nonzero wave vec
tors. (For a finite system, owing to the periodicity con
ditions, wave vector k i has the form 21Tn/n1 '\ where n 
is a vector with integer components. See Refs. 9 and 
10). 
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In terms of these operators, the autocorrelation func
tion (11.5) can be rewritten in the form [see Eqs. (3.12), 
(3.13), (3.13') in Ref. 11] 

X=X'+X", 

where 

and 

x [(0 I (Jx - 6JX) p·qnN I 0) + Eo g)Ok'(Z)] 

X (k' I (JX - flJX)peqnN I 0) 

X"=limlim 2
if3,.. it dT fexp(-iZT)dZ J dv 

t .. 00 GO 1h" 0 c 

(11.14) 

(11.15) 

x[ L; (0 I JX I k)<Pkk'(z)(k' I (JX - flJX)p·qnN 10)J 
k,k"'O 

(II. 16) 

In these equations, the path C of complex integration 
lies in the upper half-plane and is parallel to the real 
axis. 

At this point, it is worthwhile to make the following 
remarks: 

(1) In Eq. (II. 5), the evolution operator exp( - iLT) 
acts upon the "initial condition" (JX - flJX)p·q which can 
be looked upon as a linearized deviation from the ab
solute equilibrium distribution p.q. For instance, in the 
case of thermal conductivity, we have 

N 

(0 I (JTK - MTK)peqnN I 0) = E flcp(v.) b~' cpeq(vb), (II. 17) 

where cp·q(vl ) denotes the equilibrium Maxwellian, while 

(
V2 h) 6cp(v.)=v.,. 2' +nYo-;; cp·q(v.). (II.1S) 

Hence, taking the velocity integration 

f dv= f dvl " 'dvN 

into account, we can further Simplify expressions 
(II. 15) (II. 16) for X' and X" by replaCing the many
particle operators (II. 10)-(II. 13) by the corresponding 
linearized operators W&(z), 'i6'ko(z) , !:iI6k(Z) and cPMz) (to 
be defined below), which only depend on a single velocity 
variable. This linearization procedure has been dis
cussed in detail in Ref. 12 and the results concerning 
structure of the linearized operators obtained there can 
be directly applied to the present case; it will be dis
cussed in more detail in the following. 

(2) Similarly, the complex z integral and the time 
integral could have been directly performed in Eqs. 
(II. 15), (II.16), leaving us merely with the bracketed 
contributions taken at 

z=+ie. 

However, we have not performed these integrations 
immediately in order to stress the similarity of the 
present equations with the formulas discussed in Ref. 
12. 
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In order to make clear the Simplifications which are 
brought into the problem by the linear nature of our 
"initial condition" (,pc ,.;. 6JX) p.q, it is most convenient 
to use the diagrammatic technique of Prigogme and 
Balescu. 9,10 In order to avoid undue repetition, we shall, 
however, not give in detail here the rules which es
tablish a one -to -one correspondence between graphs 
and analytical contributions and we urge the reader 
interested in the technical aspects of our discussion to 
constantly refer to Refs. 9 and 10. Nevertheless, we 
shall illustrate the main features of this graphical 
analysis by simple examples which should be under
standable without serious difficulties. 

Representing the elementary vertices, which are ex
plicitly given by [see (II.4), (II. 9)] 

(kI6V JI k') =n-lv'k -It.' (ki - k j )(.2... _.2...) 
I i oV i oV J 

X6K;r II ~r 
kj+k'J,kj+kj .*I,j ka,ka' (II. 21) 

by the graphs of Figs. 1, we can, for example, de
scribe the collision operator wo(z) [see (II-10)] by the 
general structure of Fig. 2(a): Reading the graph from 
right to left, we start with no line (corresponding to a 
state k = 0) and we combine the vertices of Fig. 1 in 
such a way that no intermediate state has no line [cor
responding to the projector Q in Eq. (II-10)] until we 
arrive at the final state which again corresponds to no 
line (k=O). 

If we now analyze this general structure in a slightly 
more detailed way, we notice that it can be realized in 
two different ways, as is illustrated in Fig. 2(b) and (c): 

(1) By semiconnected graphs9 ,12 In these there are two 
(or more) disconnected parts involving groups of parti
cles which only have one particle (s) in common; by the 
law of conservation of wave vectors ~. k. = 0, it is easily 
seen that, in some intermediate states, particle s has 
zero wave number, k. = O. In order to keep track of it, 
we then represent it by a dotted line (this graphical rule 
will be generally adopted in similar circumstances). 

(2) By fully-connected graphs9
,1l These do not have the 

above property. 

For the other operators !:ii, 'i6', g>, we can Similarly de
fine fully-connected and semiconnected contributions. It 
is the central result obtained in Ref. 12 that in the study 
of a linearized kinetic equation, the various semicon
nected contributions exactly cancel each other, as a con
sequence of the equation Lpeq = O. Exactly the same prop
erty holds here [see in particular the analogy between 
our Eq. (II. 15) and the starting equation (I. 3) of Ref. 12] 
and we thus merely state the result: 

p 

~ J 

~ Xi i 

,,-( f j 

FIG. 1. The elementary vertices. 
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1 
i 

6 1~1 U 
n 

.1=0 .#0 &=0 
(a) (b) (e) 

FIG. 2. The collision operator +o(Z): (a) general structure (b) 
semiconnected graph (c) fully connected graph. 

and 

X' = lim i
2
f3
n it dT J:eXp(-izT)dZ·JdVI~OIJ{IO) 

t .. eo 1T 0 J:: ~ 

+ L: (01 Jf 1 k)<ifk(v l ; z)l ( iJ!~(' ») k~O ~ - Z - 0 VI> Z 

x{[J dVN-I(O I(~ - 6JX)peQONI0)] +~MVI; Z)} 

(n.22) 

X" = lim Z'2f3n (t dT,{ exp(-iZT)dz fdv
l
:0 (01 Jflk) 

t- 11' Jo 1c k~ 

(II. 23) 

In these equations, <if~o and iJ!~ are one-particle opera
tors while <P~ and ~~ are one-particle functions. More 
precisely, when iJ!~(Vl; z) acts on an arbitrary function of 
VI [denoted by ~(VI)]' we havel5 

iJ!~(VI; Z)~(VI) = lim ~ t J dV N-1 S~ 1 [- 6L 
., n=1 s=1 l~ 1 

x(Lo ~ z Q(-1>L»)"r'
C
,\ O)~(Vs) 

x IT cpe,VJ ) + ); (01 [-1>L(-L 1 
J~ ito I 0 - Z 

k.=O 

XQ(-6L»)1~'C'lk)(klpeQONI0) 

X~(Vs)/cp·,v.+ (11.24) 

In the notation j[ ];C, the superscript F.e. indicates 
that only fully-connected contributions should be re
tained while the subscripts i and j on the left and on the 
right of the brackets mean that the vertex at the extreme· 
left and the vertex on the extreme right should, respec
tively, involve particle i and j [see the analog equation 
(3.16) of Ref. 12]. 

Similarly, we have 

x (0\ J (- 6LQ L
o

1
_Z)"I'C' k) 

x (k 1(cP.' - 6cP.')peQON 1 0). (11.25) 

Similar formulas hold for 'i'!o(v l ; z) and <P~(VI; z); they 
are obtained by replacing the ket (01 by (kl (Lo - z)-I, 
respectively, at the left of Eqs. (ll.24) and (n.25). 

Note that although the thermodynamic limit is taken 
in these formulas, we find it convenient to formally 
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keep discrete sums over the wave vectors k: They 
should, in expliCit calculations, he replaced by appro
priate integrals. Let us also stress that the transforma
tions leading from (n. 15), (n. 16) to (n.22), (11.23) are 
exact; indeed, the linear nature of the response func
tion (II. 5) is not an ad hoc assumption but is really built 
into this equation, as is examplified in (II. 17). 

An important feature of Eqs. (II. 24), (11.25) is that 
they involve the equilibrium correlations. If we want to 

,pursue with our graphical analysis, we thus need dia
grammatic rules to represent these correlations. As 
we shall see soon, this will lead to further simplifica
tions in the possible type of graphs. 

To be as simple as possible, we shall limit ourselves 
to iJ!~(VI; z); the other quantities of the theory can be 
handled similarly. 

Putting p:Q:; (k I ON p.Q I 0), let us first explicitly isolate 
the group (<;9) of particles with nonzero wave vector 
k jE (<;9) '" O. We write 

(II. 26) 

an( d w) e further decompose y in irreducible clusters 
y Wa (a = 1· . ·n) according to 

-('if) _ " n (W".> 
y - {(~)}a~/{kjE(~oYO}' (11.27) 

(II. 28) 

An important property of an irreducible cluster is that 
it satisfies the wave number conservation law 

(11.29) 

Each irreducible cluster will be graphically repre
sented by a vertical bar connecting the lines 
k l , k2 , ••• k j corresponding to the clustered particles 
1,2· .. j. Examples are given in Fig. 3. 

Thus from (n. 24) we see that the graphs contributing 
to iJ!~(VI; z) are constructed by combining in all possible 
waJ::s the vertices of Fig. 1 and correlations of the type 
of Fig. 3 (which, if present, have of course to be put on 
the extreme right of the graph) with the following 
restrictions: 

FIG. 3. Graphical representation of equilibrium correlations: 
(a) an irreducible cluster of fourth order (b) product of two 
second order irreducible clusters. 
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.AI + 

v 
Equilibrium parts 

(a) (b) 

= 

(c) 

FIG. 4. Illustration of the self-propagation of the equilibrium 
correlations. 

(1) Only fully-connected graphs are retained. 

(2) The first vertex necessarily involves particle S.16 

(3) The last vertex involves particle 1 and, as the 
graph ends up with k = 0, it is of the form: 

----< (11.30) 

Note that, because semiconnected graphs have been 
eliminated, this is the only vertex with this topological 
structure which ever enters into any diagram contribut
ing to lJ!~. 

We are now ready to introduce a last simplification in 
our diagrammatic analysis: It is based on the idea that 
the Liouville operator self-propagates the equilibrium 
correlations; more precisely, we will use the fact that 

(11.31) 

As a similar problem was already discussed in a dif
ferent context, 17 we shall not give the general proof but 
rather illustrate it on a simple example; we will then 
formulate the general rule. 

Consider the graphs (a) and (b) of Fig. 4, where the 
dashed structure is left arbitrary. These two graphs 
contain what we shall call an "equilibrium part" (which 
has been put inside a dotted rectangular frame in Fig. 
4): by definition it is a part of the graph which extends 
up to a certain time18 tl such that the particles involved 
in it are not connected by any line to the initial non
equilibrium particles during the time interval 0 - tl' An 
equilibrium part thus describes the dynamics of equilib
rium particles only and this, by (II. 31), should be tri
vial to treat. 

That this is indeed the case in our example can be seen 
as follows: Using the schematic notation used in Fig. 4, 
we have 
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lJ!i<a) = r t dt F(t _ t )5L'"IG(t )[expi(kv t \...0 ,J)- ](II 32) o Jo 1 1 1 Ii llYkl,-ki . 

and 

lJ!b(b) = 1t dtlF(t _ t l )5LaIG(tl )(i [tl dt2 

xexPi(kVjAtl - t2])5Llicpe<l(VI)cpe<l(Vi»)' (11.33) 

where the equilibrium part only has been explicitly dis
played-in both equations, it is given by the bracketed 
contribution. 

From (II. 4) we get, after a simple calculation, 
(b) r t 

lJ!~ = Jo dtlF(t - t l )5LaIG(tl)[(1- exp[ikvl/JH- j3~) 

x cpe<l(Vj)cpe<l(v i)]' (11.34) 

In (II. 33), the dynamics of the equilibrium part is 
treated to first order in the interaction only; for con
sistency, we have thus to use in (II. 32) the 
approximation 

(II. 35) 

We get then the remarkable, albeit not unexpected, 
result 

lJ!~(a) + lJ!~(b) = Ir/ dtlF(t - t l )5L aIG(tl)[(- j3Vk )cpe<l(v l )cpe<l(v)] 

= l/ dtlF(t - tl)[5LaiYk:::1)G(tl)' (11.36) 

In this particular example, we see thus that equilib
rium parts can be avoided (or better summed altogether) 
provided we use a "renormalized vertex" 

5L aiy U,J) • 
kl ,-kj (11.37) 

This is schematically indicated in Fig. 4(c). 

On the basis of (11.31) this result can be generalized 
to arbitrary graphs; the diagrammatic rules for con
structing lJ!~ become very simple: draw all possible 
graphs by combining the eleven possible vertices in the 
way indicated in Table I. This rule automatically in
sures that no semiconnected graph and no graph involv
ing equilibrium parts will ever appear; this point is of 
crucial importance in the analysiS of the van der Waals 
gas we shall present in the following sections. 

TABLE I. Vertices involved in "<ltA(Vj;z): n is arbitrary but 
larger than 1. 

LAST VERTEX INTERMEDIATE FIRST VERTICES 
(~xtr~me left) VERTICES (extreme right) 

Not 
___ I ___ {: 

I j 

>--~--Renormalized 
0 

~ y 
J J 

I I 

X 
RenormalizeJ* l,ei) j 

'Jf ir- 'n-f '2 '2 

in 'n I n i 
n 

(*) The contribution associated with a renormalized vertex is 
obtained by multiplying the contribution of the bare vertex by 
the equilibrium coefficient [see (II. 37)]. 



                                                                                                                                    

1989 J. Piasecki and P. Resibois: Transport properties of a van der Waals fluid. I 1989 

It is perhaps worthwhile to make here a few general 
remarks concerning the above discussion: 

(1) Though to be complete we should first restate the 
rules which associate an analytical contribution to a 
given graph, except for the fairly simple factor asso
ciated with a renormalized vertex [compare Fig. 4(c) 
and Eq. (n.37)], these rules are the same as in the 
graph technique of Prigogine-Balescu9

,lo and we shall 
thus omit doing so (see also footnote below Table 1). 

(2) Similarly, we should also give the corresponding 
analysis for the other quantities <if!o, gJ~, a>~ which appear 
in the theory. These are however easily obtained by 
similar arguments, and, as we shall not need these 
quantities explicitly in our further analysis, we shall 
also omit this point. 

(3) We are perfectly aware that the arguments pre
sented in this section are by no means strict proofs of 
our results. A general detailed proof, based on analyti
cal consideration and not on graph analysis, is feasible 
(see Ref. 12 for a similar calculation) but it is unusual
ly tedious and long. To make a complicated story as 
short as possible, we have preferred to present here a 
more intuitive argument. The interested reader can 
moreover check it in detail on simple examples. 

Finally, to close this section, let us still perform the 
asymptotic integrations over T and z in Eq. (II. 22) and 
(II. 23). We can follow the argument presented in Ref. 
11; the result is 

X'= - ,snlim J dV l r(OI(,Jf -l'iJnl 0) +~ (01(,Jf -l'iJ1xl k) ,-0 L Itf.o 

X ~~(Vl; iE~( i[>I1b(Vl~ ie) + ie ]){ [J dV
N

-
1 

X (0 1 (.PC - l'iJX)peqnN 
I 0)] +gJMv1 ; iE)} (n.38) 

and 

X" = -i,snlim J dVl ~ (01 (J{ - 5Jnl k)~(Vl; ie). 
,-0 1tf.0 

(n.39) 

The only difference with the case of shear viscosity is 
the appearance of the counterterm I'i~X, which exactly 
vanishes for this latter transport coefficient X= 1/. How
ever, for the example of thermal conductivity we have 

(n.40) 

while in the case of bulk viscosity, more precisely for 
B =11/ +~, we have l'iJ1B *" l'iJf *" O. As this counterterm, 
which plays an important role in explicit calculations, 
does not affect the formal discussion of the van der 
Waals limit, we shall postpone the proof of Eqs. (II. 38), 
(n. 39) until Appendix C. 

III. THE 'Y EXPANSION OF THE LINEARIZED 
COLLISION OPERATOR 

It follows from Eqs. (n.38), (11.39) that the problem 
of finding the y expansion of a transport coefficient in 
the van der Waals limit can be reduced to the analysis 
of the y dependence of the linearized quantities>l1b(v1 ; iE), 
gJMv1 ; ie), ~~O(Vl; ie), and cPkl(V1 ; ie) when the interaction 
potential V(r) is decomposed according to (1. 1). In this 
section, we present such an analysis for the linearized 
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collision operator >I1b(V1; ie). 

Let us first point out that the Fourier transform of 
Eq. (I. 1) reads 

Vk=VkS+V~-l, 

where 

Vk = J drV(r) exp(ikr). 

(m.1) 

(m.2) 

If we want to apply our diagrammatic formulation to 
the potential (m. 1), we need to distinguish between the 
short- and the long-range part of this interaction: this 
will be accomplished by using the vertices. and!'J for 
the short- and long-range contributions, respectively; 
lines with nonvanishing wave numbers (or dotted lines 
when a k=O particle needs to be made explicit) will 
arrive at (or leave from) these vertices as they did from 
the "dots" used to represent the vertices in the preced
ing section. Moreover, this last notation will still be 
used whenever no distinction needs to be made between 
the two types of interaction. 

For example, the graph of Fig. 5 will correspond to 
the contribution19 [see (II. 24)] 

(2n2)3 f dV2 dV3 f ~k(Vksk-aa k 1_ V:;'-lk-
a

a 

v ~2 Vu 2 Vu 

x __ 1_ VSk-a-) cI>(v )cpeq(v )cpeq(v ). 
kV32 - Z k aV23 2 1 3 

(m.3) 

Notice that, owing to the presence of the long-range 
vertex fl, the integration over kin (m.3) is restricted 
to the small region I k I ~ y. This illustrates the fact that 
diagrams involving long-range vertices will generally 
contain some lines with wave vector restricted by the 
condition I k I ~ y. 

Now, the free long wave-length propagator 

1 
(m.4) 

introduces in the limit z - ie the factor y-l, as can be 
seen by introducing the integration variables q}=y-1k} 
(assuming that all qj integrals converge). As such 
propagation can appear an arbitrary number of times
for example, by adding more and more short range 
collision processes in the way illustrated in Fig. 6-it 
becomes clear thet the straightforward perturbation 
series expansion for >I1b(v1 ; ie) contains terms which 
diverge in the limit y - O. (This essential point seems 
to be overlooked in the work of R. Elliot and L. De 
Sobrino).20 

We will now show that this type of divergence can be 
completely eliminated if we first "renormalize" the the
ory by dressing the free propagators (m. 4) with all 
possible collision processes. Although, as we shall see 
later, it would be sufficient to perform this dressing to 

0
3 

I A) {~ 2 
---- ----

(-l) 
2 

FIG. 5. An example of the decomposition of the potential in a 
short-and a long-range part. 
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n limes r-______ -JA~ _______ ~ uue:: ~_m 
FIG. 6. Example of a class of diverging diagrams (n= 5, 6"'). 

zeroth order in y, it is more convenient to do it to 
arbitrary order in y by defining the dressed propagator 
through the procedure schematically described in Fig. 
7a; in this figure the dashed structure represents all 
possible interactions (involving both the short- and long
range part) starting and ending with the given wave vec
tor k. Denoting by 5tk(V1; z) this renormalized propaga
tor, we have 

(m.5) 

Here the inhomogeneous linearized collision operator 
lJ!~ is the analytical contribution associated with Fig. 
7b. USing the diagrammatic rules of Sec. m, it is 
readily verified that it can be written in complete 
analogy with (11.21). We have, indeed, 

The notation used here is the same as in (II. 21), ex
cept for the projector Qk which is defined by 

N 

Qk=I - ~ I k")(k" I 
a=1 

(m.7) 

and for the symbol (kll [or I ki)] which is used to denote 
a state in which particle i has wave number k, while all 
other particles have zero wave numbers. 

Let us stress that, in Eq. (m.6), OL involves both 
the short-range and the long-range part of the potential; 
lJ!~ is thus y dependent, as is made explicit in the nota
tion. Moreover, in the k = 0 limit, lJ!~ reduces exactly 
to lJ!~, Eq. (11.21). 

From the diagrammatic point of view, it is clear that, 
with the use of the renormalized propagator, we will 
get an exact formal expansion for the linearized colli
sion operator lJ!~ by limiting ourselves to the graphs in
volving no "self-energy,,21 insertions. 

As the physical motivation for introducing the dressed 
propagators (m. 5) has already been discussed in the 
introduction, we will not reconsider it here but we shall 
rather illustrate it on the very simple example shown in 
Fig. 8. 
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a) ==;== = ____ + ---@-

n limes 
r------""'---____ 

+~------®-
b) ---@-=--{}-+--I.I---

+ -0- + -co- + .--

FIG. 7. The renormalized propagator: (a) general form (b) 
first few terms of wMvu..>. 

Using the time-dependent form of the theory, 18 and 
performing the change of variable k - q=y.lk, we get 
from Fig. 8 the contribution 

l~m [;;:;3 it dT f dV2 f ~q(~Lq a~1J 
x (2!i i dz exp(iZT)X",,(V1 ; z»)(2!i ~ dz' 

x exp( - iz 'T)X_",,(V2;Z/~~;q a:
21 

) [<I>(v1)cpeQ(V2) 

+ <I>(v2)cpeQ(V1)] ] (m.8) 

to lJ!Mv1 ; iE)<I> (v1 ). 

In order to establish the y dependence of this contri
bution, we have to discuss the behavior of the integral 

(m.9) 

in the small wave vector limit k=yq, y« 1. This prob
lem is closely connected to the theory of linearized 
hydrodynamical modes developed by Resibois. 13 The 
detailed discussion of this important point is presented 
in Sec. V. We give here only the partial results which 
are required to continue our analysis. 

The dominant contribution to (m. 9) is obtained by 
replacing the operator Xk(v; T) by the sum22 

• 
L: exp(A!(y)T) If!(Y»(I:(Y) I. 
a=1 

Here 

AMy) = ikA~l )(k, y) + ~ A~) (k, y) + O(~), 

A!(y) = A;.k(y)* , 

(III. 10) 

(m.ll) 

(III. 12) 

where A:;)(k, y) and A~2)(k, y) are real quantities which 
have a finite limit when y - O. Moreover, If!(Y» and 
<1!(y) I are, to dominant order in k, linear combinations 
of the invariant states of the collision operator 
lJ!6(v1 ; if); we have 

FIG. 8. A simple renormalized graph. 
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• 
If!(Y)= ~clrMky-1) I (3) + O(k) 

8:1 

'" If!k(ky-l» + O(k), 

[and a similar formula for (1:(y) I], wherel3 

<v 11) = rpeq(v), 

(vli)=(v/v'kT)rpeq(v) (b2,3,4), 

(v 15) = v'273 (v 2 /2kT - 3/2)rpeq(v). 

(m.13) 

(m.14) 

In Eq. (m.12), the coefficients C~S<ky-l) have also the 
important property that they tend to a finite lim it when 
y - 0; moreover, the superscript 1k has been used in 
order to keep in mind that, even to zeroth order in k, 
the eigenmodes still depend on the direction of k. 

As a matter of fact, we will prove stronger results in 
Sec. V, namely, we shall show that the A~(y) and 
If:(y» can, respectively, be identified with the hydro
dynamical eigenvalues and eigenfunctions of the vander 
Waals fluid; in particular, for y - 0, the A'::.(Y) become 
simply identical to the eigenvalues (I. 2). For this rea
son, we shall often speak of the renormalized propaga
tor Xk(v; z) as describing hydrodynamical propagation 
in the fluid. 

Substituting (m. 10) into (m.8), we discover that the 
superposition of the two renormalized lines of Fig. 8 
behaves, for small wave numbers I k I = I q I y (y - 0, q 
finite) like: 

(m.15) 

so that the strongest possible divergence in the y - 0 
limit is y-2. Consequently, the renormalized cycle of 
Fig. 8 represents a term of the order not less then 
y5y -2 = y3. 

We shall now extend this analysis to the general situa
tion and determine a lower bound to the y dependence of 
an arbitrary renormalized diagram, in which the free 
propagators have been replaced by hydrodynamical 
lines. For this purpose, conSider any diagram which 
contributes to 'l1Mvl ; z). Taking into account the wave
number conservation law at each vertex and the limita
tion on these wave vectors imposed by a long-range 
vertex Vk~-l, namely I k I "" y, we divide this diagram into 
a sequence of neighboring segments of two types: 

Type I: throughout the segment, we have hydrody
namical propagators with small wave vectors (I k I "" y) 
only. 

Type II: between any two vertices of the segment, 
there appear some propagators carrying wave numbers 
not influenced by the long-range interaction, i. e. , the 
integration over these wave vectors is y independent and 
spreads over the big region I k I ~ 1 (the distances here 
are measured in units equal to the range of the short
range potential). 

Let us stress that this division is determined by the 
global topolOgical properties of the graph: If we consider 
a given part of a graph, we can tell whether it enters 
into a segment of type I or of type II only after we have 
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determined the different wave numbers from the con
servation rules in the whole graph. 

Schematically, the division of a given diagram can be 
represented by drawing vertical lines through some of 
its vertices. A simple example is shown in Fig. 9, 
where the dashed structure is supposed to involve only 
short-range interactions. 

To avoid any confuSion, we adopt the following conven
tions: a vertex separating segment I from segment II is 
considered as part of the latter and the vertex appear
ing at the right (left) end of the diagram belongs to the 
corresponding right (left-) end segment. 

Let us first discuss the 'Y dependence of type I seg
ments. We first remark that the change of integration 
variable k - q = ky-l for all wave numbers limited to 
k "" 'Y, introduces a y3 factor for each k integration. 

Recalling that we always read a graph from right to 
left, we decide to attach each k-integration factor to 
the vertex where this k wave number first appears. 
From Table I and the definition (11.4) of f>L, we im
mediately get the results of Table II for the various 
vertices which can appear in a segment of type I. The 
following remarks provide useful comments about the 
construction of this table: 

(1) According to our earlier prescriptions, we have 
used a dot to represent both the short- and the long
range vertices: the y dependence is the same in both 
cases (see also the remark after the definition of type I 
and II segments). 

(2) The vertex.JL is not present here, as it has been 
included in the definition of the renormalized 
propagator. 

(3) The y dependence of the renormalized vertices is 
a consequence of the fact that an irreducible cluster of 
n particles involves (n - 1) independent wave vectors. 

According to the definition of a segment of type I, 
between any two of its neighboring vertices there ap
pear a certain number n"" 2 of hydrodynamicallines. 
The analysis presented for the case n = 2 (see the exam
ple of the renormalized cycle) applies as well for n> 2. 
Consequently, with any superposition of hydrodynamical 
lines, we shall associate the factor y-2, corresponding 
to the strongest possible divergence in the limit y - o. 

FIG. 9. Division of a diagram in segments of type I and II. 
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I I 
LAST VERTEX IN <!J-,,- INTERMEDIATE VERTICES FIRST VERTEX IN q, 0 

(-Iactor t-Iactor N. 1-lactor _ ..... < .~ >- 'l' Aj )._--- 1(4 

-< ~ c. ;0'-" r3n+1 
I 

X 
4 

~---~ Bj )(3n+4 

~ t
3n +1 Din) 

I 

~ t
Jn

+4 E~n) 
I 

TABLE II. 'Y factors associated with vertices appearing in seg
ments of type I (NI = number of vertices in segment II)' 

After these preliminary evaluations, let us remark 
that the division into segments of type I and H can lead 
to four different structures, depending on whether the 
right- and left-end segments are of type I or H. Let us 
first consider the sequence 

I In I IIn-lI InolI ···1 II+lIHIIIII·· ·IIIIII11, (III. 16) 
"" an bn-l .n-l b!+l a/+l bj a! a2 bJ. al 

where b j(a i ) equals the number of hydrodynamical lines 
at the left (right) extremity of segment II. In particular, 
it is convenient to define al = (number of lines going out 
of the first vertex), bn=2. 

Applying the established rules, we can calculate the 
y factor, denoted yXI, associated with segment Ii' 

Using the notation explained in Table II, we get by a 
straightforward calculation when 1 < i < n 

Xi =4(Ai +B) +C i +6 [(3r+ l)D~r) +(3r+4)Elr)] 
r 

-2(Ai +Bi +C I +2/ (Did +Elr» + 1). (III. 17) 

A simple calculation of the total number of lines 
created (or destroyed) in segment Ii leads to the 
identity 

(III. 18) 

so that we get finally 

Xj =(b i -ai -2) +Ai +2B i +2/ [(2r-1)Dir) +(2r+ l)Elr>]. 

(III. 19) 

A similar calculation can be performed when i = 1 and 
i=n (with bn=2) and leads to 

Xl =2(al - 2) + bl +Al + 2Bl + 6 [(2r -l)Dirl 
r 

+ (2r+ l)E~r)], (III. 20) 

xn=An + 2Bn+ 2/ [(2r-1)D~rl + (2r+ l)E~rl] + (l-an). 

(III. 21) 

Again using (III. 18), the sum X=L:7=lX i can be con
veniently written as 
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+ 6 [(~r _l)D:r) + (~r+~)ElrlH, 
r 

(III. 22) 

which gives the exponent of the factor yX coming from 
type I segments in the sequence (III. 16). One can show 
that this formula remains correct when n = 1. 

An analogous analysis can be performed for the three 
remaining sequences: 

I I I Hn_1 1 ••• I II1 III I ITo I, 
bn an ""-1 a2 b1 a1 

(III. 23) 

(III. 24) 

I II. I In I IIn-1 I ••• I II1 I 11 I IIo I , (III. 25) 
bn an bn-l 02 b1 al 

yielding, respectively, the factors yx-1, yx+bn-S, and 
yx+bn-4 where x is given by (III. 22). 

Let us now estimate the influence, on the y depen
dence of a diagram, coming from the segments of type 
II. Here, we shall be satisfied with finding the lowest 
order y factor resulting from their presence. We have 
to distinguish between three possibilities (we take 
O<i<n): 

(1) al +1 = b; = r: It is clear that the groups of r wave 
vectors {kl , ••• , kr } and {k{, ... ,k;} which appear at the 
left and right side of segment HI must differ at least by 
one independent wave vector; otherwise, these lines 
would have propagated independently from each other, 
which is contrary to the definition of segment II;. 23 The 
integration over this new wave-vector yields a factor y3. 

(2) a i+1 < b l : In this case, we can avoid the introduction 
of new small wave vectors I k I = yq (y - 0, q finite) by 
considering segments IIi of the type depicted in Fig. 10 
(or product of disconnected structures of this type). 

The left-hand extremity of segment IIj is necessarily a 
vertex of the type (ka I 6Ls I ka + qa' - qb)' More precisely, 
we can write this segment in the schematic form (the 
function f includes all factors which are not explicitly 
written!): 

8
n3 f dVb f asqqV:-;!- r(k + q)va - qVb + 6_ k ,V, - i€J-1 
1T vVab ~ 'FG 

(III. 26) 

where IT denotes the group of particles, different from 
a, which enter into region 1/+1. To zeroth order in y, 
we can of course replace (III. 26) by 

n JdV fasv--il
- 1 f 8 1T3 b qq q ilvab qVa - QV

b 
- i€ qa,qb,{OI 

X (va, Vb, {vJo) + O(y), (III. 27) 

where due to the symmetrical role played by particles a 
and b, f.a.-. is a symmetrical function of va and Vb' 
Equation (Iii. 27) is justified because all the wave vec
tors {k}c; are smaller or equal to y by definition. 

NOW, according to our previous analysis, in order to 
get y"2 factors from the hydrodynamical lines appearing 
in segments II and Ij+1> we have to introduce the hydro-
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s 

1.1 1+ 

..-r7777'77i==== '1 

n. 
1 

A:::::===== 12 

1. 
1 

'I 

FIG. 10. Example of a II, segment with a'+1 < b, • 

dynamical modes I fal k(ky-1» and (j~lk(ky-1) I and apply 
Eq. (III. 10). But then segment II, is acted upon its left 
by linear combinations of the states <a I (see m.14). 
Hence, to zeroth order in Y, we have to compute 

8~3 f dva<va 1 a) f dVb f asqqv:ia:ab qVab

1
-i€ f.,-.,{O} 

(III. 28) 

Due to the symmetry of particles a and b, a simple 
integration by parts show that this expression vanishes. 
Accordingly, we conclude that the lowest order y factor 
associated with this type of segment II, is at least yl. 

(3) a
'
+1 > b ,: The group of wavevectors {k1 , ••• , k

al
+1} 

at the left must contain at least (a1+1 - b I) new indepen
dent wavevectors, which do not appear in the group 
{k lO • •• ,kb } at the right. The integration over these 
wavevecto~s leads to the factor y31a'+l-b,). However, we 
can establish a stronger result. Indeed, it is easily 
checked that the situation corresponding to (a

'
+1 - b I) new 

wavevectors can only be realized if segment II, "gene
rates" the hydrodynamic propagators in the way shown 
in Fig. 11(a) (or by disconnected products of graphs of 
this same type); for example, the situation described in 
Fig. 11(b) introduces (a

'
+1 - b , + 1) new small wavevec

tors, and gives thus at least a factor y3(a1+1-b,+1). 

Now the topology depicted in Fig. l1(a) is, loosely 
speaking, "conjugate" to the one encountered in Fig. 10; 
the argument presented above can be reproduced here 
"mutatis mutandiS", leading to an additional y factor. 
Hence, in the case a

'
+1 > b i' the lowest order y factor 

associated with segment II, is yl3(a'+1-bl)<4J. 

When i = 0 (or n), the argument presented above does 
not hold [because we do not have hydrodynamical modes 
at the right (or left)]: In this case, it is easily verified 
that we merely get a factor y3la1-O (or yO, respectively). 

Finally, let us remark that the general structures 
(m.16), (m.23), (m.24), (m. 25) which we have dis
cussed thus far do not exhaust all the possibilities. In
deed, we should also consider the case 

(m.29) 

where no hydrodynamical intermediate state can be 
found at all in the graph. This type of term can, how
ever, easily be disposed of-because there is no y-2_ 

diverging contribution coming from the propagators, 
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FIG. 11. Examples of II, segments with a
'
+1 > b, . 

these contributions can be expanded analytically in 
powers of y. The dominant terms are, of course, of 
order yO and correspond to the pure short-range dia
grams (see example of Fig. 12a), while the addition of 
long range vertices introduces at least a factor y4 
coming from (a) the restriction I k I "" l' over at least one 
wave vector integration (y3) and (b) a supplementary y 

factor coming from the term in the expression for the 
long -range· vertex 

(I kl Sy)· (m.30) 

For example, the graph of Fig. 12b is of order y4. 

We can now collect these remarks to determine a lower 
bound for the order in y of an arbitrary renormalized 
contribution to >v6(v1 ;i€). 

Consider first the class of diagrams whose structure 
corresponds to the sequence (m.16). An elementary 
calculation shows us that the y expansion of such dia
gram begins with terms of the order 

(0) (b) 

FIG. 12. Terms contributing to o(no)o: (a) pure short range (b) 
graphs involving one long range interaction. 



                                                                                                                                    

1994 J. Piasecki and P. Rasibois: Transport properties of a van dar Waals fluid. I 1994 

Type Diagram Leading order ,n ~ 

1 Eq.(1II.25) <CJ> ~ rl 

2 Eq.(lII.24) ~ r2 

3 Eq'(III.23) ~ r2 

4 Eq.(lII.16) 0 ~3 

FIG. 13. Dominant corrections to the purely short-range part 
of >It& in the y- 0 limit. 

r= E (2Bi + (Ai +C I)/2 +.p [(3r/2 _l)D!r) 

+ (3r/2 + 1/2)E:r)~3al/2 + ~ (! /b l -aio1 1 

+26~ a .01 -1) . (m.31) .. . 
Notice that it might happen that this lowest order term 
vanishes when applied to a given function <t>(v); this is 
the reason why we call r a lower bound. 

Similarly, we find for the minimal exponents of the 
remaining sequences (m.23), (m.24), (m. 25) the 
values (r -1), (r + bn - 3), and (r + bn -4), respectively. 
The minimal value of the exponent r is also immediate 
to obtain; from Eq. (m.31), it follows indeed imme
diately that r min = 3, which corresponds to 

(m.32) 

This result permits us to determine the structure of the 
lowest order diagrams in each of the four classes 
(m.16), (m.23), (m.24), (m.25) (in the two last cases, 
we have of course to put bn = 2). They are represented in 
Fig. 13 where the dashed structure represents segment 
of type .n, Which, to lowest order in 1', can be taken as 
purely short range [see discussion after (m.29)]; 
notice that in the first graph, which gives the dominant 
contribution (of order 1'1), we have to guarantee that the 
hydrodynamic propagators contain at least one long
range vertex kV';;-1 a/avw in order to insure that the 
corresponding k integration is restricted to I k I ,,; l' 
(otherwise, this term would enter into the class 0 lITo I 0 I). 
As will become clear in the course of the discussion of 
Sec. V, this can be achieved by substracting the terms 
involving purely short -range hydrodynamical lines, 
which we represent by a wavy line. The analytical ex
pression associated to this purely short-range propaga
tor is given by 

X;;(v;z)=[kv _lIf~·8(V; z) -ZJ-l, (m.33) 

where lIf!,8 is defined as for (m. 6) with 6L replaced by 
6Ls. 

To summarize the fundamental conclusion of this 
analYSiS, we can say that the lowest order correction to 
the linearized homogeneous short-range collision opera
tor due to the presence of long-range forces is of first 
order in l' and corresponds to diagram 1 of Fig. 13. At 

J. Math. Phys., Vol. 14, No. 12, December 1973 

the same. time, we proved that the hydrodynamic re
summation is the proper way of analyzing the van der 
Waals limit l' - 0, as it makes possible, at least in 
principle, the power series expansion of the collision 
operator in the smallness parameter 1'. 

Let us close this section with one more remark. In 
Fig. 13, we have given the dominant graphs for each of 
the structures (m.16), (m. 23)-(m. 25). However, we 
see that the graphs 2, 3, 4 of Fig. 13 are of higher 
order in l' than the dominant term, given by graph 1. 
Except for the extremely unlikely case where this graph 
1 could be shown to identically vanish up to order 1'2 (or 
1'3) [for example, unexpected symmetry properties for 
a given function <t>(v1), see (n.24)], these three graphs 
are of a rather academic character (they can be useful 
in checking the general validity of our classification on 
simple examples) and they will not be considered any 
further. Indeed, in order to consistently take them into 
account, we should simultaneously consider the higher 
order corrections (i. e., 1'2 and 1'3) to graph 1. This, in 
particular, would imply the knowledge of the hydrody
namical eigenmodes and eigenvalues [see (m. 10)] be
yond their lowest order in k and in 1': This task, al
though in prinCiple poSSible, seems beyond the existing 
technical possibilities. 

IV. EXPANSION FOR THE TRANSPORT 
COEFFICIENTS 

Having found the lowest order diagrams contributing 
to lIf&(v1; ie), we can solve immediately the analogous 

TABLE III. Dominant corrections to the transport coefficients 
(all are of order y1). 

OPERATOR OR FUNCTION LOWEST ORDER CORRECTIONS 

to 
I 

\jJo (it) ~ 
l V-01") al 

(iE) 
1 1 tJ-~ 10 (J;-6J;\_.\ ~ 

i 

(J~-o~')t:-l' ~ -i ~ 

:D!(iE) C [<l_oJ')peq] ',- .\ 

~ ~ V-oJ')peq]\n 

i 
[(l-ol)peq] 1 (J~-OJ;)l-t [pI (if) (J~-o:r;)i -I -l , , , 1,-& 

(J~-o:r;\_'R ~[(l-Ol)peq]{i'} 
(J~-OI;)l'_ \' ~Kl-Ol)peq] i _, , ) 

l 
(J~-or;\ _" ~ _, ~Kl-ol)peq]{l"} 
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problem for the operator 'if!o(v1 ; ie) and for the functions 
~b(Vl; ie) and cP,;(v1 ; ie). Indeed, it is easy to realize that 
the dominant corrections to these quantities have a 
structure similar to those given in Fig. 13. We shall 
not reproduce these calculations here; the result of our 
classification is summarized in Table III, where the 
dashed structures again represent pure short-range 
type II segments. Moreover, we have used a shorthand 
notation. We have 

(IV.1a) 

if (and only if) the long-range quantities appearing in the 
graph [essentially the flow operators (JX - fJJX) ;-k and 
«JX - fJJX)peq>tJguarantee that the hydrodynamic prop
agators are limited to 1 k 1 "" 1'; while we have 

(IV.1b) 

whenever there is no long-range potential-except in the 
hydrodynamical propagators themselves -to guarantee 
the condition 1 k 1 "" I' . 

To illustrate this definition, let us use the 
decomposition 

(JX - fJJx) = (JX - fJJX). + (JX - fJJX)L (IV. 2) 

analogous to (III. 1). The graph of Fig. 14a-which is 
one of the dominant contribution to the creation term 
(Jx - OJX)k, -k ~!o(ie)-has then to be interpreted as in 
Fig. 14b. 

We see that in Table III, we have various matrix 
elements of the flow operator (Jx - fJJX) and of the pro
duct (JX - fJJX)peq. Let us make the following remarks 
about their y-dependence: 

(i) The matrix elements (01 (Jf - fJJfl 0), (01 (Jf 
- fJjf)SI k), and (01 (Jx - fjJX)peqON 1 0) are I' independent. 

(ii) The only nonzero matrix elements of (01 (Jf 
- fJJf) 1 k) have the form (01 (Jf - fJJf) 1 ku - kb). For ex
ample, in the case of thermal conductivity, we have 
[see (11.7)] 

(OIJrlku-kb)= ~N f drNexp(ikrlb)(VlX~V(rlb) 
1 OV ) - 2"v1 orlb (r1b>X . (IV. 3) 

For the long-range part, the term (01 (J{ - fJ~x)L 1 ku - k b) 
reduces the k summation in Eqs. (11.38), (11.39) to the 
small region 1 k 1 ""I', while this matrix element itself 
is y independent after the change of variable k - qy. 

(iii) Similarly, we have to consider matrix elements 
(k 1 (JX - fjJX)peqON 1 0). Their value corresponding to 
short-range interaction only will be represented by 
(kl(JX - fJJX) peqON 1 O)s, and is of course I' independent. 

Because of the long-range interaction, the matrix 
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element (ka, - kbl(Jx - 5JX)peqON 1 0) will also contain 
terms confining the wavevectors k to Ikl ""'Y. The 
lowest order term with this property (i. e., the only one 
which becomes I' independent after the change of varia
ble k - qy) can be derived from the corresponding re
sult for the two particle correlation function. 4 Taking 
again the example of thermal conductivity, we obtain 

f dvN - 2(ka , - kb I (JTK - MTK)peqON I 0) 

= q1 eq(va)q1eq(vb)( {(Va)x[~: +ne~~n): - 5~TJ 

x {- k~[e;):r 1 +nv[~(~n/oP)J +( (Va)x~V;-l 
+ va ~ Oko~~-l) [kT(~;): 0(1 +nVl-l(on/op)} ] 

+idema=b), (IV.4) 

where the thermodynamic derivatives (on/op)} and 
[o(h/n)/oT]~ refer to the purely short-range system. 

From Table III and Eqs. (11.38), (11.39), it is imme
diately apparent that the first correction to any trans
port coefficient of a van der Waals fluid is of order Y. 
We shall not, however, write the first correction ex
pliCitly here because it is fairly lengthy to write and be
cause, in the present paper, we are only interested in 
the formal aspect of the theory. Explicit calculations 
will be the object of a forthcoming paper. 

V. 'Y°·HYDRODYNAMICAL MODES OF THE 
VAN DER WAALS FLUID 

The main conclusions of the two preceding sections 
depend strictly upon the validity of Eqs. (III. 10)-
(III. 13). We want now to justify these conjectures; 
moreover, in order to make future explicit calculations 
possible, we shall also derive the detailed form of the 
eigenvalues A~('Y) and their corresponding eigenfunc
tions If~(Y» [and <l!(y) 1 ] in the I' - 0 limit. 

In order to get a clue to the problem, let us first re
mark that if the wavelength k-1 was much larger than 
any other molecular length in the system, the considera
tions of Ref. 13 could be directly applied. For example, 
at arbitrary (but fixed) 'Y we would immediately obtain 

A\, 2(1') = ± ikc(y) - r(y)k2, A:)Y) = -1J(y)k2 In, 
A~(y)=-K(Y)k2/nCp(Y), (V. 1) 

where 
1 

r(y) = 2n {41J(Y)/3 + l:(y) + [l/C v(Y) -l/Cp(Y)]K(y)}. 

(V.2) 

(a) (b) 

FIG. 14. Illustration of the definition (IV. 1) 
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Expanding thermodynamic quantities and transport co
efficients in power of 1', we would then get to leading 
order in l' 

At2(1'O)=±ikc(1'o) - r(1'o)k2, A~ 4(1'0)= -Tj'~/n, 
• (V. 3) 

A~(1'o) = -/('k2/nCp(1'o) 

with 
1 

r(1'o) = 2n {4Tj' /3 + t· + [l/C v(1'o) -l/C p(1'o)]J,s}, (V.4) 

where c(yo), Cp(1'o), and Cv(1'o) denote the well-known 
van der Waals limit y -0 of the corresponding thermo
dynamic coefficients; self-consistency with the results 
of the preceding paragraph implies that the Yo-transport 
coefficients simply are the pure hard-core contributions, 
denoted by the superscript s. 

However, this result is not sufficient because in the 
proofs of Secs. ill and N, we have used the eigenval
ues A~(y) for k smaller or of the order 1'; k-1 is thus 
not much larger than the range y-1 and, as a matter of 
fact, we have to carefully take the double limit: 

I~;O}lkl'/y$l, finite. (V. 5) 

As we. shall see now, the analysis in this limit is very 
delicate although it leads to remarkably simple results. 
Let us consider the operator 

~~(v; Zly)=[-kvr +lJ!~(v; z Iy)], (V. 6) 

where, to simplify, we have oriented the wave number 
k along the x axis. 

We want to determine those eigenvalues A~(1') and 
eigenfun~tions If~(1'» of the problem 

[~~(V1; iA~(1') Iy) +iA~(Y)]lf~(Y»=O, (V. 7) 

such that A~(Y) - 0 in the double limit (V. 5). Note that 
it is not immediately obvious that such eigenvalues do 
exist (because the ratio ky-1 is kept fixed). However, 
our present analysis will show that there are indeed 
five such modes. 

In order to make the limiting procedure (V. 5) ex
plicit, we shall write our equations in terms of the 
variables 

y and y = 1 k 11'-1, (V. 8) 

where Y is kept fixed while l' - O. 

Setting (for simplicity, we drop the velocity depen
dence on the lhs) 

lJ!y(y; z) '" ~:y(v; z 1 y), 

we have thus to look for the expansion 

lJ!y(y; z) =lJ!(O)(y, z) +1'lJ!(l)(y, z) +1'2 /2lJ!(2)(y, z) + 0(1'3) 

(V. 9) 

from which the eigenvalues (II.7), now written A~(y), 
will be easy to calculate by perturbation method to sec
ond order in 1'. 

In order to carefully analyze the behavior of lJ!y(Y, z), 
we shall again use our diagram technique. 

USing the similarity between lJ!! and lJ!J [to which the 
former reduces when k = 0; see (II. 27) and (ill .6)], it is 

J. Math. Phys., Vol. 14, No. 12. December 1973 

immediate to construct the vertices from which lJ!!, and 
thus lJ!y(Y; z), is built. One readily verifies that the in
termediate vertices are the same as in Table I, while 
the first and last vertices are different (the ingoing and 
outgoing line now carry the nonvanishing wave vector k) 
and are given in Table N. Note the very important 
point that a new first vertex appear (the starred vertex 
of Table N) in which the ingoing particle s completely 
exchanges its wave vector with a correlated particle i. 
This vertex vanishes identically when k = O. 
Moreover, we also have another graph which does not 
appear in the homogeneous limit, namely the first order 
Vlasov term, shown in Fig. 17(a). 

In order to systematically construct the expansion 
(V. 10), it is convenient to separately consider four 
categories of terms: 

(1) The first, and most trivial one, is simply the 
pure hard-core term which we denote by the superscript 
[1] in brackets, 

(V. 10) 

which of course only depends on k = YY and leadS thus to 
the expansion 

[lJ! h, z) ][1 J =~(O)(z) + YY~ (1 )(z) + [(yy)2 /2 !]~ (2)(z), 

where ~w is Y independent and is defined by 

;'.W( )_(CJi~4") 
'" z - CJk i • 

~=o 

(V .11) 

(V. 12) 

(2) The next group of terms by definition involves at 
least one long range interaction and is built with all 
possible vertices except the starred vertex of Table IV; 
the only exception is the pure Vlasov term (see Fig. 7) 
which we put in category 3 below. As example is given 
in Fig. 15 and its dominant contribution is, after 
propagator renormalization24: 

x If!k'(k'y-1» If! (k-k')I( 1 k - k'ly-1»<I!"'(k'1'-1) 

<f! (k-k')( 1 k - k'I1'-1) I) (k + k')v,.I;:l (k+k') ~ <I> (v2)cp eQ(v1)· 
VV12 

TABLE IV. First and last vertex of 1J!1. 

LAST VERTEX 
(EXTREME LEFT) 

FIRST VERTEX 
(EXTREME RIGHT) 

(V .13) 
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FIG. 15. A contribution to ilk which reduces to iI£ when k-O. 

Changing to the variable k' - q'y, we get 

iny3 J dv J ~q'q'V' ..1- (:E y2 ~(A q'y + A Iq'+yly )iflq'(q» 
81T3 2 q'r oV

1 
aa' I' a a' a 

X If~,(q'-,,>( I q' - y I) (i~q'(q) I <I! (4'-,,>( I q' - y I) I ) 
o 

X (q' + y)~.z:+y-~ - q,(v2)cp Oq(v1) CX:'Y~ (V. 14) 
vV12 

Let us then remark that if we formally let y - 0 in 
Eq. (V. 14), this contribution goes smoothly into a con
tribution of the homogeneous operator Wb (see Fig. 15b; 
moreover, the y dependence is unchanged by this limit
ing procedure. 

This remark is general and, by this trick, we can 
readily construct the graphs of category (2) which are of 
order y and y2. (None of them is of order yO as a con
sequence of our analysis of Sec. m.) They are indicated 
in Fig. 16. Denoting them, respectively, by Y61Wy and 
y 262Wy, we have thus 

[Wy(y; z) ][21 = y61 W y(y; z) + y 262 Wy(Y; z) + O(y3). (V. 15) 

This result can be further expanded to second order in 
y and thus leads to 

[wy(y; Z)][21 =y61WO(y; z) + ~2 (2 OlhWJ~; z) I y.O 

+.262WO(y; z») + O(y3). (V. 16) 

(3) The third category of graph is most important; 
it is made of the Vlasov term and of all contributions 
which involve the long-range starred vertex of Table IV. 
These graphs are illustrated in Fig. 17. 

It is convenient to put these terms together because 
they have a similar structure. Indeed, the Vlasov term 
reads 

-7j{3kv1 V';;_lcpeQ(V
1

) J dv2q,(V2 ) 

(V. 17) 

while the graphs involving the starred vertex of Table II 
can be written generally as (see m. 6) 

t t JdVN-1 :E (k1 \[(- 6LQk-L 1 )"JF'C'\kj+k;,k~ 
"=1 .=1 ,,",,0 0 - z . I J 

k'ltO, k~=O t 

X[-n{3kv jV';;_l J ~v.q,(vs)J(k'lpeqoNlo)/cpeq(v.). (V.18) 

Using the abbreviation 

Q})k1 ;k',kj = ~(~ I[ (- 6LQk Lo ~ z) "r'C'1 k i + k;, k} 

we can combine Eq. (V. 17) and (V. 18) to get 

[Wy(y; Z)][SIq,(V1)= 'JIlt [[-n{3yv~ J dvsq,(v.)] 
I>s 
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--0-+ ---0--
(a) (b) 

FIG. 16. Contributions to iI~ of category 2: (a) dominant order 
y: Otily{Y;z) (b) dominant order r: ~ily(Y; z). 

X (v cpeq(v )6Kr. + J d0-1 
1 1 1" 

X Wo ~Y;;k"yyjVjp:~/cpeQ(v.»)J. 
ks=O 

(V. 19) 

Now the so-called destruction operator~, as well as 
the equilibrium correlation Pk', still involve an arbi
trary number of long-range interactions. They have 
thus to be classified in powers of y as we have done for 
the graphs of category 3; this again can be achieved 
with the method of Sec. m-the leading term, of order 
yO [except for the k=yy dependence explicitly written in 
(V. 19)] is of course the pure hard-core contribution. 
We have, moreover, a Y contribution, which, combined 
with the y factor of Eq. (V. 19), leads to a y2 term and 
should thus be retained in the expansion (V. 11). We 
have, however, shown that this term does not contribute 
to the eigenvalues A~(y) at order y2. As a similar situa
tion will be explicitly dealt with later, in conjunction 
with the terms IilWy(Y; z) and 62Wy(Y; z) of Eq. (II. 16) 
(see Appendix A), we shall not reproduce this calcula
tion here. We can thus replace Eq. (V. 19) by a similar 
equation with the change 

(V. 20) 

Notice that, although we now only have pure hard
core terms in (V. 20), we can still expand ~. in power of 
y according to 

~J;~"YYj =~~;k"O + yY(aok ~:';k"kj) . 
k=O 

(V. 21) 

(4) The last category of terms involves the short
range starred vertex of Table IV, together with at least 
one long-range vertex of another type. Here again, one 
can show, following the method of Sec. m, that there is 
indeed a y2 contribution of this type but, again, it does 
not contribute to the eigenvalues A~(y). We shall then 
simply put 

[Wy(Y; Z)][41 =O(y3). (V. 22) 

Having thus exhausted all possible contributions to 
wy(y; z), we see immediately, by inserting (V. 11), 
(V. 16), (V. 19) and (V. 22) into (V. 10), that the only y 
independent part of this operator is the pure hard-core 

(a) 

FIG. 17. Examples of contributions to ily(Y; z) of category 3. 
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term it~,S(V1; z). As, in the limit z - 0, we know that 
this operator conserves the five eigenvectors (ill. 14), 
we are thus by now sure that there indeed exists five 
eigenvalues which tend to zero when y- 0; these are the 
five hydrodynamical modes of the van der Waals fluid. 

We should now explicitly construct these modes, 
following closely the method of Ref. 13. As this calcula
tion involves no really new feature, we leave for Appen
dix A a brief account of this proof and we here merely 
present the results. 

In the limit y - 0, y finite (or y - 0), the five hydro
dynamical eigenvalues A~(y) are given by Eqs. (I. 2), 
(I. 3), up to terms of order 1'3. In these equations, we 
have 

-1 (CP(lty-1) n-1 )1/2 
c(lty )= Cv(lty-1) XT(lty-1) , 

C p(lty-1)=Q+ ;[(:~) :J[XT(lty-1) -x}l, 

Cv(lty-1)=~, 

where we have put 

n-1 

XT(lty-1)= (op/on)} +nV;- . 

(V. 23) 

(V. 24) 

(V. 25) 

(V. 26) 

These qv.antities respectively represent the finite wave 
number generalization of the sound velocity, specific 
heat at constant pressure and volume, and compressi
bility of a van der Waals fluid. In the limit y = kY-1 

- 0, 
they reduce to the well-known corresponding thermody
namic quantities. 4,S 

The eigenmodes I f~,,(lty-1» and <1~,,(lty-1) I associated 
to these eigenvalues are given by the follOwing formulas, 
valid to order yO (1" is assumed to be along the x axis): 

I fl,'2(lty-1 » = ~ [;:-1) 11)± 12) + nc(':-1 )C~ 

X';3kT!2 (:~): 15)]. (V. 27a) 

1!3
1,"4(kY-1»= 13,4), (v.27b) 

Its1"(lty-1» = C2(;y-1) [-If ; (:~): 11) + X/;-1) 15)J, 
(V. 27c) 

while 

<1-1" ( -1) I 1 [1 n-
1 

(11 
1,2 lty == ..f'lc(lty-1)M XT(lty-1) 

1 (oP)S J ± (21 + ~ c(kY-1)nk aT n \xsl , 
(V. 28a) 

(7:,~(lty-1) I = (3, 41, (V. 28b) 

<is1"(lty-1) 1= [- n~~ v'37Z(:~): <11 + (Xsl} (V. 28c) 

where we have introduced the bra (Xsl defined by 

(- 1- ~{<51-(£)1/2iTU(oeJ' - 3kT - v;sJ<l l} Xs - 3C' 3 kT on 2 no· 
v T 

(V. 29) 
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In these equations, we have taken (v. 25) into account, 
as well as the analogous results . 

(OP(ky-1») =f.OP)S (v. 30) 
\ aT n \oT: 

(oe(ky-1») =(oe)S +nVL(ky-1) 
\ on n on T 

(V. 31) 

which are valid in the I' - 0, ky-1 finite limit. 

Let us also point out an interesting orthogonality 
property of the If!") and (1!" I : 

<1~"(ky-1) 1 (1 + a!:, S \.J l!~f(kY-1» = 6!~"" . (v. 32) 

This property is proved in Appendix A, together with a 
sketch of the proof of Eqs. (V. 23) to (V. 29). Moreover, 
in Appendix B, we show that Eq. (m.l0) is a direct 
consequence of our definition of the eigenfunctions 
If!"), <f!kl and eigenvalues A!(y). 

VI. CONCLUDING REMARKS 

In Sec. m, we have studied the effect of the long
range forces on the linearized collision operator 
itJ(v1 ; if). We have seen that the correct treatment of the 
problem requires the concept of microscopic hydro
dynamical modes of the van der Waals fluid for wave 
number k ~ y. Assuming the existence of such modes, 
we were able to find the lowest order corrections to 
this collision operator. In Sec. IV the proper generali
zation to the calculation of an arbitrary transport co
efficient of a pure fluid2s was made; the formal result 
is given in Table m. Finally, in Sec. V, we have justi
fied the existence of such modes for k ~ 1'; by a fairly 
complicated argument, we arrived at a remarkably 
simple result: These modes are defined, to leading 
order in 1', in terms of the purely short-range transport 
coefficients and the suitably generalized thermodynamic 
coefficients of the van der Waals fluid. 

Let us still make two general remarks about these 
modes: 

(1) Formulas (I. 2) (I. 3) and (V. 23), (V. 25) give ex
pressions for the eigenvalues A~(y) identical to those 
implicit in the work of Kawasaki8 and others in their 
discussion of the critical transport properties of a van 
der Waals fluid. There, these eigenvalues result from 
the macroscopic hydrodynamical equations of a hard
core fluid, suitably modified by an average field term, 
describing the effect of the long-range forces. Sec. V 
thus gives the proper microscopic justification to 
Kawasaki procedure, far from the critical point at 
least. 

(2) The calculations of Sec. V is based on self-con
sistency: We assume the existence of the modes in 
order to construct them explicitly. In some sense, we 
have only proved here the sufficiency of this self-con
sistency. Although this would be very tedious, there 
should be no difficulty to prove the necessary character 
of this self-consistency; we would merely have to as
sume that the modes give a dominant contribution of 
order y-n (where n is left unspecified) and show then 
that we indeed have n=2. Moreover, self-consistency 
of our method is also supported by the result of Sec. IV 
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(where indeed the yO -transport coefficients were shown 
to be of a purely short-range nature) and by Eqs. (V. 1), 
(V.2), to which our eigenvalues A~(y) reduce when 
ky-1_0. 

(3) The main results of this paper, which are sum
marized in Table m. indicate that the lowest order cor
rection to any transport coefficient has the structure 
of a mode-mode coupling term, in which two long 
wavel~ngth propagators interact through short-range 
processes and mechanisms involving the flows (JX 
,- l5JX). These results are valid to an arbitrary order 
in the density and, within the frame of formal perturba
tion theory, they are exact. Yet, in the form presented 
in Table In, they are still quite far from explicit. Due 
to special properties of the short-range collision op
erator in the long wavelength limit, it is however possi
ble to considerably simplify these expressions; they 
lead then to simple quadratures, involving only the 
long-range potential V';-l and the macroscopic proper
ties of the short-range reference fluid. This remark
able result will be the object of a forthcoming 
publication. 
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APPENDIX A26 

We want to sketch here how the hydrodynamical modes 
of the van der Waals flUid, introduced in the main text, 
can be obtained from the y expansion (V. 9) of the 
eigenvalue problem (V.7). The method used here will 
be slightly different from that of Refs. 13, 27, and 28, 
(hereafter referred to as I, n, m); however, in inter
mediate steps we shall often use results derived in 
these articles. 

~ Because we look only for hydrodynamical eigenvalues 
A';,,(y) up to order y2, we can transform Eq. (V. 7) in 
[see also (V. 8), (V. 9)] 

i[ llf ,(Y) - t~ ,(y)(A':.(y»2]I/~(Y» 

=[1 +.j,,(y)]A~(y) I/~(Y», (A.1) 

where the dot indicates a derivative with respect to z 
taken at z = + i€ - 0; for example, 

llf.(y)=llf,(Y;z=O), 4r,(y) = ollf'~Yiz) I etc. 
z z=O, 

(A. 2) 

_ Using (V. 10) and y expansions for the eigenvalues 
A~(y) [a E (G); (G) == 1, 2·· . 5] and eigenfunctions I/;(Y», 
we have 

Na(y) ==yA:;)(y) +y2A;;)(y) + ... , (A. 3) 

I I~(Y» = If ~O)(y» + y II ~1 )(y» + y21t ~2)(y» + •• '. (A. 4) 

Identifying equal powers of y, we get from (A. 1) 

(A.5a) 
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i(llf<1)(y) It~O)(y» + llf(O)llf~l)(y») 

== [1 + .j,(O)]A~l)(y) It ~O)(y», 
i(tllf (2)(y) 1/~(y» + llf (1 )(y) II ~l)(y» + llf(O) if ~2)(y») 

(A.5b) 

_ it~ (0)(y)(A~1)(y»211:0)(y» _ (1 +~ (O»A~)(y) 1/~l)(y» 

_ ~ (l)(y)A~l)(y) It~O)(y» = (1 + ~ (0»A~2)(y) if ~O)(y». 
(A.5c) 

In these equations, we have taken into account that llf(O) 
is made of purely short-range contributions; it is thus 
y independent. 

Let us study these equations in succession: 

(1) Order yO: One verifies immediately [see I, Eq. 
(79)] that the five eigenfunctions of (A. 5a) are precisely 
given by la> [a E (G)], defined in Eq. (m.14). However, 
in order to set up a perturbation scheme, we need a 
complete basis and it is natural to take this basis from 
the more general eigenvalue problem29 

illf (0) I Xn> = (1 + >it (O»J..L~ I Xn> (A. 6) 

and from the adjoint problem 

(X
n 

I illf(O) = (Xn I (1 + .j,(0» J..L~. (A.7) 

Taking into account the fact that illf(O) and ~ (0) are 
Hermitian operators, we see that the eigenvalues are 
all real. Moreover, for distinct eigenvalues j.L~;c /.l~, 
the standard procedure shows that the corresponding 
eigenfunctions are orthogonal with the weight (1 +,j, (0»: 

(Xnl(l+,j,(O»lxm>=o (j.L~;cj.L~), (A. 8) 

where the scalar product <JI g> is defined by 

(II g) = J dvcpeq(vt1f*(v)g(v). (A. 9) 

For nondegenerate eigenvalues, hermiticity also in
sures that (X) = (I Xn»t and one can thus normalize these 
eigenfunctions according to 

(Xnl(l+~(O»IXn)=1. (A. 10) 

For degenerate eigenvalues, one can still orthonor
malize the eigenfunctions according to (A. 8) and (A. 9) 
by the Schmidt orthogonalization procedure and we shall 
assume that this has been done for the eigenvalues 
nEt (G). Yet, in the case nE (G), contact with the pre
vious work of I, n, m will be easier if we choose dif
ferent right and left eigenfunctions. We take as right 
eigenfunctions the I a>, given by Eq. (m.4): 

Ixa >= la). (A. 11) 

These functions are of course orthonormal with respect 
to the norm defined with the scalar product (A. 9), but 
not with respect to (A. 8), (A. 10). The left eigenfunc
tions (Xa I have then to be constructed from the linear 
combination of the (a I such that 

(Xa I (1 +,j,(O» IXa>= l5~~a [a, i3E (G)]. (A. 12) 

From the matrix elements calculated in I [see I, Eq. 
(87)],30 one immediately obtains 

(xal=(al (a=1,2,3,4), (A. 13a) 

(Xsi = 2~J (51 - v'"2]3 M(~~): - 3~T - nvo·}ll}. 
(A. 13b) 
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We furthermore assume that the set (Xn I, 1 Xn) (for all 
n) which satisfies the orthogonality condition 

\xn I (1 + i CO )} I Xm)= ()~.rm (for all n) (A.14) 

forms a complete set. The completeness relation takes 
then the unusual form 

6 (1 + ,j,CO)} I Xn)(Xn I =6Ixn)(xnl (1 +i CO )}= 1. (A.15) 
n n 

Finally, we will also assume that zero is not an ac
cumulation point of the {fJ.~}. 

(2) Order Y: The degeneracy of the unperturbed eigen
values associated with the 1 X",) «X'" 1 } prevents us from 
immediately performing a perturbation calculus of the 
eigenvalues A~. We first have to remove this degenera
cy by solving exactly the first order problem within the 
subspace spanned by these eigenfunctions. Let us put 

1t~0»=6 c",slxs)' (A. 16a} 
s 

(A.l6b) 

where we have dropped the explicit y dependence of the 
If~) (and (1~1). 

We thus have to solve the 5 X5 matrix problem 

(A.17) 

where 

E",.s= (X"'. I 'I< C1 )(y) I Xs)' (A.18) 

In principle, we get contributions to E",S coming from 
the three categories of terms of order y discussed in 
Sec. V. 

(i) Category (1): This corresponds to pure short 
range terms. They have been calculated in I and turn 
out to be all vanishing except 

[e12]111 = - yM, rE21 ]111 =(-y/M)(~~):, 

[ ]111 .f7fT?i"'J 1 (a~\ s 
E2S =-YV«'H/" nk at) , 

" 
[ ]111 -~T 1 (a p\' 3k 

ES2 =-YV&,IH/" nk ail
n 

2C
v 

• (A.19) 

(ii) Category (2): These terms are easily disposed of. 
Indeed, to first order in Y, the general graph of this 
type is shown in Fig. 16a. When computing matrix ele
ments of this operator acting on a state 1 X",) (or (X'" 1 ), 
we recover a situation analogous to the one found in the 
discussion of Fig. 10 and 11, Sec. III. The short range 
part (the dashed structure in these figures) acting 
either on 1 X a) on its right or on (X'" 1 on its left gives 
zero because of conservation of particles, momentum, 
and energy. Thus these terms give no contribution to 
E",S: 

(A.20) 

Similarly, for this same reason, the graph of Fig. 16b 
will give zero when it is sandwiched between two states 
(X",I and 1 X",). This has for a consequence that the 
graphs of category (2) will not contribute at all to the 
hydrodynamical modes to order y2 and can thus be 
neglected completely. Incidentally, it is for this same 
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reason that we have already ignored in Sec. IV the con
tributions of Category (4). 

(iii) Category (3): Instead of (A. 18), let us consider 
here the slightly more general matrix element 

E",.~=(a I'I«1)(Y}I<I», (A. 21) 

where 1 <I» is an arbitrary one particle state. 

We write, using (m. 14), (V. 19), and (V. 21), 

[E",.~]131=[E",.~].+rE"'.~]b' (A. 22) 

where 

[E",.~].=(x",l~ VyLI2)(11<I», (A. 23a) 

[e"'.~]b=\x",I-:;;; V; f dvN-1 Wo~8.k,vixP:!I)(11<I». 

(A. 23b} 

Let us first consider (A. 23b). Because the ket 12) 
is a vector along x, symmetry shows that the only bra 
(x'" 1 which might possibly lead to a nonvanishing contri
bution is (X21 ;: (21. A simple calculation, based on the 
symmetrical role played by all the particles and on 
momentum conservation [see I, Eqs. (A.2), (A. 8), 
(A. 9) for a similar argument], then shows that for all 
a we have 

(A. 24) 

We are thus left with the Simple contribution (A. 23a}. 
For the case of interest here, we have then finally 

[E""s]131 = - (ny/M)V;()!:2~,r1' (A. 25) 

Adding (A. 19) and (A. 25) and inserting the result into 
(A. 18}, the diagonalization of (A. 17) is readily 
achieved. One finds 

A:~~(y) = ± iyc(y}, (A. 26) 

and the corresponding eigenfunctions are precisely 
If~O» and (1~0) 1 defined by Eq. (V. 27), (V. 28), where, 
as usual, we have k=yy; moreover, the orthogonality 
property (V. 32) is an immediate consequence of (A. 14). 

(3) Order y2: Once the correct basis has been ob
tained, the second order calculation proceeds in the 
standard way. From 

If(1»=. 1 . [_i'l«1)(y)+A C1 )(y)(l+,j,CO»]lf CO » 
'" z('I<CO) +ZE} '" '" 

(A.27) 

we obtain immediately from (A. 5) 

A~2)(y} =A~(2)(y) + A~ (2)(y), (A.28) 

with 

and 

Ar(2)(y} =lim (1~0) I 'I< Cl)(y)[i('I< CO) +iE)]-l 
IX E~O 

X ['I< C1 )(y) _ (1 +,j, (O)}A~l )(y)] If ~O» (A. 29a) 

A~ (2)(y) = l.I!~ (1~0) I t'l< (2)(y) - 4icO)(y)[A~)(y)]2 

+i,j,(1)(y}A~)(y} +i(l +,j,(O)}[i('I<cO) +iE}]-l 

X'I«1)(y} If~O». (A.29b) 
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IT we take V; == 0, i. e., go back to the problem of 
purely short-range forces, it is readily shown that 
(A. 29) are identical to the eigenvalues defined in 1. The 
only important difference is that we have here only fully 
connected contributions to >It~ and its various derivatives, 
a procedure which was not followed in I; as mentioned in 
Sec. II, this modification does not affect the final re
sults. Note also that in order to show the equivalence of 
(A.29b), with I, Eq. (129), some formal manipulations 
sketched in m, Appendix A, have to be used; we shall 
not reproduce this calculation here. 

It is of course not immediately obvious that the sec
ond order eigenvalues (A. 28), (A. 29) are identical with 
the k 2 term of (I. 3); indeed, in Eqs. (A. 29) we have the 
various derivatives of >It with respect to z and y which 
are Y dependent and we have thus to show that this whole 
Y dependence can be absorbed in the thermodynamic co
efficients of (I. 3). This calculation has been done for the 
five eigenvalues A';,(y), but it is long and tedious. To 
keep this appendix within reasonable length, we shall 
merely illustrate our proof on one nontrivial example, 
namely the prime part of A~2)(y), which describes ther
mal diffusion. 

Using (V. 27), (V. 28), we obtain easily from (A. 29a) 

A~(y) = - [y2 /nCp(Y)];c'(Y), (A. 30) 

where C/y) is defined by (V.4), while 

K'(y)= _ 3kn lim (5 1>It(l)(y)[i(>It(O) + iE)]-l>It (l)(y) 
2 E-O 

x (1 5) + (2/3)1/2 T (ap/a T)~ 11») (A. 31) 
n (ap/an)}+nV!, . 

In the development of the first order calculation, we 
have seen that the only contributions to >It (l)(y) which 
involve long-range forces are of Category (3). Then 
using (A. 23) and (A.24), we rewrite (A. 31) as 

K'(Y) = - 3kn lim (51 >It (l)[i(>It(O) + iE) ],1 (v (1) 15) + {>It (1 ) 
2 E-O \ 

+ [>It (1)(y)][31}(2/3)1/2! (ap/aT)~ 1 1»), 
n (ap/an)} +nV; 

(A. 32) 

where >It (1) denotes the pure short-range, y dependent, 
contribution. Notice that in writing (A. 32), we have 
used the formula 

(A. 33) 

an immediate consequence of (V. 19). 

Substracting from (A. 32) the purely short-range ther
mal conductivity ;C'S {obtained by formally setting 
[>It (1)(y)][31 =0, V; =O}, we have thus to prove that 

5;c'(Y) =;c'(Y) -K"= - 3kT v"2]3! (ap)'lim(51 >It(1) 
2 n aT n E-O 

X (i(>It (0) +iE)]-l[ [>It (1)(y)][31 I 1) + >It (1) 
(ap/an)} +nV; 

X(ap/an:}+nv; - (ap)an)})ll)] (A. 34) 

vanishes. 

J. Math. Phys .• Vol. 14. No. 12. December 1973 

A sufficient condition for this property to hold is 
simply 

(~~): [>It (1)][3111) = nV;>It (1) 11). (A. 35) 

From (V. 19) -(V. 21), the left -hand side of this equation 
is simply 

- nYf3VyL(~aa )S (vlxcpeq(v1) + L; t f dvN'l~8 k' V I%P;.q). 
n T\ k"'O 1=1 • 

(A. 36) 

Moreover, we have shown in m, Eq. (m. 34a), 31 that 

>It (1) 11)= -(v cpeq(v) + L; t f dvN'l~ •• v pe~) 
h 1 "'~0;'1 0, k 1% k 

X f3(¥n ty. (A. 37) 

Inserting (A. 36) and (A. 37) into (A. 35), we see that 
indeed 

5i{'(y) =0, (A. 38) 

which insures that the transport coefficient which ap
pears in A~ (2) is indeed the pure short-range one; the 
other cases can be treated similarly. 

APPENDIX B: LONG TIME BEHAVIOR OF Xk(v;r) 

We indicate here how (m. 10) can be derived from 
(m.9). 

In agreement with our previous hypothesis, we as
sume that the only zeros of the operator (z +>Ity(Y; z» 
which have a vanishing imaginary part when y - 0 are 
the hydrodynamical eigenvalues A~(y) [a E (G)]. The 
analyticity of >It y(y; z) (see, however, footnote 28) allows 
us then to replace the contour C in Eq. (m. 9) by the 
rectangle R encircling the region 

- a 'yl-6 ".: Rez ".: a 'yl'H, 

o ~ Imz ~ - f3' y 2-6, (B. 1) 

where a', f3', and 5 < 1 are real positive numbers. In
deed, in the y - 0 limit, the hydrodynamical poles 
z=A~(y) remain inside the rectangle R, while all other 
singularities of the integrand Xk(v; z) in Eq. (m.9) give 
contributions at least of the order exp - [(y2 r )y'6], which 
vanishes in the limit y - 0, (y2r ) finite, hereafter 
denoted by limy. 

We now use the completeness relation (see (A. 15)] 

1=~ (1 +i(O» I/n(O»(l,.(O) I =~ I/n(O»(l,.(O) I (1 +i(O», 

(B. 2) 

where 

(B. 3) 

With an obvious notation for the left -hand side, see 
(II.9), we get then 

lim"K (v' r) = lim -1 ,{ dz exp( - izr L; It (O»G (1.(0) I 
Y , Y 21Ti ~ ""' n nft' n' , 

(B. 4) 

where the matrix elements Gnn• are defined by 

Gnn.=(1,,(O) 1(1 +i(O»A'l(l +i(O» Iln~O» (B. 5) 
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and 

(B. 6) 

a result valid up to order ')'2 when z is restricted by 
(B. 1). 

Let us first consider Gnn, when n':= Q E (G). We put 

B=z(l +,j,y(Y» +>Ity(Y) _[(A';.)2/2Wy(Y) (B.7) 

and we use the familiar identity 

A-1=B-1 +A-1(B _A)B-1. (B.8) 

With the help of (B. 2), we obtain then 

Gn", = 6 (Il~~ n + 6 Gnn",gnmn")Hn",,,. 
all nil t all nHI 

(B. 9) 

In this formula, we have introduced the matrix elements 
gnn' and Hn"",. We have 

gnn' = 7' !(Z2 + A~(y)2)<'1,,(O) I ij, y(Y) ifn!'?» 

= 0(1'2 (1-6», 

(B. 10) 

(B. 11) 

this upper bound being a consequence of (B. 1) and of the 
fact that A';. is at least of order Y. We also have 

Hn""'=(l,,~?) I (1 +,j,(0»B-1 (1 +4-(O»lf~O». (B. 12) 

We then notice that the eigenvalue problem (A. 1) leads 
immediately to 

B-1(1 + ~y(Y» In)= (z - iA~(y»-l if~), (B. 13) 

and, expanding the numerator of the left-hand side in 
power of 1', we get 

B-1(1 +,j, (0) if ~O» = (z - iA~(y»-llf ~0»(1 + 0(1'». (B. 14) 

From the othonormality (A. 14), we have thus 

Hn"", = (z - iA';.(y»-l(Il~;", + 0(1'». 

Equation (B. 9) can thus be simplified to 

Gnet.=(Ii~ret.+ 6 Gnn',gn,,)(z-iA';.(y»-l. 
, a1l nil J 

(B. 15) 

(B. 16) 

Notice that (B. 16) is not a closed equation because we 
have to sum over both nilE (G) and nil rf. (G). However, 
we can now also treat G""u with nil ri (G) by a similar 
method. Expanding around the zeroth order problem 
(A. 6), we have proved that 

Gnn,=(6~rn'+ 6 Gnn'hn"n')(Z-iJl~,)-l, (n'ri(G» 
, all rr" 

(B. 17) 

where we have for hn"n' (which will not be explicitly 
needed) 

hn"n' = 0(1'1-6). (B. 18) 

From (B. 11) and (B. 18), we see that a self-consis
tent solution of (B. 16), (B. 17) is 

G net. = (z - iA';.(y »-1[ Il~:et. + 0(1'1-6)], 

Gnn,= (z - iJl~,)-1[6!,'n' + 0(1'1-6)] [n' rf. (G)]. 

(B. 19) 

(B. 20) 

When (B. 19) and (B. 20) are inserted into (B. 4), and the 
limy is taken, we obtain indeed Eq. (m. 10) by a 
trivial residue calculation. 

USing this result, it is not difficult to show that the 
dominant contribution involving n intermediate hydro"; 
dynamical lines is given by the obvious generalization 
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of (m. 15), which corresponds to n=2. 

APPENDIX C 

It is a well-known fact32 that the Green-Kubo formula 
(II. 5) can be equivalently written as 

X =limlim~ (t dr f drdv(J" - 6.Jr) exp( - iLr) 
t-oo 00 \a Jo 

x (JK - IlJK)pe\ (C. 1) 
- -x where 1lJ" = 2: i 6Ji is an operator, otherwise arbitrary, 

which satisfies the requirements 

L6JK=0, 

f drdv IlJX(JK -IlJK)peq=o. 

(C. 2) 

(C.3) 

Usually the choice IlJX:= 6Jx is made in order to put 
Eq. (C. 1) in a symmetrical form but it is important to 
realize that nothing forces us to this provided Eqs. 
(C. 2)-(C. 3) are satisfied. 

Instead of (11.28), we now get from (C. 1) 

X' = lt~l!!::; f exp(; izt) dz f dv1[(0 I (JK - 6.Tt) I 0) 
c 

X6 (0 I (J; - 6~) I k)'i!?~o(z) ](1/(z + >It~(z» 
k*O 

xUf dVN-1(0 I (JK - 6JK)peqON(0)] +2Mz)}, (C.4) 

where we have assumed that the time integral may be 
performed before the z integration. A similar formula 
holds for X" but it will not be needed here. 

As (C. 4) is the long time limit of a Laplace trans
form, we may limit ourselves to consider the integrand 
in the limit of a small z; in particular, using the com
plete set defined by (A.6), (A.7), and (A. 15), we write 
[we use the same notation as in the purely short-range 
problem (A. 6), although, from the context, it is clear 
that we are dealing here with the general problem] 

1 1 
z + >ItJ(z) '" z(l + 4-J(ie» +>ItJ(iE) + z~We)12! + ••• 

1 1 
'" z(1 +\fIJ(i€» +>ItJ(i€) + z(l+4'J(iE»+>ItJ(iF) 

Z2.. 1 
x 2! >It J(i€) z(l + ,j,W€» + >ItJ(i€} + ... 

= 6 I Xm)(z - iJl~)"l<Xml + L: I Xm) 
all m all m,m' 

2 

X (Z - iJ.l~)"l ;! (Xml ,j;-W€) I Xm,)(z - iJl':..,)"l(Xm, 1 + .... 

(C.5) 

Inserting (C. 5) into (C.4), we immediately get two 
categories of terms in the limit t - 00: 

(1) Those coming from m rf. (G) in the first term of 
(C. 5); they lead to a first order pole at z = 0 which 
is readily evaluated: 

Xl = ~n 6 f dv/(O I (Jt - 6J;.X) I 0) 
mt{«n \' 

+ 6 (0 I (J{ -Ilit) I k)~kOl (i€») I xm)(l/1 Jl~ I} 
k*O 

x(Xml {[j dvN-1(0 I (Jx - ()J%)peqON 10)] +9JJ(i€)}. 

(C.6) 
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(2) Those coming from mi (G) [and m'E (G)] in the 
first (and second) term of (C. 5); before writing these 
terms explicitly, let us first point out that, using the 
method of Ref. 13, Appendix 2, it is readily shown that 
the usual choice32 of 6JX guarantees that one has 
identically 

(X", I{[J dtfV-1(0 I(JX - oJX)p'"'nN I 0)] +~WEn"" O. (C.7) 

Taking this result into account, we get simply 

X~"" - i{jn ~ J dvJ(O I(Jf - 6~X)1 0) 
",E(G) \ 

+ ~ (01 (Jf - 6Jf) I k)'if!o(iE») I X ",)(X", I o~6;Z) I Z=iE 

(C.8) 

It would be fairly inconvenient to retain such a term 
in the further development of the theory. We shall thus 
choose 6.Jf in such a way that 

J dV1(0 I (Jf - 6Jf) 10) + ~ (0 I (Jf - 6.lt) I k)'ifko(iE») I X",) 
k;tO 

==:0 [aE(G)]. (C. 9) 

Then we simply have 

X' ==:X{ (C.9') 

and, using (C. 5) in the limit z - 0, we indeed obtain Eq. 
(II. 38) of the text. 

In order to fix 6.lt from the orthogonality condition 
(C. 9), let us first consider the quantity A! defined by 

A!= J dV l /(01 elf I 0) +L (01 elf I k)'ifko(iF») Ix",). (C. 10) 
\' k;tO 

In the case of thermal conductivity X = TK, the method of 
Ref. 13, Appendix 2, can again be applied and leads to 

(C. 11) 

with 

A~K ==: (h/n)kT. (C. 12) 

Clearly, the choice 6Jf given in the text by Eq. (11.40) 
insures that (C. 9) indeed vanishes; moreover, Eq. (C. 2) 
and (C. 3) are also trivially satisfied. 

Similarly, for B = 411 /3 + !;:, where 

JB- v2 1_ !~~ r 
- lx. 2 j or

Ij
,,, Ii,x' 

we find 

Al ==:[(~~t - n~ J. 
As= ;(::t 

(C. 13) 

(C. 14) 

(C. 15) 

A simple calculation then shows that Eqs. (C.2), (C.3), 
and (C. 9) will again be fulfilled provided we take 

6JB =(vi _ ! L V(r .»)(oP) + (oP) - ~ [l_(oP) ] 
I 2 2 i I Joe n on e 2 0 en' 

(C. 16) 
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It should be pOinted out that 6J~ is different from the 
counterterm appearing at the right of (C. 1); in this 
case, we have32 

(C. 17) 

The reader has remarked that 6Jf and 6~B only differ 
by constant terms (i. e., independent of r and v); thus, 
using the conservation of particle number together with 
(C.7), we. could as well take f>JIB as the counterterm at 
the left of Eq. (II. 38) provided the f - 0 limit is careful
ly taken. This would of course give a more symmetri
cal form to our basic equations but the quantity appear
ing at the left of Eq. (11.38), which would now read 

J dV1( (0 I (Jf - f>JI
B) I 0) + ~ (0 I (JIB - oJI

B) I k~ko(ie») , 
(C. 18) 

would no longer be orthogonal to the invariants of the 
collision operator [Ix",), a E (G)], [compare with (C. 9)]. 
As we shall see in the next paper of this series, this 
feature is not very convenient for explicit calculations 
and we prefer thus to take f>~B* f>Jf as defined above. 

*Permanent address: Institute of Theoretical Physics, University of 
Warsaw, Poland. 
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A parametrization of the elements of the three-dimensional Lorentz group 0(2, 1), suited to the use 
of a noncompact 0(1, 1) basis in its unitary representations, is derived and used to set up the 
representation matrices for the entire group. The Plancherel formula for 0(2, I) is then expressed in 
this basis. 

INTRODUCTION 

In the two previous papers of this series we have dealt 
with the problem of setting up the unitary irreducible 
representations (UIR's) of the group 0(2, 1) in a basis in 
which the (noncompact) generator of an 0(1,1) subgroup 
is diagonal. 1 The representations of physical interest 
are actually the single-valued UIR's of the spinor group 
SU(I,I), which include both single-and double-valued 
representations of 0(2,1). In Papers I and n we have 
worked out explicitly the matrices that represent ele
ments on the one-parameter subgroups generated by the 
two generators of SU(I, 1) other than the one that is 
diagonal; this was done for all the UIR's of SU(I, 1), 
namely in the terminology of Bargmann, for the dis
crete, the continuous nonexceptional, and the continuous 
exceptional series of UIR's_2 

In Bargmann's paper the following important theorem 
was proved: every (Lebesgue) square-integrable function 
on the group SU(I, 1) can be expanded in terms of the 
matrix elements of the representation matrices be
longing to a subset of the set of all UIR's of SU(1, 1). 
The integration over SU(I, 1) is the usual left and right 
invariant one, and the UIR's not needed for the above 
purpose are those of the continuous exceptional series 
and the lowest ones, Di/2' of the discrete series. This 
theorem was proved by examining the properties of the 
representation matrices in a basis in which the compact 
subgroup 0(2) was diagonal. But it is clear that the real 
content of this theorem is independent of the basis cho
sen in setting up the representations of SU(1, 1); the 
purpose of this paper is to transcribe the result of 
Bargmann to the situation wherein all the UIR's of 
SU(I, 1) are obtained in a noncompact basis. 3 

In I we examined in detail the properties of two par
ticular families of elements of SU(I, 1); these types were 
chosen because their representative matrices were es
pecially simple in an 0(1, 1) basis, and it was noted that 
elements of these two types do not collectively exhaust 
all of SU(I, 1). We shall show in Sec. 1 that almost 
every element of SU(1, 1) can be uniquely written in one 
of five distinct canonical forms, these forms being 
adapted to the use of an 0(1, 1) basis in the U1R's; and in 
every case, the representation matrix in such a basis 
can be easily related to the results previously estab
lished in I and n. The elements of SU{l, 1) that are left 
out in this description form a set of measure zero.' The 
existence of these five canonical forms is the analog in 
the present case to the "Euler" type decomposition for 
SU(I,1) used by Bargmann; we give simple geometrical 
arguments that explain this new parametrization of 
SU(I,I). At the level of the group 0(2, 1), just three 
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canonical forms suffice. In Sec. 2, we state Bargmann's 
expansion formula in its original form, and then show 
how it may be rewritten using the representation 
matrices in the 0(1, 1) basis. We adhere throughout to 
the notations and conventions of I, II and our earlier 
papers on this subject. 4 

I. PARAMETRIZATION OF THE GROUP SU(1,1) 

The defining representation of the group SU(I, 1) is 
provided by the collection of two-dimensional complex 
matrices of the form 

(

0: f3\ 10:12_ltlI2=1. (1.1) 

tl* 0:*)' 
A convenient set of real parameters may then be chosen 
by writing 

0: = cosh~eiq" f3 = sinh~eU> (1. 2) 

and choosing the ranges of~, cp, 1/J to be 

(1. 3) 

We may denote a general element in SU(I, 1) by g(~, cp, 1/J). 
The Lie algebra of SU(1, 1) is spanned by three elements 
Jo, J 1 , J2 obeying the commutation rules 

- i[JO,J1 ]=J2 , - i[JO,J2 ] = -Jl> - i[J1,J2 ]=-JO' 

(1. 4) 

and the quadratic combination 

Q=~+~-~ (1. 5) 

commutes with all the J's, so it is a Casimir operator 
which becomes equal to a real number in a UIR. In the 
defining representation (1. 1), we identify the J's as 
follows: 

(1. 6) 

J o generates the compact 0(2) subgroup of SU(1, 1), 
while J 1 and J 2 each generate a noncompact 0(1, 1) sub
group. In I and n, the UIR's of SU(1, 1) were set up with 
J 2 diagonal; whenever we refer to a noncompact baSis, 
we shall mean the one consisting of eigenvectors of J 2 • 

Elements of the following two types 

h{?;, /-L, b"')=eIU2eiuJoeie:r2, 

ko(b", v, b"')=eiU2eivJleIC'J2, 

(1. 7a) 

(1. 7b) 

evidently have particularly simple representation 
matrices in the noncompact baSiS, since the first and 
last factors become trivial. [We write ko(b", v, b"') now 
for what was denoted as k(b", v, S") in I, for reasons that 
will become clear shortly. 1 By allowing the parameters 

Copyright © 1973 American Institute of Physics 2005 
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FIG. 1. Various regions in SU(1, 1): R=(l to 8, 25 to 32); 
So=(9 to 16); S1=(17 to 24); S2=(33 to 40); S3=(41 to 48). 

to vary in the region - 00 < b, b' < 00, - 21T .,; /J. .,; 21T in the 
case of h(b, /J., 1;'), and in the region - 00 < 1;, 1;', II < 00 in 
the case of ko(b, II, 1;'), we showed in I that two distinct 
nonoverlapping regions of SU(I, 1) are obtained. Stated 
in another way, for each possible value of the coordinate 
~ appearing in (1. 2) and (1. 3), only those elements 
g(~, cp, 1j;) for which cp,1j; lie in certain restricted regions 
of the cp - 1j; plane can be rewritten in the form h( b, /J., b') 
for some values of b, /J., and b'; and only if cp, l/! lie in 
certain other restricted regions can g(~, cp, 1j;) be put into 
the form ko(b, II, b') for suitable 1;,11, and 1;'. Even after 
considering these two kinds of elements, certain por
tions of the cp - 1j; plane were left uncovered. 

We would like to be able to express (almost) every 
element g(~, cp, l/!) in a form somewhat like (1. 7a, b), with 
the first and last factors being 0(1, 1) transformations 
generated by J 2 , and the factor (or factors) in between 
involving only one parameter. Making use of the identi
fication (1. 6) for the generators in the defining repre
sentation, as well as the results of I, it turns out that 
if in addition to h( b, /J., 1;') and ko( 1;, II, 1;') we consider the 
following three kinds of elements, 

kn(b, II, 1;')= elCJ2 eivJ1 e inrJo e iC'J2, 

-00<1;,11,1;'<00, n=I,2,3, (1.8) 

then almost the entire 1> - 1j; plane is covered. The re
gions not obtained are the one-dimensional boundaries 
between the open regions that are covered; these bound
aries are of measure zero. Further, the five types of 
elements h(l;, /J., 1;') and k.(I;, II, 1;') for n=O, 1,2,3 are 
all distinct in that apart from trivial cases an element 
of one type cannot coincide with an element of another 
type. In this way we achieve a parametrization of the 
entire group SU(1, 1) suited to the use of the noncompact 
basis in the UIR's. It is also easily verified that with 
the ranges we have chosen for 1;, /J., I;' in the case of 
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h(l:; /J., 1;') and b, 11,1;' in the cases of k.(I;, II, t'), two 
distinct sets of values for these parameters always lead 
to-distinct elements of SU(I, 1). 

We will refer to the region in SU(I, 1) consisting of the 
elements h(l;, /J., 1;') as R, and to the four regions con
Sisting of the elements k.(b, II, 1;') for n=O, 1,2,3 as S •• 
These five regions may be depicted in the cp - l/! plane as 
shown in Fig. 1. For each value of ~, this plane (or 
more precisely the square - 1T .,; cp, l/!"; 1T) is divided in a 
particular way into 48 regions. The equations to the 
arcs PQ and P' Q' within the square 0 .,; cp, l/!"; 1T /2 suf
fice to determine, by suitable translations and reflec
tions of these two arcs, the break-up of the square 
- 1T .,; cp, 1/!"; 1T into 48 pieces: 

PQ: sin1/!= sincp coth~, 
(1. 9) 

P' Q': cos1/! = coscp coth~. 

Regions 1 to 8 and 25 to 32 together give the portion R 
in SU(I, 1); 9 to 16 give So, 17 to 24 give S1' 33 to 40 
give S2' and 41 to 48 give S3' The correspondence be
tween SU(I, 1) and 0(2, 1) is two-to-one. One checks 
that elements in SU(I, 1) in the regions 1 to 8 and those 
in the regions 25 to 32 correspond to the same region in 
0(2,1); Similarly So and S2 are mapped into the same 
portion of 0(2, 1), and so are Sl and S3' Thus almost 
every element in 0(2,1) can be put into one of the three 
forms h(l;, /J., 1;'), ko(l;, II, 1;'), and k1(1;, II, 1;') with the 
ranges now being - ""< 1;, 1;',11< "", 0.,; JJ. .,;21T. 

A simple geometrical argument can be given to ex
plain why three canonical forms are needed to represent 
elements of 0(2, 1), the reqUirements on the forms being 
(a) the first and last factor should be 0(1, 1) transfor
mations generated by J 2 , (b) simplicity. Consider the 
action of 0(2, 1) on vectors in three-dimensional space
time, J o generating rotations in the x-y plane, J 1 gen
erating pure Lorentz transformations in the x-t vari
ables, J 2 generating similar transformations in the y-t 
variables. Keeping condition (a) in mind, let us define 
the three-dimensional spacelike vector p(O) by 

p(O) = (0, 1,0). (1. 10) 

The first, second, and third components are the t, x, 
and y components, respectively. The elements of 
0(2,1) leaving p(O) invariant are precisely the 0(1,1) 
transformations with J 2 as generator. By applying all 
possible 0(2,1) transformations to p(O) we obtain all 
possible three-vectors p = (E, P", Py) such that 

p~ + p; - E2 = 1. (1. 11) 

Let us write A for a general element of 0(2, 1), and let 
it take the vector p(O) into Ap(O) = p. If for each p, we 
choose in some way a definite element L(P) in 0(2, 1) 
such that 

(1. 12) 

then it is clear that A can differ from L(Ap(O» only by 
an element of the form ei C'J2 on the right: 

A =L(Ap(0»e iC:T2 • (1. 13) 

The form we desire for all A is 
A =eiCJ2XeIC:T2, (1.14) 

with a suitable set of choices for the element X; com-
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paring with (1. 13) this means that the L(p) must be 
chosen for each P in the form 

(1. 15) 

Given that the last factor in L(P) is also an 0(1, 1) trans
formation, it is clear that the element X(P) in 0(2, 1) 
must perform the task of taking p(O) into a vector whose 
x component is Px and whose t and y components can 
lead via a further O( 1, 1) transformation to the desired 
values E, p y • We then easily arrive at the following list 
of distinct configurations for P=(E, PX ' P,) and corre
sponding simple choices for L(p): 

(a) E2 > P;, Px> 0: L(P) = exp(iM2) exp(i vJ1 ), 

(b) E2 > P;, Px < 0 : L(P) = exp(itJ2) exp(ivJ1 ) exp(i1TJO) , 

(c) E2 < P;: L(p) = exp(iM2) exp(i/J.Jo), 

(d) E = ±P" Px= 1: L(P) = exp[ib(J1 ±Jo)], 

(e) E=±P" Px=-I:L(p)=exp[ib(J1 ±Jo)]exp(i1TJo). 

(1. 16) 

Elements A in 0(2, 1) such that Ap(O) is a vector of the 
type (d) or (e) form a two-dimensional family, which is 
a set of measure zero. All other elements of 0(2, 1) are 
accounted for by conSidering the three types h(t, /J., t'), 
ko(t, II, t'), and k 1(t, II, t'), as asserted earlier. In going 
back to SU(I, 1), all that is involved is a further 
doubling. 5 

The matrices representing the elements h(t, /J., t') and 
ko(t, II, t') in the VIR's of SU(l, 1) in a noncompact basis 
were determined in I and II. We now need an extension 
of this work to cover the other types of elements 
kn(t, II, t'), n = 1, 2, 3. We use the symbol <R to denote a 
general VIR of SU(l, 1); here we only deal with those 
VIR's that appear in Bargmann's completeness relation, 
so <R = (k, +) for the positive discrete series D;, 
<R = (k, -) for the negative discrete series D-", <R = (s, 0) 
for the continuous integral nonexceptional series, and 
<R = (s, t) for the continuous half-integral series. The 
rangesforkandsarek=l, t, 2, ... , O,,;s<oo, and 
Q = k(l - k) or t+ S2 as the case may be. An element of 
the noncompact basis in the VIR <R is written 

1<R;p, a), - oo<P< 00, a=±, (1. 17) 

P is the eigenvalue of J 2 , and the multiplicity index a is 
understood to be absent if <R = (k, ±). The choice of these 
basis vectors for all the VIR's is explained in detail in 
I and II. We now define the representation matrices for 
the five types of elements in SU(I, 1) in this fashion: 

(<R; P' , b I h( t, /J., t') I <R; p, a) = exp[i(W + t'P)]~~~)(p' ,P;/J.), 

(1. lSa) 

(<R; P' , b I kn(t, II, t') I <R; p, a) = exp[i(W + t'P)]g:~~)(P' ,p; lI;n) 

n=O, 1,2,3. (1. lSb) 

(Here, and in the rest of this paper, it is to be under
stood that in case <R denotes a discrete series UIR, the 
labels a, b are to be dropped. ) The functions 8 defined 
in (LISa) are the same as those defined and evaluated 
in I and II. The set of functions iJ'( <R)(P', P; 11;0), corre-

ba 
sponding to n = 0, are the ones evaluated in I, II and 
written there as iJ'~~)(P', P; II). The cases n = 1, 2, 3 are 
immediately related to the case n = O. Basically we need 
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to know the action of the unitary operator exp(i1TJo) on 
the noncompact basis in the various VIR's. This is given 
in I and II and reads 

l
eXP(i1TTJk)lk,1); -P) for <R=(k,1),1)=±, 

exp(i1TJo)l<R;p,a)= als,O; -p,a) for <R=(s,O), 

als,t; -p,-a) for <R=(s,t). 

(1. 19) 

We have then the following system of equations relating 
the cases n= 1, 2, 3 to the case n=O: 

",(<R)(P' p·lI"O)=iJ'(<R)(P' P·II) of! II (1. 20a) 
Uba '" ba ". " 

g:~~)(P' ,p; II; 1) = exp(i1T1)k )g:( k,")(p' , - p; II) if <R= (k, 1) 

=aiJ'~~~O)(p',-P;II) if <R=(s,O) 

=aiJ'b~:!/2>(p', - p;lI) if <R=(s,t), 
(1. 20b) 

iJ'~~)(p' ,p;II;2)=(_1)2kg:(k,")(p, ,P;II) if <R=(k,1) 

=(_1)2'g:~!'E)(p' ,p;lI) if <R=(s, E), 
(1. 20c) 

g:~~)(P' ,p;II;3)=(-1)2kexp(i1T1)k)g:(k,")(p', - P;II) if 

<R=(k,1) 

= ag:~~~O)(P' , - P; II) if <R= (s, 0) 

= - ag:~~~!/2)(P' , - P; II) if <R= (s, t). 

(1. 20d) 

With this, the task of computing the representation 
matrices for almost all elements of SU(I, 1) in all the 
UIR's of interest, in the noncompact basis, is done. We 
will not write down here the explicit expressions for the 
g:'s and ~'s in terms of hypergeometric functions, since 
all this has been spelt out in detail in I and II. We now 
use these results to develop the completeness property 
of these UIR's, in the noncompact basis. 

2. THE COMPLETENESS RELATION 

We begin by setting up an adequate notation with which 
to express Bargmann's theorem. Every element g in 
SU(1, 1) can be decomposed in the "Euler" form as 
follows: 

g( a,,B, y) = exp( - iaJo) exp( - iJ3J2) exp( - iyJo). (2. 1) 

The parameters a,,B, y are all real [a and ,13 here must 
not be confused with the complex quantities appearing in 
(1. 1) and (1. 2)]; by choosing the ranges 

(2.2) 

we ensure that except for a set of measure zero every 
element of SU(1, 1) appears just once. 6 If f(g) is a 
suitable function over SU(I, 1), its invariant integral is 
defined by 

r - 1 f~. 12r da12. dy J~I dgf(g) = 2" smh,Bd,B -2 -4 f(a,,B, y). 
SUO,I) 0 0 1T -2. 1T 

(2.3) 

Let us write !iI( <R)(g) for the infinite-dimensional unitary 
matrix that represents the element g in the VIR <R; it 
may be expressed in any basis. In the basis in which 
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Jo is diagonal, with eigenvalues m, m', ... , we have 
with the decomposition (2. 1) for g, 

!IJ~~[g( 0,,9, y)] '" (<R;m' I exp( - ioJo)exp( - iJ3J2 ) 

exp( - iyJo) I <R;m) 

= exp[ - i( om' +ym )]d~~2(j3). (2.4) 

The expressions for ~m'<Rl(j3) are given in Bargmann's 
paper; the five sets of functions ~,g: are what replace 
these d's in replacing the compact by the noncompact 
basis. 

For a functionj(<R) defined over the UIR's <R, we de
fine a summation over the urn's by the formula 

J d<Rt (<R)"'k=t.;/2 .... l;t j(k,rr) + '~1/2 10'" ds ](s, e). 

(2.5) 

The Kronecker symbol o( <R' , <R) that goes with this is 

5(<R', <R)=5/tk5~,~ if <R=(k,rr), <R' =(k' ,'I)'), 

=5",5(S'-S) if <R=(s, e), <R'=(s',e), 

= 0 otherwise. (2.6) 

We also need to define a positive weight function j.J.(<R) as 
follows: 

j.J. ( <R) = (2 k - 1 )1/2 if <R = (k, rr), 

=(2s/coth1Ts)l/2 if <R=(s,O), 

= (2S/tanh1TS)1/2 if <R= (s, ~). (2.7) 

Now let JC be the Hilbert space of all Lebesgue square 
integrable functions over SU(l, 1), that is of all functions 
fig) such that 

(f,j)", J dg If (g) 12 <00. (2.8) 

Bargmann's theorem then asserts that such an f can be 
expanded in the form 

f(g) = J d<Rj.J.(<R)L; Imn(<R)!IJ~~)(g), (2.9) 
mn 

with the coefficients given by 

]",n(<R)= j.J.(<R) J dg!iJ~~)(g)* fig), (2. 10) 

and we will then have 

J dg I f(gW = J d<R::0 I Ln(<R) 12. 
mn 

(2.11) 

In particular, we have the orthogonality relations for the 
almatrices: 

J dg~~)(g)*!i}J~~)(g) = 5(<R, <R' )5",,,,, 5nn' / j.J.(<R)j.L(<R'). 

(2. 12) 

If we now use (2.10) in (2.9) and write the latter in the 
form 

f(g)= J d<Rj.J.2(<R) J dg'Tr[!iJ(<R)(g' -1)!IJ(<R)(g)]f(g'), 

(2. 13) 

we can transcribe this formula to the noncompact basis. 

The Hilbert space JC must be given a different de
scription corresponding to the new parametrization of 
SU(l,l). A functionf(g) defined on the group now 
amounts to a column vector made up of five entries: 
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( 

f(t, j.J., t')) 
f(g)", , n=0,1,2,3; 

f n(t,lI,t') 

(2.14) 

the first entry is just the value of f when the element g 
lies in the region R, while fn(t, II, t') is its value when g 
belongs to Sn. The Jacobian to go from the parameters 
(0, /3,y) in (2.1) to these new ones can be easily worked 
out in each region, and the invariant integral of (2. 3) 
takes the form 

J dgf(g)", (32n2)"1 .edt' i: dt( 1:: dj.J.1 sinj.J.lf(t, j.J., t') 
+ ~ i: dill sinh II I fn(t, II, 1;,)). 

(2. 15) 

JC can now be described as conSisting of those column 
vectors of the form (2.14) for which 

(f,j) '" (321T2)"1 i: dt' i: dt (.c: dj.L I sinj.J.11 f(t, j.J., t') 12 

+ ~ i: dill sinh II 1 1 fn(t, II, t') 12) < 00. (2.16) 

For the elements of JC we derive the new form of the 
expansion formula by computing the trace that appears 
in (2. 13) in the noncompact basis. As the elements 
g,g' vary in each of the regions R, Sn of SU(l, 1), the 
matrix elements of !IJ(<R)(g) and !iJ(tR)(g' -1) can be ex
pressed in terms of the g:' sand 1)' s. Thus we obtain, 
for column vectors that fulfill (2. 16), the formula 

(

f(t, j.J., t') 

= J d<Rj.J.( (R) '{t [ dp' 1: dp 1,. b ;p,/ <R) 
fn(t, II, t') 

(
~L<R)(P' ,P;j.J.)) 

xexp[i(tp' + t'p)] 

..,( <R)(p' p'II'n) 
Uba '" ' 

(2. 17) 

the expansion coefficients being determined by 

'&b;pa(<R)=j.J.(<R)(321T2)-1 .edt' l: dt exp[-i(W + t'P)] 

(.L::dj.J.1 sinj.J.1 ~ ~~\p' ,P;j.J.) * f(t, j.J., t') 

+ ~ 1: dill sinh II 1 (g:~2't)(P' ,p; lI;n)) * fn(t, II, t' ~ 
(2. 18) 

The previous Eq. (2.11) is to be replaced by 

(f,J)=J d(R~i:dP' 1: dp 1 i'b;pa(<R) 1
2
, (2.19) 

the left-hand side being defined in (2. 16). The above 
three equations constitute the statement of Bargmann's 
theorem in an 0(1, 1) basis. If as a particular case we 
consider a functionf(g) which is actually defined on 
0(2,1), then the entries in the column vector (2.14) obey 

f(t, j.L, t')=f(t, j.L ±21T, t'), fo(t, II, t')=f2(t, II, t'), 
(2.20) 

Using these properties, it follows that the expansion 
coefficients I (<R) vanish if <R=(k,rr) for k half an odd 
integer, and if' <R= (s, ~). 
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We conclude this paper by pointing out a particular 
consequence of Eqs. (2. 17), (2. 18), and (2. 19) and 
comparing it with a well-known consequence of Eqs. 
(2.9), (2.10), and (2.11). Let us first state the latter. 
Let us write Jel for the Hilbert space of functions of a 
single variable, f({3), with the norm defined by 

(f,j)' =t f si~d{31 f({3) 12 < 00. (2.21) 

Then for any given pair of numbers m, n where both are 
integral or both are half-odd-integral, the functions 
dm~)({3) form an orthogonal basis for Je/, as <R varies 
over (k,1) and (s, e). (The discrete series terms are not 
present if m and n are of opposite signs, or if at least 
one of them equals ±t;) In fact, we have 

f({3) = f d<RIl(<R)1(<R)dL~)(l3), 
1~<R)=1l(<R)· t~" d{3 Sinh{3dS~)({3)*f({3), 
(f,j), = f d<Rll(<R) 12. 

(2.22) 

The functions a<m~)({3) are a complete orthogonal system 
of eigenfunctions of the second-order differential opera
tor defined on Je I, 

if d m 2 + n2 - 2mn cosh,B 
Q(m, n;(3) = - d{32 - coth{3 d{3 + sinh2 (3 , 

and they obey 

Q(m, n;(3)a<m~)(t3) = q( <R)dL~)({3), 
q(<R) = k(l- k) if <R= (k, 1), 

= t+ S2 if <R=(s, e). 

(2.23) 

(2.24) 

These results follow from a specialization of Eqs. (2.9), 
(2. 10), and (2. 11) to functions f(g) with a simple depen
dence on Cl1 and y. The analog in the noncompact basis 
is to consider the special case of column vectors of the 
type (2.14) in which the dependences of all the entries 
on f and i;' are taken to be just "plane waves. " So we 
define a Hilbert space Je" to consist of column vectors 
of the form 

- 00< v< 00, n=O, 1, 2, 3, 

(2.25) 

for which 

(2.26) 

Then, given any two real numbers p' ,p, we obtain a 
complete orthogonal basis in Je" by considering the 
column vectors 

(2.27) 

Here, <R must now vary over the set (k,1), 1)=± and also 
(s, e), e=O,t; and in the latter case, b and a indepen
dently assume the values ± in turn. [The dependence of 
'11~~) on the fixed numbers p' ,p is not indicated explic
itly. ] The analog to (2.22) for the space Je" is 

J. Math. Phys., Vol. 14, No. 12, December 1973 
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= 1l(<R)('I1~~),j)'" 

(f,j)" = f d<R61 Jba(<R) 12. 
ab 
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(2.28) 

The orthogonality and completeness properties can be 
explicitly stated as7 

('11~~), '11~~»" = 0(<R', <R)0b'b0a'alll(<R)Il(<R'), 

Ifd<R 2(<R)6(~~,?l)(p"P;Il») 
"8 Il ab g:( <R)(P' ,p; v;n) 

ba 

(~i~)(p' ,p; Il')* g:i~)(p' ,p; v' ;n')* ) 

_ (0(1l- Il')! 1 sinlll; 0 ) 
- 0; ann' o(v- v')1 1 sinh v 1 . 

(2. 29a) 

(2. 29b) 

What appears on the right-hand side here is a 5 x 5 
matrix. The increase in complexity of these equations 
as compared with the corresponding ones in the compact 
basis is caused by the fact that there is no uniform 
parametrization of SU(I, 1) in the noncompact basis, but 
that one has to choose different coordinates in each of 
the five regions. One immediate difference between the 
spaces Je' and Je" is obvious: for certain choices of m 
and n, the corresponding basis for Je' may not involve 
the discrete class UIR's at all, and depending on 
whether m and n are integers or half-odd-integers, only 
the integral or half-integral UIR's of SU(I, 1) are rele
vant. In the case of Je", on the other hand, all the UIR's 
of SU(I, 1) that appear in Bargmann's theorem are 
needed in forming a basis, whatever be the values of 
the fixed quantities p, p'. The vectors 'I1(<R) in Je" also ba 
form a complete orthogonal set of eigenfunctions for a 
certain second-order differential operator that can be 
defined using the results of I and II. Using the form 
(2.25) for JC" and the operator Q(m, n;(3) defined in 
(2.23), we set up the five-dimensional diagonal matrix 
operator acting on JC": 

Q(ipl, ip;ill) 
Q(ipl, ip; v) 

Q(p' ,p) = Q(W, - iP; v) 
Q(W, iP; v) 

Q(W, - ip;v) 

(2.30) 

Then we have the result 

Q(p' , p)'I1i~) = q( <R)'I1~~). (2.31) 

Each eigenvalue k(l- k) for k= I,!, ... appears twice 
for the operator Q(PI ,p), corresponding to <R = (k, ±); 
and each eigenvalue t + S2 appears eight times corre-
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spondingto<R=(s,O), (s,t), b=±, a=±; Allthesere
sults put together clarify the completeness and 
orthogonality properties of the functions '(J and g: 
computed in I and II and extended here to the entire 
group SU(l, 1).8 
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Science, Bangalore 560012, India. 

'N. Mukunda J. Math. Phys. 10,2086 (1969); J. Math. Phys. 10, 2092 
(1969). We refer to these two papers as I, II, respectively. References 
to the literature on the representation theory of 0(2, I) can be found 
in them. For the representations in a noncompact basis, see also A. O. 
Barut and E. C. Phillips, Commun. Math. Phys. 8, 52 (1968); O. 
Lindblad and B. Nagel, "Continuous bases for unitary irreducible 

J. Math. Phys., Vol. 14, No. 12, December 1973 

representations of SU(I, I)," Department of Theoretical Physics, 
Royal Institute of Technology, Stockholm, preprint, April 1969. 

2V. Bargmann, Ann. Math. 48, 568 (1947). 

2010 

3For other forms of this completeness relation, see O. Lindblad, 
"Eigenfunction expansions associated with unitary irreducible 
representations of S U(I, I)," Department of Theoretical Physics, 
Royal Institute of Technology, Stockholm, preprint, February 1970. 

4N. Mukunda, J. Math. Phys. 8, 2210 (1967). 
SIt is clear that what we are doing here is an enumeration of the double 

cosets of S U(1, I) relative to 0(1, I). 
6If, as in Ref. 2, one chooses the ranges - 27T :s; a, 'Y :s; 27T for the 

sake of symmetry, the group manifold gets covered twice. 
7The scalar product inJr" follows from (2.26) by polarization. 
8A direct determination of the complete orthogonal set of 

eigenfunctions of Q (p', p) based on properties of second-order 
differential operators, along the lines of Ref. 3, would lead to 
considerable complications. 



                                                                                                                                    

Motion in radial magnetic fields 
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We study the problem of the motion of a charged particle in radial magnetic induction fields of the 
type B = h (8)r/r3. A Coulomb electric field is also added. The mechanics of Newton, Einstein, 
SchrOdinger, and Dirac are successively considered in view of exact solutions. The analogies between 
the four treatments are emphasized. 

One way for studying mathematically the fundamental 
equations of mechanics is to put definite problems in 
view of exact solutions. When one considers the most 
complicated forces acting on a charged particle which 
allow an exact integration it is possible to realize ex
actly the limitations imposed by the actual advancement 
of analysis. Naturally it is another task to discover 
whether or not these forces (sometimes rather fantas
tic) are of interest for physicists. We have neglected 
this aspect here considering only in this first approach 
the performing of exact calculations which seem to stay 
at the limit of what is presently mathematically 
possible. 

Of course such a problem can never be solved in all 
its generality. It is always necessary to treat separate
ly well distinct classes of potentials. A few exact reso
lutions in classical mechanics are known1

•
2; in quantum 

mechanics the problem has been studied by various 
authors,3-5 each bringing its own contribution after ex
posing the presumed complete bibliography. The pres
ent paper deals with the search of the general charac
teristics of the movement of a charged particle in mag
netic induction fields of the type 

(1) 

written in spherical coordinates r, 8, cpo 

The problem is considered successively in the four 
fundamental mechanics: Newton's, Einstein's, 
Schrodinger's, and Dirac's. In view of increasing the 
generality (and the complexity!) of the calculations we 
consider that the particle simultaneously experiences 
an attractive Coulomb electric field. The analogies be
tween the four treatments will be emphasized: it will be 
shown that they are of a rather strange character. 

Notations: We shall denote e and /lo the charge and the 
rest mass of the particle; the relativistic mass will be 
/l=f3/lo, where f3=(1_V2/C2)-1/2. The Coulomb electric 
potential is - ( /lo/ e)(H / r). v is the ve locity of the parti
cle and 7' its acceleration, i is the symbol of complex 
numbers. 

I. NEWTON'S MECHANICS 

Newton's equation is written as 

7'= (e//lo)v 1\ h(8)r/r3 -Hr/r3
• 

A. The radial integration 

The conservation of energy implies 

(2) 

v2 -2H/r=a (a = const, negative for bound states). 

By scalar multiplication of (2) by r we get r· 7' = -H/r 
from which we deduce d(r ·v)/dt=a +H/r. 

2011 J. Math. Phys .• Vol. 14, No. 12, December 1973 

Remembering that r· V = 1/2 dr 2/dt we have after a 
classical integration 

r· V= (ar2 +2 Hr - b)1/2 (b = const). 

Finally we get 

f dt= f r(ar2 +2Hr-b)-1/2dr=I(r). 

The radial motion is therefore described by the ex
act equation t -to=I(r) -I(ro)' In particular it is inde
pendent of the presence of the radial magnetic field. 
Therefore it coincides with the radial Kepler's 
movement. 

B. The angular integrations 

Let us define P=r 1\ V and let us calculate p2. Denot
ing a the angle between r and V we have 

p 2 = r 2v2 sin2a 

and 

(r· V)2 = r 2v2 cos2a =ar2 +2Hr - b. 

Adding these two results and taking into account the 
conservation of energy we arrive at p2=b(>0). Thus 
the constant /l~ b is the total angular momentum 
squared. On another side one has in spherical 
coordinate s : 

p2=r4(62+sin2 eci>2) (3) 

The overdot denotes time differentiation. 

Up to now the calculations are correct for every mag
netic field of the species B=L(x,y, z)r, where the func
tion L is arbitrary. Now we shall confine ourselves to 
the special form (1). 

The field (1) derives from the follOwing potential: 
B = curl A with 

A= [g(8)/r2 sine](- y, x, 0). (4) 

The functions h and g are connected by: h(e) =g(e) cote 
+g'(e). Let us put 

j(8) = (e/ /lo)f h(e) sinede = (e/ /lo) g(e) sine. 

After vector multiplication of (2) by r one computes 

dPe/dt = (e/ /lo)[h(e)/r][v. - (r· v)z/r2]. 

Remembering that z = r cos e and v. = r cos e - rsine e 
we deduce 

p. =d - (e/ /lo)f h(8) sinBd8 (d = const). 

But P.=r2sin2e~ so that we have 

(5) 

r2 sin2eciJ =d - j(e). (6) 

Equations (3) and (6) allow us to find the two last 
integrations needed for the complete solution: 

Copyright © 1973 American Institute of PhYSics 2011 
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f sin8d8 
1=· {P2 sin26_(d_j(9)p}1/2 

= f;(ar 2 +2Hr-b)-1/2 dr , 
(7) 

f [d -j(6)]d6 J 
J= sin6{p2sin2B -[d -j(B)JaF/2= dq;. (8) 

The problem is now completely solved. An exact solu
tion exists provided the integrals present in (7) and (8) 
are elementary. Naturally so long as we do not precise 
our sights the expression exact solution remains am
biguous. We shall therefore restrict ourselves to a 
complete solution in term of elementary functions or at 
most elliptic functions. The B integrations present in 
(7) and (8) are elementary in only one case and elliptic 
in three independent cases. All other cases seem un
solvable or reduce to linear combinations of the former. 

1. Elementary integrations 

Except in the case g= JC/sinB, where B vanishes, 
there is only one possibility: 

g=JCcot6 -B=JCr/r 3 (Coulomb magnetic field). 

Equations (7) and (8) integrate into elementary func
tions. For example rand B are connected by the 
relation 

[p I + (""/ )2]-1/2 . d(eJC/ /.Lo) - [p2 + (eJC/!Lo)2] cosB 
e"" /Lo arcsIn p[p2+(eJC//Lo)2_d2]1/2 

-1 • Hr_p2 
=p arcsIn r(H2 +aP2)1/2' 

2. Elliptic integrations 

It is known from the theory of elliptic functions 6 that 
the integral f R(z, 9'1/2)dz, where the function R is ra
tional in z and in ~/2=(Az4 +BZ 3 +C~ +Dz +E)1/2 is 
of elliptic kind. Therefore it is sufficient for our pur
pose to introduce into (7) and (8) a lot of trigonometrical 
functions in place of j(6) and to retain only those which 
lead to elliptic integrals when these are made algebraic 
after a suitable change of variables. 

Equations (7) and (8) are automatically rational when 
one puts y = tan 6/2; however 9' is at most of fourth 
order if g=JC (=const). Likewise if one puts u=cosB 
we must restrict ourselves to g= JC sinB or g= JC tanB. 
We have never found other possibilities. Let us now 
review briefly the three cases: 

1st ease: g=JC -B=JCcot9 r/r 3
• 

One puts y=tanB/2. Equations (7) and (8) become 

1-4! ydy J- J d(l +1) -2(eJC//Lo)Y dy 
- (1 +y2)9'1/2' - Y9'I/2 . 

9' is defined in accordance with the following values: 

A=E=-d2, (9) 
C=4P2 -4(eJC//Lo)2 _2d 2. 

2nd ease: g=JCsinB -B=2 JCcos6 r/r3. 

One puts u=cos6: 

f du J (eJC/ !Lo)(l - u2) - d 
1 = - VI /2' J = (1 _ u2)9'IJ2 du, 
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A = -(e3c//.Lo)2, B=D=O, 

C = _p2 +2(eJC//.Lo)2 -2d(eJC//.Lo), 

E =p2 - [d - (eJC/ /.Lo)]2. 

3rd ease: g=JCtan6 -B=JC(2 +tan2~r/r3. 

One puts u=cos6: 

f udu f (eJe//Lo)(1-u2) -du 
1= - 9'1/2' J= (1_u2)9'1/2 dU, 

2012 

(10) 

A = - p2 - (eJe/ /LO)2, B = -D = - 2d(eJ('j /Lo), (11) 

C = p2 - d2 + 2(eJe/ /LO)2, E = - (eJe/ /.LO)2. 

To save place we shall omit the complete writing of the 
solutions in terms of elliptic functions. 

Remark: It must be pointed out that conformably to 
the theory of elliptic functions the elliptic integrals 1 
and J degenerate in elementary integrals if 9' has a 
double root. That is of course possible only if p2, d, 
and eJe/ /Lo (the characteristic parameters of our prob
lem) are suitably connected. For example, in the sec
ond case the follOwing condition is needed: 

p2 = [(eJC/ /Lo) - d]2. 

II. EINSTEIN'S MECHANICS 

Einstein's equation is written as: 

Pr +(p3 /e2)v. rv= (e/ /Lo)V A h(9)r/r 3 -Hr/r 3
• (12) 

If there was no electric field this equation would be the 
same as Newton's. 2 

A. The radial integration 

The conservation of energy implies 

fJ -H/(c2r) =a' (a' = const). 

By scalar multiplication of (12) by r we get 

pr·,.. + (p3/C2)V • rr· v +H/r= O. 

Hence 

d(pr ·v)/dt=fJr-H/r. 

(13) 

Eliminating fJ in this equation with the aid of (13) we get 

.!!.t( , 2 +H)dr)= 4(a,2- 1)c2r + a'H. 
dt ~ae r dt C a'c2r +H 

The integration of this equation is classical. Putting 
w=a'e2r+H, one finally arrives at 

c2 J dt= J w[c2(a'2 _1)w2 +2c2Hw _b'a,2]-1/2dw 

(b' = const), 

which defines the radial motion by means of elementary 
functions without reference to the magnetic field: We 
refind the radial relativistic Kepler's motion. 

B. The angular integration 

Let us define J = fJr A v and let us calculate J 2
• Work

ing as in Sec. IB one finds 

J 2 =b' /c4 -~/a'2c2=const. 

From another side 

dJ/dt = (e/ /.Lo)[h(6)/r 3 ]r A (VA r) 
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from which we deduce J.=d' -j(B) (d'=const) as in Sec. 
lB. Summarizing these two results we arrive on ac
count of (3) to the following integrations which allow us 
to determinate the angular motion: 

J2 = {l2r4(92 + sin2Bq,2), 

d' -j(B) = {lr2 sin2Bq,. 

The angular integrals are 

J sinBdB =a'c2 

{J 2 sin2B _ [d' _ j{B)]2?f 2 

f [d' - j{B)]dB - f 
sinB{J 2 sin2B _ [d' _ j{B)]2}I/2 - dcp. 

The B and the cp dependence of these equations are ex
actly identical with those found in Newton's theory so 
that the same conclusions remain valuable: one field 
leads to elementary solutions and three others lead to 
elliptic integrals. These fields have been presented in 
Sec. I. 

',' 
III. SCHRODINGER'S MECHANICS 

A. Separation of the variables 

Schr6dinger's equation is written as 

6.l/J + 2(e/li)iA. gradl/J - (e/Ii)2A2 l/J + (2/.Lo/li 2)(E - V)l/J = O. 

(14) 

Using spherical coordinates one establishes with the 
aid of (4) that 

A'grad = [g/(rsinB)]a/acp, 

A2:::::(g/r)2. 

Variables separate in Eq. (14): lj!=exp(imcp)@R. The cp 
equation immediately integrates into classical imaginary 
exponential form whilst r and e equations are (m is the 
integer magnetic quantum number-we shall only con
sider positive values of m; calculations are analogous 
when m is negative): 

~~ +2rdR + ~ rdE + /.LoH)R +sR=O 
dr dr li 2 

\' r ' 
(15a) 

~~ +coted~ -(s~e +E ~r ® -s0=0. (15b) 

The physically admissible solutions of (15b) only exist 
for definite values of the constant parameter s. Then 
Eq. (15a) is analogous to the radial equation in the hy
drogen problem (except the values of s). The discrete 
energy levels are given by 

(16) 

Therefore there is only one problem: the resolution of 
(15b) in view of finding the allowed values for s. An 
exact solution to this problem exists if the e equation is 
of a classical type with polynomial solutions (i. e. , 
Hermite, Laguerre, or Jacobi equation). However as 
we shall see the field of our investigations is then too 
narrow so that we shall also admit B equations which 
after a suitable change of variables belong to the differ
ential equations trilogy we have previously studied. 7 
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The reader will understand later our reasons for dOing 
so. In summary we have to introduce various trigon
ometrical functions in place of g in Eq. (15b) and to see 
after a suitable change of variables whether or not it is 
possible to bring the equation into a classical form 
(Hermite, Laguerre, or Jacobi) or into one of the three 
nonusual forms 7: 

Df" + (az2 +bz +c)f' +(d +ez)f=O, (17) 

where D = z, z(z -1) or z(1 - z)(a - z); we shall call 
these three equations (17a), (17b) and (17c), respec
tively. In the theory7 of Eq. (17) the parameters a, b, 
and c must verify a very simple condition (j, j', and j " 
are integers;;. 0): 

For Eq. (17a): 

c=-j, 

For Eq. (17b): 

c=j, 

or 

(18) 

(19a) 

a+b+c=-j'. (19b) 

The second relation deduces from the first when z is 
replaced by 1 - z in (17b). 

For Eq. (17c): 

c= -ja, (20a) 

or 

a +b +c= -j'(1 - Cl!), (20b) 

or 

aa2 +ba +c= -j" Q(a -1). (20c) 

The second relation (resp. the third) deduces from the 
first when z is replaced by 1 - z (resp. by a - az) in 
(17c). 

Here are the solutions we have found to the problem. 

1. Classical equations 

Excepting the case g= JC/sinB, where B vanishes, 
there is only one possibility: 

g=Xcote-B=Xr/~ (Coulomb field). 

This case leads to Jacobi polynomials if s = (eJC/1i)2 
-lV +1). We pass over the details since this problem is 
not new. 8 

2. Nonusual equations of the type (17) 

If we put y = sinB in (15b) it may be seen that g= X 
(= const) provides a solution to our problem. If we put 
u = cose in (15b) it may be seen that g= X sine and 
g= X tane are also convenient. We have not succeeded 
in finding another function g independent of those just 
mentioned. Let us now review the three cases in greater 
detail: 

1st case: g=X-B=XcotBr/~. 

We put y = sine in (15b) 

(1- 2)d
2
@ +1_2y2 d@ [m2 (EX)2 

y dy2 --Y- dY - 7+s + Ii 

eX IJ +2m If y @=O. (21) 
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If @=y""'T we find 

y(l - y)(-l-y)T" +[(2 _2m)y2 +(2m -l)]T' 

+{2meJ(jIf+[s + (eJ(jIf)2 +m2 -m]y}T=O. (22) 

Equation (22) is of the type (17c). Only condition (20a) 
is satisfied with j = 2m - 1. 

2nd case: g=3Csin8-B=23Ccos8r/r. 

We put u=cos8 in (15b): 

(1_u2)d2~ _2ud@ _[ m2? +(e3C)2(1_u2) 
du du 1 -U· If 

2me3C] +s+-If-@=0.(23) 

If iii) = (1 - U2)-m/2 exp[ - (eJ(jlf)u]T and u = 2v -1 for the 
sake of convenience: 

v(v -l)T" +[ - 4 (e3C/If)v2 + (4e3C/1f - 2m +2)v +(m -l)]T' 

+ [(2eJ(j1f +s +m 2 
- m) +4(eJ(jIf)(m -l)v ]T= O. 

(24) 

Equation (24) is of the type (17b). Both conditions (19a) 
and (19b) are satisfied withj=j'=m-l. 

3rd case: g= 3Ctan8- B=3C(2 +tan2 0)r/r. 

We put u=cosO in (15b): 

2 d2@ d@ [m2 e3C 1 
(l-u ) du2 -2u du - 1 -,r +2m Ii" u 

+ (e;y 1 :2U2 
+s]@ =0. (25) 

If @= (1 _U2)-m/2U"T with d1' - 0' - (eJ(j1i)2 = 0, we have 

u(l - u)( -1 - u)T" + [2(0' + 1 - m)u2 - 20' ]T' 

+ {2meJC/1f + [ -m +s +m2 +20'(1-m)]u}T=0. (26) 

Equation (26) is of the type (17c). Both conditions (20b) 
and (20c) are satisfied with j' =j" =m-l. 

Digression: In the three cases T obeys an equation 
like (17). Before going on let us make a digression 
about the solutions of (17). We recall and extend the 
results of Ref. 7. Because of the condition of finiteness 
we shall restrict ourselves to polynomial T functions: 

A first polynomial condition is 

e= -an for (17a) and (17b), 

e = -n(n +a -1) for (17c). 
(27) 

The recurrence equation which gives ~k is Rk~k-l +Sk~k 
+ T kAk+l = 0 (k = 0, ... ,n). The coefficients Rk, Sk and 
Tk are defined in Ref. 7. The last equation is com
patible only if 

So To 
Rl SI Tl 

• • • 
• • • =0. (28) 
• • • 
R

n
_1 Sn_1 T n-1 

R" S" 
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This determinant equation may be fulfilled in two differ
ent ways provided a, b, and c are well-connected [see 
Eqs. (18), (19), and (20)]. Indeed TJ=O so that two 
possibilities exist to satisfy (28): 

1st possibility: 

So To 
Rl SI Tl 

• • • 
• • • =0, 
• • • 
Ri -1 Sj_l T j _1 

RJ Sj 

Sf+1 T j+1 
Rj+l Sf+1 T j +1 

• • • 
• • • =0 (29) 
• • • 
R,,_1 S,,_1 T,,_1 

R" S" 

so that 

T = Zi+1 X polynomial of degree n - j - 1. (30) 

We have seen7 that with the first possibility the solution 
of (17) appear as linear combinations of Hermite, 
Laguerre, or Jacobi polynomials. The second possi
bility is more difficult to deal with because the order of 
the determinant (29) increases with the order of the 
polynomial. Yet only the second possibility is interest
ing for our purpose because of the divergent from of @ 
in (21), (23), and (25): indeed it will be shown on each 
particular case that on account of (30) @ is finally 
regular with the second possibility whilst it would be 
divergent with the first. 

B. Resolution of the differential equations 

We only study the three magnetic induction fields 
mentioned above. As we shall see no phySically ad
missible solution exist unless the parameters charac
terizing the problem are Suitably connected. In particu
lar the parameter 3C (which has the dimensions of a 
magnetic pole) cannot take arbitrary values. 

1st case: B=3C cotOr/r. 

We must deal with Eq. (22). Because j =2m -1 in that 
case we have on account of (30) 

where p(V) denotes a polynomial of degree II. The first 
polynomial condition [see (27)] gives the allowed values 
for s: 

s = - (eJ(j1i)2 - (m + 1I)(m + II + 1). (31) 

If JC = 0 we recover the classical hydrogen values 
s = - z(z + 1) if we set 1 = m + II. The se cond polynomial 
condition [see the determinant condition (29)] is 
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T 2m+1 

• • • 
• • • (32) 
• • • 

For each value of v it gives the allowed values for the 
parameter Je. For example, v=l (a simple case): the 
determinant (32) is of order two and the values of R k , 

Sk and Tk are given in Ref. 7; one finds 

1
2meJC/n - 2m - 1 1- 0 
-2m -2 2meJC/n - , 

i. e. , 

Je=(n/2e){[(2m +1)(2m +2)]1/2/m}. 

We deduce the value of s in this special case and we 
find the discrete energy levels numbered by the integer 
n [see Eq. (16)]: 

E = - (JJ.~2 /2n 2)(n + 1/2 +{1/4 + [(m + 1)/2m2 ](2m3 

+4m2 +2m +lW/2)-2. 

Each value of v must be analyzed separately in the same 
manner. Writing the determinant condition (32) in each 
cases we can at least, when v is small, list all the val
ues of Je which allow us to solve completely SchrOdin
ger's equation. Inversely the value of Je being fixed 
(among the allowed values of course) the corresponding 
values of m and v deduce like that of s and finally (16) 
allows us to construct the energy levels spectrum (with· 
n = 0,1,2, ... ). Since m and s are related to the angular 
momentum proper values we conclude by saying that a 
given allowed value of Je automatically forbids arbitrary 
angular momentum states. 

2nd case: B=2Je coserh;!. 

We must deal with Eq. (24). In fact this case is very 
different from the two others because it does not lead 
to a discrete energy levels spectrum. Indeed the first 
polynomial condition [see (27)] can never be satisfied; 
one must have on account of (30) 

T = vm(v _l)mp<v). 

So that T would be a polynomial of degree v +2m; there
fore, (27) would need 4(eJe/n)(m -1) = 4(eJe/n)(v +2m), 
which is impossible. We shall try to see in the final 
discussion the reasons for that special demeanor. 

3rd case: B=Je(2 +tan2e)r/r3
• 

We must deal with Eq. (26). Because jf =j" = m -1 in 
that case we have on account of (30) 

T=(l _u2 )mp<v). (33) 

The first polynomial condition [see (27)] gives the al
lowed values for s: 

s = - (v +20' +m)(v +m +1). 

If Je = 0 we recover the classical value s = -l(l + 1) by 
setting l = v +m. To obtain the polynomial determinant 
condition we must introduce (33) into (26). Just like in 
the first case each value of v must be analyzed sep
arately. The determinant condition gives in each cases 
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case v = 1; the determinant is of order two: 

1

2meJC/n 
-2m -20'-2 

-20' 1 
2meJe/n =0 . 
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Remembering the definition 0'[0'2 - a - (eJC/n)2 = 0], one 
finds the allowed Je values: 

Je = (n/e){[m +2)(m2 +m + 1)]l/2/(m2 -l)}. 

The corresponding s values follow and so do the energy 
levels 

E = - (JJ.~ /2n 2 )(n + 1/2 +{1/4 + [(m + 2)/(m2 -1) ](m3 

+3m2 +m +1)}1/2)-2. 

Remark: Before concluding this section it is interest
ing to recall what has been done. Schrooinger's equation 
seems completely solvable in only one case. In three 
other cases it is conditionally solvable: eJC/n must be 
correctly connected with the angular momentum quantum 
numbers so that JC is irrational in unit n/e. 

IV. DIRAC'S MECHANICS 

In this section we deal with very complicated equa
tions. Our first care must be the separation of the 
spherical variables in Dirac's equation. We have shown 
elsewhere that this operation is performed in the easiest 
way by using the quaterniOnic formalism. 7,9 To save 
place here the reader is referred to Ref. 7, Sec. I B to 
discover the details of the quaternionic procedure: it is 
shown that the qJ equation simply leads to trigonometri
cal functions and that the radial equation is analogous to 
that of the hydrogen atom problem except that (J + 1/2)2 
is replaced by the parameter _A2 to be determined. So 
we deduce that the energy levels are given by the well
known hydrogen formula 

E = JJ. oc
2( 1 + (JJ.oH/ cn)2{n+ [- A2 - (JJ.oH/Cn)2]1/2}-2)-1/2. 

(34) 

The e equation alone depends upon the presence of the 
magnetic potential. Therefore we have only to solve the 
follOwing coupled system: 

dTl __ T _ (2m +1) +cose T _( /"")T 
de - A 4 2 sine 1 eg" H 

(35) 

dT4 = -AT + (2m + 1) - cose T +( /n)T 
de 1 2 sine 4 eg 4' 

This system is exactly solvable by means of elementary 
functions in the case g= Jecot9, i. e., for the field of a 
magnetic pole. We pass over the details since the prob
lem has been investigated by Harish-Chandra. 8 It is 
conditionally solvable in three cases: 

1st case: g=JC-B=Jecoter/r"l. 

We make the substitution z = exp(ie) in (35) and we de
couple the system to obtain two second-order rational 
equations. We shall only deal with the Tl equation since 
when Tl is known, T4 deduces by (35); it is written with 
arbitrary g function (g' =dg/de): 

Z2 d2T1 + ~ dT1 + [(A2 + 1/2) _ 4m
2
z

2 
2mz 

dz2 z2_1 dz (z2_1)2 - (z_1)2 
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- - -- +2z(2m +1) -(1)(Z +1)2. e 
4 z-1 n 

Z (~)2 
gz2_1 + n 

~J - n T 1 =0. 

This equation is too general, since we only deal with 
g= JC (= const) so that g' = O. Let us set 

Tl =(z _1)-m-1(z +1)-mz°v;., 

where cf! - 0' +A2+ (eJC/n)2 + 1/4 = O. We find 

z(1 - z)(-1 - z)v;." +[(20' - 4m)z2 -2z - 20']W 

+{[(2m + 1)(1 + 2ieJ<'/n) - 20'] 

+(4m2 +2m -4mO')z}l{=0. (36) 

Equation (36) is of the type (17c). Both conditions (20b) 
and (20c) are satisfied with j' = 2m + 1 and j" = 2m-1. 
Therefore, we have on account of (30) 

l{ = (z _1)2m+2(z + 1)2mp(V), 

where p<V) is a polynomial of degree I). The first 
polynomial condition [see (27)] gives the allowed values 
for :\.: 

4m2 +2m - 4mO'= - (I) +4m +2)(1) +20' + 1), (37) 
, 

which reduces after Simplifications to 

20' +2m + I) +1 =0. (38) 

If JC = 0 we recover the classical hydrogen value:\.2 

= - (J + 1/2)2 if we set J = 1/2(1) + 2m + 1) with I) even. 
When I) is odd no classical equivalent exists. To obtain 
the polynomial determinant condition we must introduce 
(37) in (36). Each value of v must be analyzed separate
ly. Let us treat the case I) = 1; the determinant is of 
order I) + 1 = 2: 

1

2i(2m + 1 )(eJ<'/n) - 1 2m + 2 1 
-2m -2 2i(2m +1)(eJ<'/n) +1 =0, 

1. e. , 

_ E (2m +3)1 /2 
JC- 2e 2m +1 . 

The fact that these values are not identical with those 
found in the nonrelativistic theory may not surprise 
since in Dirac's theory the charged particle automati
cally carries a magnetic moment. 

We deduce from (38) and the definition of 0' the value 
of A 2 in this special case (I) = 1): 

:\.2= -[(m +1)2(2m +3)1I(2m +1). 

Finally, on account of (34) the energy levels are 

E = /-Lodl[1 + (/-LoH/ en)2(n +([(m + 1)2(2m + 3)/(2m + 1)] 

_ (/-LoH/e1i)2}1/2r2]-1/2. 

Let us remark in passing that the presence of the mag
netic field allows us to consider a strong Coulomb field. 
In the hydrogen theory one is limited by the condition 
/-Loll/ens; 1 equivalent to Z <137 if Z is the atomic num
ber but here the limitation is not so strict: /-LoH/cns; 3 
equivalent to Z <411. 

2nd ease: g= JC sine- B =2JC coser/r. 

We make the substitution u=cos2e/2 in (35) and we de-
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couple the system. We again only retain the Tl equation; 
for arbitrary g we have as follows: 

u(1 _U)d;~1 -(2u -1)~ _~A2 +1/2) + ~~t~~) 

+ ~ 2m +1 +(~)2 _ ~ JT -0 (39) 
n sin e n n . 1 - • 

Here we deal with the special case g= JC sine so that 
g'=JCcose. We set 

Tl = u-m/3(1 - U)-<m+l) 12 exp[ - 2 (eJ<'/n)u] v;. , 

where 

u(u -1)V{' +{-4(eJ<'/n)u2 + [4(eJ<'/n) -2m +1]u +(m -1)}l{' 

+{(:\.2 +m2 +4eJ<'/n) - 4(m -1)(eJ<'/n)u}v;. = O. 

This equation is of the type (17b). Both conditions (19a) 
and (19b) are satisfied with j = m -1 and j' =m. However 
it is impossible to set here 

v;. = um(1 _ u)m+lp< V), 

where P<V) would be a polynomial of degree v. Indeed 
the first polynomial condition [see (27)] can never be 
satisfied. Therefore no quantization of energy exists. 
The situation was similar in Schrodinger's theory. 

3rd ease: g=JCtane- B=JC(2 +tan2e)r/r. 

We again make the substitution u=cos2e/2 in (35) so 
that we can start with (39) where g' = JC/cos2e. Let us 
put in (39): 

Tl = (2u _1)·:JC/~ u-m/2(1 - ut(m+1) 12l{. 

One deduces 

u(1-u)(l/2-u)Vi' +[(2eJ<'/n-2m +1)zIl +(2m -3/2 

_ 2eJ<'/n)u - (m -1)/2]V{ +{_ (:\.2 + m 2)/2 

+ [;\.2 + m 2 + 2(m + l)eJC/n]u} VI = O. (40) 

Equation (40) is of the type (17c). Both conditions (20a) 
and (20b) are satisfied with j=m -1 and j'=m. There
fore, we have on account of (30) 

where p(V) is a polynomial of degree v. 

The first polynomial condition [see (27)] gives the 
allowed values for ;\.2: 

(41) 

'If +m2 +2(m +1)eJ<'/n= - (v +2m +1)(1) +2eJ<'/n + 1). 

(42) 

If JC = 0 we recover :\.2= - (J + 1/2)2 as in the hydrogen 
theory provided one sets J = I) + m + 1/2. 

To obtain the polynomial determinant condition we 
must introduce (41) into (40). Each value of I) must be 
analyzed separately. Let us treat again the case II = 1; 
the determinant is of order two: 

1 
meJ<'/n + m + 3eJ<'/n + 3/2 (m + 1)/2 1- 0 
-2m -3 -2eJ<'/n (m +1)(eJ<'/n-1) - , 

where account has been taken of (42). 

We deduce 

JC = (n/2e)(m + 3)-1. 
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These are the JC-allowed values in the special case II == 1. 
From (42) we deduce the corresponding values of X2 and 
finally the energy levels by (34): 

E== tJ.oc2 (1 + (tJ.oH/cli)2{n + [(m3 +7m2 +19m +15)/(m +3) 

- (tJ.oH/ CIi)2)11 2}-~rll 2. 

We remark like in the first case that the presence of 
the special magnetic field here considered allows to 
deal with strong Coulomb fields. The limitation is tJ.oH/ 
cli "" 5 equivalent to Z < 685 in the hydrogen theory. 

V. DISCUSSION 

It is time to compare the solutions obtained in the four 
fundamental mechanics for the motion of a charged par
ticle in a radial magnetic field of the type (1). The fact 
that there are analogies between the four treatments is 
not of course surprising. Let us emphasize them. In 
nonquantum mechanics: there is only one field (1) which 
leads to elementary integrations. Three other fields 
lead to elliptic integrals. All others seem to be more 
complicated (we shall say unsolvable). In quantum 
mechanics there is only one field which leads to classi
cal differential equations. Three other fields lead to 
non-usual differential equations of the type (17). All 
other fields seem to be unsolvable in that frame. What 
is very remarkable is that these fields are the same in 
the four mechanics. That analogy is purely formal and 
may be pursued in the following way: the final e integra
tion (resp. the final e-differential equation) needs a 
suitable change of variables. In the four treatments this 
change of variables is analogous when one considers the 
cases g2 == JC sine and g3 == JC tane but is different for 
gl == JC. Let us now look at more physical analogies. 

When one deals with the solutions of the quantum 
equations in the cases gu g., and g3 one may say: 

(1) For what regards the cases gl and g3 the problem 
is conditionally entirely solvable (with discrete energy 
levels): the parameter JC entering into the definition of 
g may only take well-chosen values. When this value is 
fixed the angular momentum quantum numbers m and 1/ 

are also fixed at definite values. Such a demeanor is 
not entirely new in Schr6dinger's theory: it is known 
that definite central electric potentials, like for exam
ple V=Voexp(-r/d) or V=Votanh2(r/d), lead to solvable 
equations if and only if the angular momentum quantum 
number l == 0. 10 
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(2) The case g2 is very different since the energy 
spectrum is not discrete on account of the absence of 
polynomial solutions. 

In nonquantum mechanics the situation is quite 
analogous: 

(1) We have already pointed out in remark (1) that 
when e3C/tJ.o, P and P 6 are suitably connected the elliptic 
integrals may degenerate into elementary ones. So both 
integrals I and J [see (7) and (8)] become of the type 
f R[z, (az 2 +bz +c)1/2]dz, where R denotes a rational 
function. It is known that following the sign of a and c 
the dependence upon z of that integral may be inverse 
trigonometrical or logarithmical. It might be shown with 
the aid of (9), (10), and (11) that in the cases of gl and 
g3 the solution is not logarithmical so that the motion is 
a stable orbit (1. e., r m1n <r <rmax)' 

(2) Quite the contrary in the case of g2 the integral is 
always logarithmical so that the motion is not stable: 
the particle falls on the center. As Gupta 11 pOinted out it 
does not correspond discrete energy levels to such a 
spiral orbit in the equivalent quantum problem. 

We may conclude be saying that the quadruple treat
ment of a same problem in four different mechanics ex
hibits expected physical analogies and also formal 
analogies which are sometimes of a strange kind. A 
stable motion is possible in a Coulomb magnetic field 
but also in the fields B==JCcoter/r" or B==JC(2 +tan2e)r/ 
r" provided the value of JC is allowed. 
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Errata: Off-shell T matrix corresponding to a sum of 
Coulomb and separable potentials by expansion in 0 (4) 
harmonics 
[J. Math. Phys. 12, 1379 (1971)] 

w. W. Zachary 

Naval Research Laboratory, Washington, D. C 20375 
(Received 26 July 1973) 

Z. Bajzer has kindly informed me of the following 
errors in the above paper: 

(1) In Eq. (10), the second term on the right-hand side 
should read: 

__ 1_ "" 5 C 
LJ V~~,T ~'v' 

2po ~' 

(2) The decomposition given in Eq. (13) is not "auto
matic" as claimed, but is merely convenient. 

(3) In Eq. (36b), the hypergeometric function in the 
second term should read: 

2 PI (1, - i fJ. ; 2 - i fJ.; (1..:::..!:!!..XP..:=!!)) 
\ f3 + ik P + k 

and the third term should read 

Errata: Reduction of the Poincare group with respect to 
the Lorentz group 
[J. Math. Phys. 13, 1585 (1972)] 

s. W. MacDowell and Ralph Roskies 

Department of Physics, Yale University, New Haven, Connecticut 06520 
(Received 27 June 1973) 

The following misprints should be corrected: 

(1) Author's name: S. W. MacDowell and Ralph Roskies. 

(2) In Eq. (4.2) replace (z 2 - z 2) by (z 2 - z 3)' 

(3) In the first line of Eq. (4. 11) where it is written 
(A3A4) should be (A3 + A4) 

(4) On the line following Eq. (4. 14) replace (4. 10) by 
(4.12). 

(5) On the line preceding Eq. (5. 3) the factor ."l-iJ..j 
should be .,,1 + iAj. 

(6) In the second line of Eq. (5. 3) the factor (N.· p.) 
should be replaced by (Nj ' Pj)-l-iAi. J J 

(7) In the first line on p. 1590 replace (5.2) by (5.3). 

(8) In Appendix C, Eq. (C5) should read: 

J = ,fooo[(I/m)(Po - p) + (l/m)(po + p)p2]-1-iA21Tdp2 

= (1T/iA2)[(1/m)(po + p)r1
+

iA2
• 

(9) In Eq. (C7) replace d 3p/ zPo by d3p/2po' 

Erratum: Approximate functional integral methods in 
statistial mechanics. I. Moment expansions 
[J. Math. Phys. 13, 1681 (1973)] 

Armand Siegel and Terence Burke* 

Department of Physics, Boston University, Boston, Massachusetts 02215 
(Received 30 May 1973) 

The discussion of convergence properties of the expan
sion on p.1683 of this article is incorrect. The discus
sion given would serve to guarantee convergence only if 
the condition were added that the potential fUnction be 
bounded from above. While this condition would not pre
vent the expansion from being useful, it is fOrtunate that 
convergence can in fact be proved without it: Kac, in 
Ref. 4 of our article, has a convergence proof which will 
serve this purpose. He deals with the term-by-term 
expectation value of the expansion of the exponential 
function of the time integral of the (negative of the) non
centralized potential, but our centralized potential fits 

2018 J. Math. Phys., Vol. 14. No. 12, December 1973 

his conditions on the potential-except that he requires 
that V 2: 0, but this can be trivially changed to our con
dition of boundedness from below; thus we must retain 
the latter condition. He is able to eliminate the condi
tion of boundedness from above. Finally, it is important 
to note that Kac proves not only that the expansion con
verges, but that it converges to the desired Wiener 
integral. 

*Present address: Department of Physics, Texas A. & M. University, 
College Station, Texas 77843. 
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